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Abstract

Background: Considering the clinical and genetic characteristics, acute lymphoblastic leukemia (ALL) is a rather
heterogeneous hematological neoplasm for which current standard diagnostics require various analyses
encompassing morphology, immunophenotyping, cytogenetics, and molecular analysis of gene fusions and
mutations. Hence, it would be desirable to rely on a technique and an analytical workflow that allows the
simultaneous analysis and identification of all the genetic alterations in a single approach. Moreover, based on the
results with standard methods, a significant amount of patients have no established abnormalities and hence,
cannot further be stratified.

Methods: We performed WTS and WGS in 279 acute lymphoblastic leukemia (ALL) patients (B-cell: n=211; T-cell:
n=68) to assess the accuracy of WTS, to detect relevant genetic markers, and to classify ALL patients.

Results: DNA and RNA-based genotyping was used to ensure correct WTS-WGS pairing. Gene expression analysis
reliably assigned samples to the B Cell Precursor (BCP)-ALL or the T-ALL group. Subclassification of BCP-ALL samples
was done progressively, assessing first the presence of chromosomal rearrangements by the means of fusion
detection. Compared to the standard methods, 97% of the recurrent risk-stratifying fusions could be identified by
WTS, assigning 76 samples to their respective entities. Additionally, read-through fusions (indicative of CDKN2A and
RB1 gene deletions) were recurrently detected in the cohort along with 57 putative novel fusions, with yet
untouched diagnostic potentials. Next, copy number variations were inferred from WTS data to identify relevant
ploidy groups, classifying an additional of 31 samples. Lastly, gene expression profiling detected a BCR-ABL1-like
signature in 27% of the remaining samples.

Conclusion: As a single assay, WTS allowed a precise genetic classification for the majority of BCP-ALL patients, and
is superior to conventional methods in the cases which lack entity defining genetic abnormalities.
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Background

Transcriptome sequencing, usually gene expression ar-
rays, has been a well-established diagnostic tool to
characterize and quantify gene expression profiles and to
detect fusion transcripts for many years. The develop-
ment of RNA sequencing (RNA-Seq), including polyA-
selected and whole transcript sequencing (WTS), has
made it possible to broaden the analytical spectrum to
study multiple transcriptional events (e.g., chimeric tran-
scripts, isoform switching, expression, etc.) with a single
approach. Compared to the expression arrays, RNA-Seq
offers single base pair resolution, and considerably less
background noise, providing hence, a relatively unbiased
analysis of the transcriptome. Although guidelines have
been established to allow for precise and context-
dependent data analysis [1], no gold standard exists for
any of the preprocessing steps or the downstream ana-
lyses. Hence, integrating RNA-Seq into the necessarily
rigid quality standards of clinical diagnostic workflows is
challenging. However, the multifaceted output of the
assay can greatly benefit clinical diagnostics as indicated
by various studies [2—4] and reviews [5, 6].

Acute lymphoblastic leukemia (ALL) is a heteroge-
neous hematological neoplasm when considering the
clinical and genetic characteristics [7]. The World
Health Organization (WHO) recognizes nine different
sub-entities within the BCP-ALL with recurrent genetic
abnormalities [8], including 4 groups characterized by
the specific translocations, which result in the formation
of aberrant chimeric transcripts detectable by RNA-Seq
fusion calling (BCR-ABLI, KMT2A-rearranged, ETV6-
RUNXI1, TCF3-PBX1). Additional entities are character-
ized by abnormalities in chromosome numbers, or by
partial amplifications: BCP-ALLs with hyperdiploidy, hy-
podiploidy or intrachromosomal amplification of
chromosome 21 (iAMP21). More recently, further dis-
tinct ALL subtypes, including BCR-ABLI-like and ETV6-
RUNXI-like ALL, were identified based on their gene
expression profiles [9-11]. BCR-ABLI-like was included
in the WHO classification of 2017, as a provisional en-
tity based on treatment and prognostic implications that
are associated with this high-risk subtype [8].

Currently, the diagnosis of ALL patients requires
various analyses encompassing morphology, immuno-
phenotyping, molecular analysis of gene fusions and
mutations, and detection of numerical and structural
abnormalities based on chromosomal banding analysis
(CBA) and fluorescence in situ hybridization (FISH)
[12]. With WTS parallel analysis of gene expression
profiles, fusion transcripts and copy number changes
becomes  feasible, leading to an  in-depth
characterization of a patients’ genetic profile as a
basis for disease classification based on the data set
of a single approach.
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Nevertheless, studies that comprehensively assessed all
the transcriptional events in a clinical setting are scarce.
In the current study, we performed detailed WTS ana-
lysis in 279 patients with newly diagnosed ALL of B-
and T-lineage, to explore the complete diagnostic poten-
tial of WTS for the genetic characterization of ALL and
its applicability in routine practice.

Methods

Patients and samples

Two hundred seventy nine patients with newly diag-
nosed ALL, sent to MLL Leukemia Laboratory between
03/2006-01/2017 for diagnostic work-up, were selected
based on sample availability for WTS and WGS. ALL
diagnosis was established based on morphology, immu-
nophenotype, and cytogenetics, as previously published
[13-15]. The cohort comprised 115 female (41%) and
164 male (59%) patients, with a median age of 49 years
(range 0.1-93 years) at diagnosis (Additional file 3: Table
S1). The patients showed B-cell precursor (BCP-ALL;
n=211) or T-cell precursor immunophenotype (T-ALL;
n=68). For WTS analysis 64 (45% female, 55% male),
healthy individuals were sequenced as controls.

CBA, FISH, array-CGH

CBA was performed for all 279 cases as previously de-
scribed [13]. Classification of chromosomal aberrations
and karyotypes was performed according to the ISCN
2016 guidelines [16]. The FISH probes used in diagnos-
tic work-up were selected based on recommendations,
aberrations detected in CBA, and the availability of
probes. Array-CGH analyses were carried out for 123
cases (4x180K microarray slides, Agilent Technologies,
Santa Clara, CA). The design was based on UCSC hgl9
(NCBI Build 37, February 2009).

Library preparation, sequencing, and data preprocessing

Library preparation was done as previously described
[17]. In brief, genomic DNA and total RNA were ex-
tracted from lysed cell pellet of diagnostic bone marrow
(n=196) or peripheral blood (# = 83). Two hundred fifty
ng of high-quality RNA were used as input for the Tru-
Seq Total Stranded RNA kit (Illumina, San Diego, CA,
USA). WGS libraries were prepared from 1 pg of DNA
with the TruSeq PCR free library prep kit (Illumina). For
WTS, 101bp paired-end reads were produced on a
NovaSeq 6000 system with a median yield of 68 million
cluster per sample. WGS libraries were sequenced on a
NovaSeq 6000 or HiSeqX instrument with 90x coverage
and 150bp paired-end sequences (Illumina). FASTQ
generation was performed applying Illumina’s bcl2fastq
software (v2.20). Using BaseSpace’s RNA-seq Alignment
app (v2.0.1) with default parameters, reads were mapped
with STAR aligner (v2.5.0a, Illumina) to the human
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reference genome hgl9 (RefSeq annotation). Reads from
WGS libraries were aligned to the human reference gen-
ome (GRCh37, Ensembl annotation) using the Isaac
aligner (version 03.16.02.19).

DNA and RNA-based genotyping

The haplotype caller was used to identify the variant al-
lele frequencies of 50 single nucleotide polymorphisms
(SNP) [18], following the best practice guidelines of
GATK4 [19]. The allele concordance score, defined as
the ratio between the number of identical alleles and the
total number of alleles, was computed for all pairwise
comparisons to identify the best WGS match to each
WTS profile. WTS coverage of the chromosomal region
of the various SNPs were assessed by samtools [20]
depth command. Only the SNPs with at least 5 reads in
a patients’ WTS data, were used for the comparisons.

Structural variant and copy number variant detection on
WGS data

For WGS, no sample specific normal tissue was avail-
able. A sequencing-platform and gender specific gen-
omic DNA from a mixture of multiple anonymous
donors (Promega, Fitchburg, WI, USA) was used as a
normal in a tumor/unmatched normal workflow to call
structural variants (SV; aberrations with >50bp in size)
with Manta (v0.28.0). For somatic copy number varia-
tions (CNV), GATK4 was used following the Broad’s
recommended best practices with a panel of normals.
Specific gene deletions (IKZFI, CDKN2A, RBI) were
identified by matching SV and CNV calls within the re-
spective region.

Gene expression analysis

Estimated read counts per gene were obtained from Cuf-
flinks 2 (version 2.2.1). Non expressed genes were fil-
tered out (<2 counts). Raw counts were normalized by
applying the Trimmed mean of M-values method from
the edgeR package [21], producing log, CPM values. t-
SNE plots were generated with the R package Rtsne
(https://github.com/jkrijthe/Rtsne). Circos plots were
generated with RCircos [22]. Venn diagrams were pro-
duced with BioVenn [23]. The remaining plots were gen-
erated with ggplot2 (ref. [24]). For BCR-ABLI-like
expression analysis the median expression profiles of se-
lected genes from 40 BCR-ABLI positive and 65 BCR-
ABLI negative cases were used as references. Classifica-
tion was done based on the minimal Euclidean distance.

Fusion calling on WTS data

Arriba (https://github.com/suhrig/arriba), STAR-Fusion
[25], and MANTA [26] were selected for fusion calling.
All the algorithms were used with default settings, ex-
cept for STAR-Fusion --min_FFPM, which was set to
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zero, to include all candidate fusion transcripts inde-
pendent of estimated expression. Fusions were only con-
sidered for further analysis, if they were called by at least
two callers, could be confirmed by WGS, and were not
detected in control samples. Putative novel fusions were
queried against the Mitelman Database of Chromosome
Aberrations and Gene Fusions (https://
mitelmandatabase.isb-cgc.org/) and ChimerDB [27].

Copy number inference on WTS data

The copy number states of the autosomes were inferred from
raw gene counts with the ‘import-rna’ option of the software
package CNVKkit [28]. The obtained results were further fil-
tered, and only the calls with a weight > 15 were considered.
Individual calls were aggregated per chromosome. A copy
number state was considered as aberrant, if the log, value was
>0.15. Samples with > 3 copy number changes (chromosome
gains or losses) were selected as potential low hypodiploidv/
near triploidy and high hyperdiploidy cases. Samples with ei-
ther loss of =5 chromosomes or the specific loss of chromo-
somes 3, 7, 13, and 17, were assigned to the low hypodiploid/
near-triploid group. Cases were categorized as high hyperdi-
ploid if at least 2 of the following chromosomes were gained:
4, 6,10, 14, 17, 18, and 21.

Selected small nucleotide variant analysis

The WTS data was evaluated for SNVs in CRLF2,
DUX4, JAK2, KRAS, NRAS, PAX5 and TP53. Variants
were called with the Isaac Variant Caller (version 2.3.13)
and only the passed variants with a matching call in
WGS data were included. For the WGS data, a gender-
matched reference DNA was used for unmatched nor-
mal variant calling with Strelka2 (version 2.4.7).

Results

SNP profiles verify correct WGS/WTS pairing

A recently established SNP panel for both DNA and
RNA-based genotyping [18], was used to identify poten-
tial sample mix-ups and/or contaminations between the
WGS and WTS samples. The allele concordance score
(ranging from O to 1; Patients & Methods) was used to
identify the best matching WGS sample for each WTS
profile. For 278/279 cases, the best matching WGS sam-
ple belonged to the same patient as the WTS sample
with a minimal allele concordance score of 0.81 (Add-
itional file 4: Table S2). However, for one of the samples,
a substantial number of SNPs showed divergent VAFs
between the WTS and WGS datasets, resulting in the
elimination of the patients’ dataset.

Gene expression reliably segregates BCP-ALL from T-ALL
patients

The samples were classified by WTS data following the
classification tree depicted in Fig. 1. The initial
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Fig. 1 Classification tree. Design of the stepwise classification approach and distribution of the patients. First, DNA and RNA-based genotyping
(SNV) was used to ensure correct WTS-WGS pairing, excluding one sample with low concordance. Gene expression analysis was used to
distinguish between BCP-ALL or the T-ALL group. Subclassification of BCP-ALL samples was done progressively, assessing first the presence of
entity-defining rearrangements (WHO) by the means of fusion detection. Next, copy number variations were inferred from WTS data to identify
relevant ploidy groups. Lastly, gene expression profiling was used to identify BCR-ABL1-like signatures. ALL: Acute lymphoblastic leukemia; BCP-
ALL: B-cell precursor acute lymphoblastic leukemia; CNV: copy number variation; iAMP21: intrachromosomal amplification of chromosome 21;
LowQ: low quality; Ph: BCR-ABLT; SNP: single nucleotide polymorphism; T-ALL: T-cell acute lymphoblastic leukemia; WHO: world

classification step comprised the assignment of the sam-
ples to either the T, or the B lineage. As expected, the
gene expression data could be used to reliably differenti-
ate between BCP-ALL and T-ALL samples, based on the
expression levels of 14 described markers (Add-
itional file 1: Fig. S1A, Additional file 5: Table S3) [29].
Both lineages comprise different subtypes, characterized
by the expression of various differentiation markers, and
thereby defining the maturation state. Mapping the sam-
ple subtype classification (immunophenotyping data,
Additional file 3: Table S1) to the two groups showed
that the clusters within the groups fitted loosely to these
subtypes (Additional file 1: Fig. S1B). However, further
subclassification based on gene expression data, is rather
challenging, and only for CDI10 (common B-ALL) and
CDIA (thymic T-ALL) discriminative power of the ex-
pression data could be detected (Additional file 1: Fig.
S1C). The CDI0 and CDI1A expression values obtained
from WTS correlated well with the percentage of posi-
tive cells obtained from immunophenotyping (R* = 0.75;
Additional file 1: Fig. S1D).

Fusion calling identifies subgroup defining
rearrangements with high accuracy

Following the segregation of the samples into the two
lineages, the BCP-ALL samples are further subclassified
by the identification of recurrent risk-stratifying gene fu-
sions. The median of fusions per patient was 1 (range 0—
8). In total, 100 unique fusion transcripts were called in
the BCP-ALL cohort. Fourteen fusion transcripts oc-
curred recurrently, while 86 fusion transcripts could only
be detected in a single patient. 56% of these fusion tran-
scripts involved genes located on the same chromosome
(48/86; intra-chromosomal fusion) and 44% were caused
by structural rearrangements between two different
chromosomes (38/86; inter-chromosomal fusion). Based
on the results from CBA, 41 BCR-ABLI, 23 KMT2A-
AFF1, 5 ETV6-RUNXI, and 4 TCF3-PBX1 fusions were
detected in the cohort. The fusion calling based on WTS
data identified 97% of these fusions (Table 1) with no
false positives. In addition, WTS detected three other
known fusion partners of KMT2A (MLLT10, MLLTI,
and USP2), each in a different case, but missed one
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KMT2A-EPS15 fusion, assigning 76/211 BCP-ALL sam-
ples to their respective subgroups. For 15% of these sam-
ples an additional fusion transcript was called. Except
for WDR37-TBRG1, which co-occurred with the recipro-
cal of the KMT2A-MLLTI10 fusion transcript and in-
volved the same chromosomes, but with breakpoints
further apart, all of the additional fusion transcripts were
intra-chromosomal (Additional file 6: Table S4).

Broadening the spectra of fusion transcripts

In addition to the subtype defining rearrangements,
among the BCP-ALLs we identified well characterized
fusions involving ZNF384 (n =8), PAX5 (n =3), and two
fusion transcripts containing NUTM1: BRD9-NUTM]1,
which has been described in infant ALLs [30], and the
novel fusion CHD4-NUMT1. We also identified one case
with an EBFI-PDGFRB fusion, which arose from an
interstitial 5q33 deletion (WGS data), and another, with
a TCF3-HLF fusion transcript. Known fusion transcripts
in the T-ALL cohort mainly involved MLLTIO (n=3)
and genes encoding for proteins of the nuclear pore
complex (n =5). Interestingly, we also identified recur-
rent read-through events, such as MTAP-ANRIL (n=
15), RCBTB2-LPARG6 (n=12), P2RY8-CRLF2 (n =3) and
DLEU2-SPRYD7 (n =3) in both groups. Even if the fu-
sions themselves are most likely not biologically active,
MTAP-ANRIL has been detected in melanoma patients
in association with the deletion of the tumor suppressor
genes CDKN2A/B [31], RCBTB2-LPAR6 indicates a par-
tial RB1 loss as part of a larger deletion [32], and
DLEU2-SPRYD7 indicates the deletion of the miR-15a/
16-1 cluster (Fig. 2). The deletions were confirmed by
WGS SV and CNV calls in the respective patients. Since
WTS is not limited to the detection of already known
chimeric transcripts, we also identified in total 57 puta-
tive novel fusion transcripts (Additional file 6: Table S4).
Although the potential therapeutic consequences and
functions are yet to be determined, multiple genes asso-
ciated with cancer or implied in non-hematologic malig-
nancies were found as fusion partner genes in our
dataset (e.g. CHD4, HOXA7, FOXO3).

Table 1 Comparison of detected fusion transcripts by RNA-Seq
to expected translocations by chromosome banding analysis
(CBA)

CBA RNA-Seq RNA-Seq/CBA [%]
BCR-ABL1 41 40 98
ETV6-RUNX1 5 4 80
KMT2A-AFF1 23 23 100
TCF3-PBX1 4 4 100
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CNV calling based on WTS data identifies relevant ploidy
groups

For the remaining 134 BCP-ALLs with no subtype defin-
ing rearrangements, CNV calling was performed based
on the WTS data to identify relevant ploidy groups for
further subclassification (Fig. 1). Here, the CNVkit algo-
rithm was used to identify patients with high hyperdi-
ploidy or low hypodiploidy/near-triploidy (Patients and
Methods). The algorithm correctly identified 17 (94%)
low hypodiploid/near-triploid ALLs and 12 (80%) high
hyperdiploid ALLs as defined by WGS, arrayCGH, and
FISH (Additional file 7: Table S5). One case was misclas-
sified as high hyperdiploid, but is most likely a near-
triploid ALL, according to the WGS data. The algorithm
missed 1 hypodiploid/near-triploid ALL with low blast
count (20%), 3 high hyperdiploid ALL, 1 near haploid
ALL, and 1 iAMP21 ALL. However, the resolution of
the algorithm might be too low to reliably detect
iAMP21. We thus, analyzed the expression of DYRKIA
and CHAFIB that have recently been associated with
iAMP21-positive ALLs [33]. The expression of both
genes was indeed heightened in the iAMP21 case (Add-
itional file 2: Fig. S2A). Based on this classification, 103
(49%) BCP-ALL samples of our cohort have no estab-
lished abnormalities and are further referred to as BCP-
ALL ‘other’.

BCR-ABL1-like signature identification by WTS

A compilation of the various published gene lists [34—
36] was used to test for their ability to differentiate be-
tween BCR-ABLI positive and BCR-ABLI negative cases
in our cohort. A final list of 26 genes with the highest
variation between BCR-ABLI positive and BCR-ABLI
negative cases and the reference profiles of 41 BCR-
ABLI positive and 65 BCR-ABLI negative cases (Add-
itional file 8: Table S6) were used to classify the 103
BCP-ALL ‘other’ cases into the BCR-ABLI-like and non
BCR-ABLI-like groups, based on minimal distance.
Twenty eight cases were classified as BCR-ABLI-like and
the remaining 75, as non BCR-ABLI-like. Recently, a tar-
geted RNA-Seq panel of 38 genes was published to iden-
tify adult BCP-ALL pts. with BCR-ABLI-like
characteristics [37]. The application of this gene panel
identified 30 BCR-ABLI-like cases, of which 28 (93%)
were concordant with the group classification, by the list
of 26 genes. Hence, the concordant subset of 28 samples
was assigned to the BCR-ABLI-like subtype (Add-
itional file 9: Table S7).

Characteristics of BCR-ABL1-like and non BCR-ABL1-like
cases

There were no significant differences in baseline charac-
teristics such as age, gender, and ALL phenotype be-
tween BCR-ABLI-like and non BCR-ABLI-like patients
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(Additional file 3: Table S1), but for an elevation of
white blood cell counts in BCR-ABLI-like patients
(59.03 x 10°/L vs 25.18 x 10°/L, P=0.025). Among the
BCP-ALL ‘other’ cases, CRLF2 showed a clear bimodal
expression (Additional file 2: Fig. S2B), with a significant
higher CRLF2 expression in the BCR-ABLI-like group,
as compared to the non BCR-ABLI-like cases (logFC
5.17, P<0.0001). The high CRLF2 expression could ei-
ther be linked to the occurrence of a CRLF2 rearrange-
ment or CRLF2 mutations. Only one case with a high
CRLF2 expression was assigned to the non BCR-ABLI-
like group. In addition, a significant enrichment of JAK2
mutations (mainly ¢.2047A > G) could be observed in
the BCR-ABLI-like group (42% vs 0%, P<0.001),
whereas the non BCR-ABLI-like group carried a higher
proportion of NRAS/KRAS (28% vs 4%, P = 0.007), PAXS
(c239C> G, 8% vs 0%, P=0.12) and TP53 (8% vs 0%,
P =0.12) mutations (Additional file 9: Table S7). Fusions
involving PAXS5, CRLF2, and tyrosine kinases were exclu-
sively found in the BCR-ABLI-like group. All samples
with detected NUTM1, HLF, and ZNF384 fusion tran-
scripts were assigned to the non BCR-ABLI-like group
and, hence, could be further subclassified based on these
genetic alterations. WGS data showed that 34% of the
BCP-ALL ‘other’ cases harbored a deletion in IKZFI,

and as expected, these deletions were significantly more
common in the BCR-ABLI-like group (61% vs 24%, P <
0.001). A similar trend could be observed for RBI dele-
tions (WGS data, 18% vs 4%, P =0.019). In contrast, de-
letions of the tumor-suppressor gene CDKN2A (WGS
data) were fairly common amongst both groups (32% vs
44%), and were not enriched in BCR-ABLI-like or non
BCR-ABLI-like cases (Additional file 9: Table S7).

A multi-modal approach is superior to a classification
based on gene expression profiles alone

Most genetic alterations in ALLs are also associated with
specific gene expression profiles, providing the basis for
expression-based classification approaches such as ALL-
sorts (https://github.com/Oshlack/AllSorts). Hence, for
BCP-ALL patients, we compared our results from the
multi-modal approach to the ALLSorts classifier (see Pa-
tients & Methods; Additional file 10: Table S8). The
ALLSorts classifier returns a matrix with per sample
probabilities for each subtype. For the comparison, only
the highest subtype probability was considered for each
sample. The ALLSorts predictions were grouped into;
unclassified (= BCP-ALL ‘other’; probability < 50%), low
confidence (50-80% probability), medium confidence
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(80—90% probability), and high confidence (probability >
90%) calls.

For the fusion transcript and ploidy based WHO sub-
groups, the ALLSorts classifier achieved an overall ac-
curacy of 86%, compared to 97% of our stepwise
approach. The ploidy groups had the highest number of
false negative calls, and less than 50% of the high hyper-
diploid cases were called with high confidence by ALL-
Sorts (Fig. 3A). Although the single iAMP21 case could
be identified by gene expression as mentioned above, it
was not identified as such, by ALLSorts. The ALLSorts
classifier also made 8 false positive calls with different
confidence levels, compared to zero false positive calls of
the fusion calling (Fig. 3B). It was also evident that the
overlap of assigned class labels between ALLSorts and
the multi-method approach dropped from 89 to 26%
with decreasing probability values (Fig. 3C). Due to the
higher number of false negative calls, ALLSorts assigned
more cases to the BCP-ALL ‘other’ group compared to
the multi-modal approach (113 vs 103 Fig. 3D). The ap-
proaches agreed on 26 of the BCR-ABLI-like cases,
while ALLSorts misclassified 3 BCR-ABL1 cases as BCR-
ABLI-like. ALLSorts classified 15 patient profiles as
DUX4 rearranged (Fig. 3D). However, neither DUX4 fu-
sion transcripts nor DUX4 expression (WTS data) or the
IGH-DUX4 structural variants (WGS data), could be
identified in those cases. Nevertheless, compared to
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BCP-ALL ‘other’ cases not classified as DUX4 rear-
ranged, an overexpression of DUX4 target genes such as
PCDH17 (logFC 7.51, P-value < 0.0001), PDGFRA (logFC
5.65, P-value < 0.0001), and AGAPI (logFC 5.52, P-value
<0.0001) could be observed. ALLSorts correctly identi-
fied 6 samples with a PAXS ¢.239C > G mutation. How-
ever, one case of PAX5 ¢.239C > G was missed, and in
one case the additional high hyperdiploidy was not de-
tected. Both cases were correctly identified by the step-
wise approach. ALLSorts correctly identified all cases
harboring a ZNF384 or NUTMI fusion transcript and
one case with a HLF fusion transcript as detected by the
multi-modal approach. One case was labeled as a MYC/
BCL2 double-hit BCP-ALL by ALLSorts, but solely car-
ried a MYC translocation (WGS data).

Discussion

Genetic aberrations in ALL are structurally diverse, and
currently detected by a variety of diagnostic assays. The
aim of this study was to compile a diagnostic workflow
to establish whole transcriptome RNA sequencing as a
reliable, comprehensive, and efficient assay for ALL diag-
nostics. We demonstrated that typical genetic alterations
can be identified with high accuracy, while at the same
time the unbiased assessment of the transcriptome also
allows the identification of potentially new targets in pa-
tients, where these genetic aberrations are absent. Our
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results further suggest that careful selection of the algo-
rithms for each molecular type is beneficial for accurate
sample classification.

We demonstrated that samples could efficiently be
classified in a stepwise approach (Fig. 1). As previously
shown [38], BCP-ALLs were characterized by a
homogenous CDI9 gene expression, whereas T-ALLs
could be identified by CD3D and CCR9 expression. Mul-
tiple entity-defining fusion transcripts are known in
BCP-ALLs (BCR-ABL1, KMTZ2A-AFFI, TCF3-PBXl,
ETV6-RUNXI), and a reliable detection is mandatory for
every diagnostic workflow. The applied fusion calling
procedure identified 97% of the fusions, as detected by
gold standard techniques, which is in line with previous
RNA-Seq studies in pediatric ALL cohorts that reported
detection rates between 91 and 97% [3, 39-41]. The
number of true positive calls can be increased by consid-
ering the overlap of different callers [42], while simultan-
eously reducing the number of false negative ones. In
this study, we used three different algorithms, with only
68% of the risk-stratifying fusion events being called by
all the three algorithms (Additional file 6: Table S4), ad-
vocating the combined approach. Two fusion transcripts
were missed most likely due to the low fusion transcripts
expression, which are very difficult to detect 3, 40] and
cannot be rescued by this approach. Here, only a greater
sequencing depth could solve this issue.

Beside subtype defining rearrangements, other previ-
ously described translocations could be identified, in-
cluding 8 rearrangements involving ZNF384, which were
recently described to constitute a new molecular subtype
of BCP-ALL ‘other’ with a good response to prednisone
and conventional chemotherapy [43-45]. Our study
showed that WTS is especially beneficial to identify cy-
togenetically cryptic events (e.g. EP300-ZNF384, PAX5
fusion transcripts, SET-NUP214, etc) and unknown or
divers fusion partners, in an unbiased and cost-effective
way. In addition, we identified multiple recurrent read-
through events indicative of gene deletions, frequent in
ALL (e.g. CDKN2A/B, RB1, MIR15A/16—-1), which were
exclusively called by STAR-Fusion and arriba. To the
best of our knowledge, two of these events have not
been described before, whereas the MTAP-ANRIL fusion
has been identified in a melanoma cohort, in the context
of CDKN2A/B deletions [31]. CDKN2A/B deletions have
been associated with poor prognosis and it has been sug-
gested to declare them as an additional B-ALL subgroup
[46]. Moreover, WTS identified 57 putative novel fusions
with the majority occurring only in a single patient;
similar to the findings in a study of pediatric ALL [39].
As all these fusions were detected only once, the puta-
tive role in ALL pathogenesis and their diagnostic and
prognostic potential has to be determined by combining
data from several studies. However, fusion transcripts
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involving genes with a large number of pseudogenes
(e.g. DUX4) or highly variable genomic regions (e.g. IGH
gene locus) are still challenging to detect with most fu-
sion calling algorithms but this might be improved by
their continuous optimization.

Estimating abnormalities involving the chromosome
number, plays a major role in ALL classification and
prognostication. While ALL with high hyperdiploidy is
associated with a favorable prognosis, ALL with low hy-
podiploidy shows a poor outcome [15, 47]. Due to the
interplay of multiple regulating factors, inferring copy
number changes from WTS data is rather challenging
[48]. In our study, the determination of ploidy groups
had the highest error rate, missing 5 cases, compared to
the ones from WGS, arrayCGH, and FISH. However,
CBA missed 4 low hypodiploid/near-triploid cases due
to low in vitro proliferation, which were identified based
on WTS data and confirmed by WGS. The resolution of
the applied algorithm was too low to identify the
iAMP21 case, or to reliably detect single gene deletions.
While in the case of iAMP21 the gene expression could
be used for the classification, the same did not hold true
for gene deletions, as mentioned in a previous study [3].
Here, the analysis of isoforms and differential transcript
usage might provide the needed insights, but these ana-
lyses were out of the scope of this work. In addition, a
larger set of iAMP21-positive cases is needed to proof
the validity of CHAF1B and DYRKIA gene expression as
biomarkers for the presence of iAMP21, since our co-
hort included only one such case.

BCR-ABL1-like ALLs are one of the most relevant new
subgroups due to the potential benefit for treatment
with tyrosine kinase inhibitors, as further underlined by
the poor outcome for this ALL subtype on conventional
treatment strategies [49]. False negative results are rare,
and the actual risk and clinical impact in such cases is
unknown [50]. Various gene lists have been published in
the literature [34—36] for gene expression profiling, with
only partial overlapping between the lists and the result-
ing classification. For WTS we identified a list of 26
genes to identify BCR-ABLI-like cases. The majority of
the genes (65%) were also present in the recently pub-
lished list of a targeted RNA-Seq panel [18], resulting in
an overlap of 93% in classification results. We only char-
acterized 13% of our BCP-ALL cohort as BCR-ABLI-like
cases, which is below the typical range of 24-33% [37,
51, 52]. However, 67% of the patients from our BCP
ALL cohort fall into the adult or elderly age group, and
it has been shown that the frequency of BCR-ABLI-like
cases declines with age, with an incidence just of be-
tween 7 and 20% for adults and elderly patients [53, 54].

In line with published data, cases with CRLF2 rear-
rangements and IKZF1 deletions were significantly more
common in BCR-ABLI-like cases [49, 55]. One case with
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an IGH-CRLF?2 rearrangement and high CRLF2 expres-
sion was not classified as BCR-ABLI-like ALL. In
pediatric ALL it has been reported that 5 to 10% of pa-
tients with CRLF2-rearranged ALL have distinctly differ-
ent gene-expression profiles without the kinase-activated
signature [49]. In the BCR-ABLI1-like subgroup we also
identified 3 patients harboring a P2RY8-CRLF2 fusion,
which is associated with poor prognosis in children [56],
and 3 patients with fusions involving PAXS5. Cases har-
boring PAX5 or CRLF2 fusions have been proposed as
an independent subgroup in BCP-ALL [2]. 42% of BCR-
ABLI-like cases carried a JAK2 mutation, which is com-
parable to previous studies that reported 27-57% of mu-
tated JAK2 [37, 51, 52]. Among the non BCR-ABLI-like
subgroup, we identified various cases with PAXS
(c.239C > G) mutations, along with cases harboring
ZNF384, HLF or NUTM rearrangements, all of which
have been recently identified as new BCP ALL sub-
groups [2, 45]. The ALLSorts algorithm also identified a
DUX4 transcriptional signature in 15 cases, but no indi-
cation for DUX4 fusion transcripts could be identified in
them, as these fusions were predominantly described in
pediatric and AYA ALL (adolescent and young adults)
[57], and our cohort included only a small number of
young patients. However, it is well known that fusion
transcripts involving DUX4 are difficult to detect with
standard fusion calling pipelines and gene expression
profiling might be superior in these instances.

Further comparison between the gene expression pro-
file based ALLSorts classifier and our stepwise approach,
showed a good concordance for high confidence calls
(Fig. 3C). However, our approach applies optimized al-
gorithms for the different molecular types, resulting in
an overall more precise classification, with superior per-
formance for the identification of ploidy groups and a
reduced number of false positive calls.

Conclusion

In summary, our study demonstrates that WTS can be
used to reliably classify ALL patients with a single assay
and is superior to conventional methods in cases which
lack entity-defining genetic abnormalities. With the de-
crease in sequencing costs, the integration of WTS in
routine diagnostics of ALL patients seems feasible, how-
ever, requiring the definition of standardized quality pa-
rameters and data analysis workflows to enable
reproducibility and comparability between laboratories.
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