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Abstract

Background: Bladder cancer (BC) is a common malignancy neoplasm diagnosed in advanced stages in most cases.
It is crucial to screen ideal biomarkers and construct a more accurate prognostic model than conventional clinical
parameters. The aim of this research was to develop and validate an mRNA-based signature for predicting the
prognosis of patients with bladder cancer.

Methods: The RNA-seq data was downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO). Differentially expressed genes (DEGs) were screened in three datasets, and prognostic genes were
identified from the training set of TCGA dataset. The common genes between DEGs and prognostic genes were
narrowed down to six genes via Least Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise
multivariate Cox regression. Then the gene-based risk score was calculated via Cox coefficient. Time-dependent
receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess the prognostic
power of risk score. Multivariate Cox regression analysis was applied to construct a nomogram. Decision curve
analysis (DCA), calibration curves, and time-dependent ROC were performed to assess the nomogram. Finally,
functional enrichment of candidate genes was conducted to explore the potential biological pathways of candidate
genes.

Results: SORBS2, GPC2, SETBP1, FGF11, APOL1, and H1–2 were screened to be correlated with the prognosis of BC
patients. A nomogram was constructed based on the risk score, pathological stage, and age. Then, the calibration
plots for the 1-, 3-, 5-year OS were predicted well in entire TCGA-BLCA patients. Decision curve analysis (DCA)
indicated that the clinical value of the nomogram was higher than the stage model and TNM model in predicting
overall survival analysis. The time-dependent ROC curves indicated that the nomogram had higher predictive
accuracy than the stage model and risk score model. The AUC of nomogram time-dependent ROC was 0.763,
0.805, and 0.806 for 1-year, 3-year, and 5-year, respectively. Functional enrichment analysis of candidate genes
suggested several pathways and mechanisms related to cancer.
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Conclusions: In this research, we developed an mRNA-based signature that incorporated clinical prognostic
parameters to predict BC patient prognosis well, which may provide a novel prognosis assessment tool for clinical
practice and explore several potential novel biomarkers related to the prognosis of patients with BC.

Keywords: Bladder cancer (BC), Differentially expressed genes (DEGs), Overall survival (OS), Risk score, Nomogram,
TCGA, GEO

Background
Bladder cancer (BC) is the tenth most commonly diag-
nosed carcinoma, with an estimated 549,000 new cases
and 200,000 deaths reported globally in 2018, and BC
ranks the first in urinary malignant neoplasm among
males [1]. Therefore, it is crucial to developed accurate
prognostic tools for predicting clinical results to help cli-
nicians make decisions about treatment, drug therapy,
and conservation options [2].
Conventional signatures used to predict overall sur-

vival (OS) can range from tumor clinical parameters and
tumor pathology to special mutated genes. For instance,
the tumor node metastasis (TNM) classification system
is the most frequently utilized to predict the prognosis
of cancer patients [3, 4]. Zhang et al. constructed a pre-
diction tool based on clinical parameters to predict the
survival of patients with BC [5]. The most significant ad-
vantage of TNM is straightforward, but the inevitable
disadvantage is not an individualized prediction for each
patient [6]. Besides, an increasing number of single sig-
natures have been explored to predict the OS of BC pa-
tients, such as OIP5 [7], B4GALT1 [8], ASPM [9], and
HMGA2 [10]. Xie et al. utilized the expression of
B4GALT1 to predict the prognosis of patients with
muscle-invasive bladder cancer, and the expression of
B4GALT1 was correlated with OS of patients with BC
[8]. However, it is a challenge to predict the OS of pa-
tients with BC using a single signature, because of the
impact of genetic heterogeneity [11]. Therefore, it is es-
sential to develop a comprehensive prognostic evaluation
system that can improve the predictive accuracy of the
prognosis of patients with BC.
Nowadays, gene-based prognostic signatures in con-

junction with other clinical parameters have been ex-
plored extensively in predicting the OS of cancer
patients [12–14]. Song et al. identified signature com-
bined immune-related genes and clinical characters to
predict the OS of patients with BC, which suggested the
signature was clinically useful for patients with BC [15].
And a growing number of studies have shown that prog-
nostic signatures dependent on gene expression levels
have a strong potential to predict the prognosis of can-
cer patients [16]. Therefore, in-depth analysis of gene
expression databases may discover other prognostic
genes and establish a robust prognostic signature, which

can be a powerful tool for predicting cancer prognosis
and individualized care [13].
In our study, we developed a signature to predict OS

of BC patients based on multiple prognostic genes and
clinical parameters. The RNA-seq was downloaded from
TCGA and GEO, and analyzed via DEGs analysis. Then
we utilized univariate Cox regression, LASSO regression
with tenfold cross-validation, and stepwise multivariate
Cox regression to identify six candidate genes. And the
gene-based risk score was calculated through the step-
wise multivariate cox coefficient multiplied by the ex-
pression of the gene. Then a nomogram was constructed
based on the risk score and clinical parameters, which
was assessed by the calibration plot, decision curve ana-
lysis (DCA), and time-dependent ROC analysis. Finally,
potential pathways of these candidate genes were ana-
lyzed via functional enrichment analysis, Gene Ontology
(GO) enrichment, and Kyoto Encyclopedia of Genes and
Genomes (KEGG). Bioinformatic methods “guilt by asso-
ciation” (GBA) [17] and Gene set enrichment analysis
(GSEA) were applied to explore the mechanism of can-
didate genes.

Materials and methods
Data source
Our study applied public datasets to conduct analysis
based on the Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) and Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Gene expres-
sion data and corresponding clinical data were obtained
from TCGA website via “gdc-client” tool. GEO datasets
included GSE13507 [18] and GSE133624 [19].

Differential expression genes analysis
The gene expression data of GSE13507 was conducted
the DEGs analysis via R package “limma” [20]. For gene
expression data of GSE133624 and TCGA-BLCA, the
DEGs analysis was conducted via R package “DESeq2”
[21]. After these analyses, the downregulated or upregu-
lated gene was defined with adjust P value < 0.05, the
|log2 fold change| > 1 [12, 22]. The shared DEGs among
three datasets were showed in Venn diagram by R pack-
age “VennDiagram” [23].
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Selection of prognostic genes and validation of
prognostic genes
In this part, we excluded the samples without corre-
sponding survival data and clinical data. Then we di-
vided bladder cancer data of TCGA into training set and
testing set randomly. The information about training set
and testing set is shown in Table 1. The univariate Cox
analysis was utilized to select prognostic genes via R
package “survival” in training set [24], which were ob-
tained with the threshold of P < 0.05. The overlapping
candidate genes (OCGs) were obtained by intersection
analysis between prognostic genes and shared DEGs.

Establishment of multiple-gene prognostic signature
We utilized LASSO regression with tenfold cross-
validation to narrow down OCGs by R package “glmnet”
[25]. A gene-based prognostic signature was constructed
via stepwise multivariate Cox regression. Risk score
based on gene prognostic signature was calculated for
each TCGA-BLCA patient via gene expression multi-
plied by the regression coefficient in stepwise multivari-
ate Cox regression.

Estimation and validation of the multi-gene model
The testing set (n = 162) and the whole set (n = 405)
were utilized to assess the predictive validity of the
multi-gene prognostic signature. In the validation set,
the risk score of each patient was calculated via the coef-
ficient of the candidate genes obtained above. Then the
patients were stratified into high-risk and low-risk

groups based on the median risk score as the cutoff. The
Kaplan-Meier (KM) survival analysis with log-rank test
and time-dependent receiver operating characteristic
(ROC) analysis was applied to validate the gene-based
prognostic signature. Furthermore, the mutation type of
selected genes was explored in cBioPortal (https://www.
cbioportal.org/) [26, 27].

Construction and validation of the prognostic nomogram
Based on risk score and some clinical parameters, a
nomogram was established to predict the probability of
1-year, 3-year, and 5-year OS using R package “rms”
[28]. The score of the prediction of nomograms for each
patient was calculated via R package “nomogramFormu-
lar” [29]. With the source code provided on the MSKCC
webs i t e (h t tps : / /www.mskcc .o rg /depar tments /
epidemiology-biostatistics/biostatistics/decision-curve-
analysis), we performed the DCA analysis of survival
outcome [6]. The calibration curve analysis was con-
ducted via “calibrate” function of “rms” R package [28].
The time-dependent ROC analysis for nomogram score
was performed via R package “timeROC” [30].

Functional analysis and correlation analysis of genes in
model
Gene ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
analysis of candidate genes were performed by R pack-
age “clusterProfiler” [31, 32]. The threshold for analysis
was set P-value < 0.05, indicating significantly enriched

Table 1 The clinical information on training set and testing set

Type Training (243) Testing (162) χ2 p

Gender female 68 37 1.34 0.247

male 175 125

Race American 12 11 10.7 0.014

White 206 117

Asian 17 26

Not reported 8 8

Pathologic-M M0 108 86 3.35 0.187

M1 8 3

MX 126 72

Pathologic-N N0 134 101 4.81 0.307

N1 27 19

N2 53 22

N3 4 4

NX 22 14

Stage StageI 0 2 5.38 0.146

StageII 78 51

StageIII 77 61

StageIV 87 47
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functional annotations. Bioinformatic methods “guilt by
association” (GBA) [17] and GSEA were applied to con-
duct potential functional analysis. GSEA was conducted
in R with R package “clusterProfiler” [32]. GBA was per-
formed with Spearman method.

Statistical analysis
The samples in TCGA were randomly divided into
training set and testing set with “sample” function
of R. Heatmap of DEGs obtained in three datasets
were plotted with R package “pheatmap” [33]. Two
groups of boxplots were analyzed with Wilcoxon-
test. The comparison of clinical parameters between
training set and testing set was conducted with χ2

test or exact Fisher test. As for KM survival ana-
lysis, P-value and hazard ratio (HR) was generated
via log-rank tests and univariate Cox proportional
hazards regression. All analysis above and R pack-
ages were performed in R software version 3.6.3
(The R Foundation for Statistical Computing, 2020).
All statistical tests were two-sided. P < 0.05 was
regarded as statically.

Results
Identification of DEGs
The flowchart of this study is shown in Fig. 1. According
to the differential gene selection criteria for differential
analysis, 2606 up-regulated genes and 2046 down-
regulated differential genes were screened in the TCGA-
BLCA (Fig. 2 A, D). 293 up-regulated genes and 697
down-regulated genes were screened in GSE13507 (Fig.
2 B, E). 1984 up-regulated genes and 546 down-
regulated genes were screened in GSE133624 (Fig. 2 C,
F). Taking the intersection of the up-regulated and
down-regulated genes in the three data sets, 151 up-
regulated genes and 143 down-regulated genes were ob-
tained (Fig. 2 G, H).

Selection of prognostic genes
Based on the univariate Cox analysis, 808 prognosis-
related genes (HR > 1) and 879 prognosis-related genes
(HR < 1) were screened in training set. Then the prog-
nostic genes were intersected with 294 DEGs. Finally, 20
shared genes were obtained, which includes 7 DEGs with
HR < 1 and 13 DEGs with HR > 1 (Fig. 2 I).

Fig. 1 Flowchart of the whole study
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Fig. 2 (See legend on next page.)
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Establishment of six-gene-based model
LASSO regression with tenfold cross-validation was
conducted to get the optimal lambda value from
the minimum partial likelihood deviance (λmin =
0.03522) (Fig. 3 A, B) [12]. Prognostic DEGs were
narrowed down to an eight-gene signature. The
correlation analysis showed that the expression of
these eight genes was not significant (Fig. 3 C),
which means the signature based on these genes
was not overfitting. Six candidate genes (SORBS2,
GPC2, SETBP1, FGF11, APOL1, H1–2) were se-
lected via stepwise multivariate Cox regression (Fig.
3 D, E). Then six-gene-based signature (Risk score =

0.11061*Exp (SORBS2) - 0.18866*Exp (GPC2) +
0.24538*Exp (SETBP1) + 0.38858*Exp (FGF11) –
0.16433*Exp (APOL1) -0.23161*Exp (H1–2)) was
constructed.
The patients were divided into the high-risk group and

low-risk group based on the median risk score as cutoff
(Fig. 4 A). Figure 4 B showed the survival status of the
patients. And Fig. 4 C showed the heatmap of six
prognosis-related genes. The KM survival analysis for
the training set showed that the high-risk group had a
worse OS compared with the low-risk group (Fig. 4 D).
The AUC of 1-year, 3-year, 5-year for training set were
0.635, 0.732, 0.737, respectively (Fig. 4 E).

(See figure on previous page.)
Fig. 2 Differential gene expression analysis. A-C: Volcano plot of differentially expressed genes in BC tissue when compared with normal tissue in
3 datasets. Red nodes represent the significantly up-regulated genes with logFC > 1 and p < 0.05. Blue nodes represent the significantly down-
regulated genes with logFC < − 1 and p < 0.05. D-F: Heatmap of common DEGs obtained in 3 datasets in BC. G: Venn diagram for up-regulated
genes in 3 datasets. H: Venn diagram for down-regulated genes in 3 datasets. I: Venn diagram for DEGs and prognosis-related genes. DEGs:
Differentially expressed genes. logFC: Log2-based fold change

Fig. 3 Identification of 6 prognostic genes in BC. A: LASSO coefficients profiles of protein-coding genes. B: LASSO-penalized regression with
tenfold cross-validation obtained 8 genes using minimum lambda value. C: correlation score of eight genes obtained from LASSO-penalized
regression. D: Multivariate Cox regression analysis of eight genes. E: Multivariate Cox regression analysis of eight genes with stepwise regression.
***:P < 0.001; **: P < 0.01: *: P < 0.05. LASSO: Least Absolute Shrinkage and Selection Operator
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Expression analysis, mutation analysis, and protein level
analysis of genes in the prognostic model
The expression of six genes in tumor and normal tissue
were shown in Fig. 5 A-C, which indicated that GPC2,
FGF11, APOL1, and H1–2 were highly expressed in
tumor tissue, while SORBS2 and SETBP1 were highly
expressed in normal tissue. The expression of six genes
in TCGA-BLCA database indicated that SORBS2,
SETBP1, APOL1 were differently expressed in different
stages. SORBS2 and SETBP1 were significantly up-
regulated in stage IV (Fig. 5 D, E). APOL1 was signifi-
cantly up-regulated in stage I/II (Fig. 5 F). Therefore,
these three genes may be associated with the patho-
logical stage of BC. The genetic alteration type of six
genes was analyzed in the cBioPortal database (Fig. 5 G).
KM survival analysis for each prognostic gene showed
that the expression of GPC2, SETBP1, FGF11, APOL1,
H1–2, PDGFD were significantly correlated with OS of

patients with BC (Fig. 6). Moreover, the immunohisto-
chemistry from Human Protein Atlas database (Supple-
mentary Fig. S1) showed that APOL1, GPC2, and H1–2
had a higher protein level in urothelial cancer, while
SETBP1 had a higher protein level in the urinary blad-
der. This result was consistent with the mRNA analysis
in TCGA database.

Validation of the six-gene prognostic signature
The survival analysis in different subgroups showed that
the risk score had a satisfactory performance. The group
of age (Fig. 7A-B), gender (Fig. 7C-D), race (Fig. 7E-F),
AJCC-N (Fig. 7 L-M), AJCC-M (Fig. 7N-O) indicated
that the patients with high-risk score had significantly
worse OS. In the group of AJCC-stage, the patients with
the high-risk score in the early stage did not have signifi-
cantly worse OS (Fig. 7G), while in stage III and stage
IV, the patients with the high-risk score have

Fig. 4 Prognostic analysis of six-gene signature. The dotted line represented the median risk score and divided the patients into low- and high-
risk group. A: The curve of risk score. B: Survival status of the patients. More dead patients corresponding to the higher risk score. C: Heatmap of
the expression profiles of the six prognostic genes in low- and high-risk group. D: Kaplan–Meier survival analysis of the six-gene signature. E:
Time-dependent ROC analysis of the six-gene signature. ROC: receiver operating characteristic
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Fig. 5 Expression and mutation of prognostic genes. A: Expression pattern of the six prognostic genes between tumor and normal bladder
tissue. B-D: Expression of SORBS2, SETBP1, APOL1, among different pathological stages. E: A visual summary across on a query of 6 prognostic
genes showing genetic alteration of these six genes in TCGA-BLCA patients. ***:P < 0.001, **: P < 0.01, *: P < 0.05, ns: not significant
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significantly worse OS (Fig. 7 H-I). In the group of
AJCC-T, there was no significantly different OS between
high- and low-risk score in the T0/1/2 group (Fig. 7J),
while in the T3/4 group, the patients with the high-risk
score have worse OS (Fig. 7K). Then the risk score of
each patient in testing set and entire set was calculated
via the coefficient and gene expression of six genes.
Then the KM survival analysis was conducted in the en-
tire set, testing set, and external dataset GSE13507 (Fig. 8
A, B, C). Time-dependent ROC analysis was performed
to evaluate risk score in the entire set, testing set, and
external dataset GSE13507 (Fig. 8 C, D, E). In summary,
the six-gene prognostic signature is a reasonably ad-
equate OS predictor for BC patients.

Construction and validation of the gene-based
nomogram
The six-gene prognosis-related signature with other clin-
ical parameters, such as age, gender, AJCC pathological
stage, was performed to construct a nomogram to pre-
dict 1-year, 3-year, 5-year OS of patients with BC
(Fig. 9 A). Considering the accuracy of Cox propor-
tional hazard model, the age and the pathological
stage were set polytomous variables in the construc-
tion of nomogram [34]. The calibration plot for pa-
tient survival prediction suggested that the predicted
outcome of the six-gene prognostic nomogram
showed consistency with the actual outcome (Fig. 9
B-D). DCA indicated that utilizing the nomogram
gained more benefit than utilizing the stage model

and TNM model when the threshold probabilities
were set more than 0.25 (Fig. 9 E-G). The time-
dependent ROC curves indicated that the nomogram
had higher predictive accuracy than the stage model
and risk score model. The AUC of nomogram time-
dependent ROC was 0.763, 0.805, and 0.806 for 1-
year, 3-year, and 5-year, respectively (Fig. 9 H-J).

Functional analysis of genes correlated with 6 prognosis
genes
GO and KEGG enrichment analysis was utilized to ex-
plore the biological function of genes correlated with
candidate genes. In GO biological analysis, these genes
were enriched in extracellular structure organization,
extracellular matrix organization, second messenger me-
diated signaling et al. (Fig. 10 A, Additional file: Table
S1). In KEGG pathway analysis, PI3K-Akt signaling
pathway, Calcium signaling pathway, cGMP-PKG signal-
ing pathway, ECM-receptor interaction, et al. were iden-
tified for genes correlated with candidate genes (Fig. 10
B, Additional file: Table S2).
GSEA was performed to identify the potential bio-

logical process of 6 prognosis-related genes. Results sug-
gested that the samples with high expression of
SORBS2, SETBP1 were enriched in epithelial-mesenchy-
mal transition (Fig. 10 C, E). The samples with low expres-
sion of GPC2, H1–2 were enriched in interferon-alpha
response (Fig. 10 D, I). While the samples with high ex-
pression of FGF11 were enriched in PI3K-AKT-MTOR
signaling and hypoxia (Fig. 10 F). And the samples with

Fig. 6 Kaplan–Meier survival analysis of SORBS2, GPC2, SETBP1, FGF11, APOL1, and H1–2. The expression of SORBS2, GPC2, SETBP1, FGF11, APOL1,
H1–2, and PDGFD were significantly correlated with OS of patients with BC
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Fig. 7 (See legend on next page.)
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high expression of APOL1 enriched in P53 pathway,
interferon-alpha response (Fig. 10 G).

Discussion
The incidence of BC is a crucial neoplasm among men,
with respective incidence and mortality rates of 9.6 and
3.2 per 100,000 in men: about 4 times those of women
globally [1]. It is necessary to screen potential prognostic
biomarkers and construct satisfying tools to predict the
survival of patients with BC.
In the previous study, numerous prognosis predictions

of patients with BC are based on clinical information
only [5, 35, 36]. TNM staging system is commonly used
to predict the prognosis of bladder cancer. However, as
we mentioned above, the single clinical parameter has
poor power of prognosis prediction [3]. Therefore,

combining other prognostic parameters would be the
better way to boost the accuracy of prediction.
In our study, the DEGs between normal tissue and

tumor were firstly obtained from three datasets. The
intersected genes between DEGs and prognosis-related
genes sifted out from the training set were analyzed with
LASSO-penalized regression and stepwise multiple Cox
regression to screened six candidate genes (SORBS2,
GPC2, SETBP1, FGF11, APOL1, H1–2). As we are con-
cerned, the method of screening candidate genes via
intersecting DEGs and prognosis-related genes was not
similar to most bladder cancer prediction model re-
search. The six genes, except SORBS2, are significantly
related to the overall survival of patients with bladder
cancer.
GPC2, glypican 2, is a type of cerebroglycan related to

oncoprotein. Bosse et al. showed that GPC2 can be a

(See figure on previous page.)
Fig. 7 Kaplan–Meier survival analysis of the six-gene risk score level in different subgroups. The group of age (A-B), gender (C-D), race (E-F),
AJCC-N (L-M), AJCC-M (N-O) indicated that the patients with high-risk score had significantly worse OS. In the group of AJCC-stage, the patients
with the high-risk score in the stage I/II did not have significantly worse OS (G), while in stage III and stage IV, the patients with the high-risk
score have significantly worse OS (H-I). In the group of AJCC-T, the patients with high-risk score in T0/1/2 did not have significantly worse OS (J),
while in T3/4 group, the patients with the high risk-score have worse OS (K)

Fig. 8 Validation of the six-gene signature. Kaplan–Meier survival analysis of the 6-gene signature in validation set. A: The whole set. B: The
testing set. C: The external dataset GSE13507. D: Time-dependent ROC analysis of the six-gene signature in whole set. E: Time-dependent ROC
analysis of the six-gene signature in testing set. F: Time-dependent ROC analysis of the six-gene signature in GSE13507 dataset
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Fig. 9 (See legend on next page.)
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(See figure on previous page.)
Fig. 9 Construction of gene-based prognostic model and evaluation of the nomogram. A: Nomogram integrated six-gene based risk score, AJCC
pathological stage, gender, and age. B-D: The calibration plot of the nomogram for agreement test between 1-, 3- and 5-year OS prediction and
actual outcome in TCGA dataset. E-G: Decision curve analysis for 1-, 3- and 5-year OS prediction based on nomogram in TCGA dataset. Blue line:
assume no patient is at high-risk. Green line: assume all patients are at high-risk. These two lines serve as a reference. Red line: nomogram can
provide more net benefits for BLCA patients’ survival prediction. H: The time-dependent ROC curves of the nomogram in TCGA dataset. TCGA:
the Cancer Genome Atlas. ROC: Receiver operating characteristic

Fig. 10 Functional enrichment analysis of genes correlated with prognostic genes. A: Top 10 of GO enrichment analysis of these genes. B: Top
10 of KEGG enrichment analysis of these genes. C-H: GSEA for genes correlated with SORBS2, GPC2, SETBP1, FGF11, APOL1, H1–2. GO: Gene
Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes, GSEA: gene set enrichment analysis
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candidate immunotherapeutic target in High-Risk
neuroblastoma [37]. Shou et al. showed that SETBP1
mutation is associated with a poor prognosis in patients
with myelodysplastic syndromes [38]. However, the role
of GPC2 and SETBP1 in urothelial carcinoma is not cer-
tain due to the lack of sufficient studies. FGF11, fibro-
blast growth factor 11, is a member of the fibroblast
growth factor (FGF) family. Researchers reported that
FGF11 acts as a novel modulator of hypoxia-induced
tumor progression [39, 40]. APOL1, apolipoprotein L1,
encodes a secreted high-density lipoprotein, which binds
to apolipoprotein A-I. Some researches indicated APOL1
is related to cardiovascular disease and renal disease [41,
42]. H1–2, H1.2 linker histone, is also called HIST1H1C.
Li et al. reported that inhibition of H1.2 phosphorylation
at T146 was related to the carcinogenic role of K-Ras-
ERK1/2 signaling in bladder cancer [43]. This aspect of
H1–2 was also verified in our analysis that the hazard ra-
tio (HR) of H1–2 was significantly less than 1 (Fig. 3 E)
and the patients with low H1–2 expression had a high
probability of death, which means the low expression of
H1–2 is related with progression and bad prognosis of
patients with BC.
Among these five genes (GPC2, SETBP1, FGF11,

APOL1, H1–2) related to the prognosis of patients with
BC, there are no reports or experiments about these
genes related to bladder cancer, except for H1–2. Based
on our analysis, these genes may be a potential novel
therapeutic target for patients with BC. The mechanism
of these four genes is worth to be explored.
The KM survival analysis for the training set and risk

stratification in patients with gender, age, race, AJCC
stage, AJCC-T, AJCC-N, AJCC-M showed that the risk
score had relatively median accurate OS prediction. As
for the patients in the T0/1/2 group, low-risk group
had worse OS than high-risk group. The reason was
that the number of patients with T0/1/2 was probably
insufficient, and the bias of this subgroup was enlarged.
The time-dependent ROC indicated that the AUC of
the nomogram was larger than that of the risk score,
resulting from the combination with clinical parame-
ters. It is reasonable that age is an essential risk factor
in the progression and prognosis of patients. Some re-
searchers also demonstrated that senescence was asso-
ciated with a pathological process such as cancer [44].
Therefore, the six-gene-based prognostic nomogram
can assist clinicians in predicting the survival outcome
of BC patients and provide a more reliable reference for
therapy guidance than the single conventional clinical
parameter. Besides, these six genes have not been previ-
ously studied as prognostic genes in BC patients. To
some extent, it is necessary to conduct the following
functional experiment exploration based on these six
prognostic genes.

The limitations of this study are supposed to be dis-
cussed. Although we screened and identified six genes
potentially related to the progression and prognosis of
patients with BC via some statistical methods and we ex-
plored the potential pathways and mechanism of each
gene, this study is lacking experiments (in vivo and
in vitro validation) to validate the link between these
genes and BC. Therefore, these analyses can be our
follow-up studies.

Conclusion
In our current study, we screened six novel prognosis-
related DEGs from the public database and constructed
a six-gene-based prognostic nomogram that contained
other clinical parameters, such as age, gender, patho-
logical stage, to predict the 1-year, 3-year, 5-year OS of
patients with BC. The estimation showed that the nomo-
gram has relatively stable accuracy in the prediction of
OS. That is to say, the six genes could be potential bio-
markers in BC and, in clinical practice, the related gene-
based nomogram could theoretically be utilized to pre-
dict the individual survival rate and facilitate the selec-
tion of individual treatment options.
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