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Abstract

Background: This study aimed to assess the utility of deep learning analysis using pretreatment FDG-PET images to
predict local treatment outcome in oropharyngeal squamous cell carcinoma (OPSCC) patients.

Methods: One hundred fifty-four OPSCC patients who received pretreatment FDG-PET were included and divided
into training (n = 102) and test (n = 52) sets. The diagnosis of local failure and local progression-free survival (PFS)
rates were obtained from patient medical records. In deep learning analyses, axial and coronal images were
assessed by three different architectures (AlexNet, GoogLeNET, and ResNet). In the training set, FDG-PET images
were analyzed after the data augmentation process for the diagnostic model creation. A multivariate clinical model
was also created using a binomial logistic regression model from a patient’s clinical characteristics. The test data set
was subsequently analyzed for confirmation of diagnostic accuracy. Assessment of local PFS rates was also
performed.

Results: Training sessions were successfully performed with an accuracy of 74–89%. ROC curve analyses revealed
an AUC of 0.61–0.85 by the deep learning model in the test set, whereas it was 0.62 by T-stage, 0.59 by clinical
stage, and 0.74 by a multivariate clinical model. The highest AUC (0.85) was obtained with deep learning analysis of
ResNet architecture. Cox proportional hazards regression analysis revealed deep learning-based classification by a
multivariate clinical model (P < .05), and ResNet (P < .001) was a significant predictor of the treatment outcome. In
the Kaplan-Meier analysis, the deep learning-based classification divided the patient’s local PFS rate better than the
T-stage, clinical stage, and a multivariate clinical model.

Conclusions: Deep learning-based diagnostic model with FDG-PET images indicated its possibility to predict local
treatment outcomes in OPSCCs.
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Background
In patients with oropharyngeal squamous cell carcinoma
(OPSCC), the treatment method is generally selected
based on patient characteristics and TNM (tumor, node,
metastasis) staging. Most patients with advanced OPSCC
undergo nonsurgical treatments such as chemotherapy,
radiotherapy, and combinations of these [1]. When re-
ceiving such nonsurgical therapies, the prediction of
treatment outcome helps optimize patient management
because it allows for additional treatment and the deter-
mination of a follow-up strategy. For pretreatment
evaluation for OPSCCs, TNM staging has been widely
used as the standard method that classifies each primary
site based on the morphological information and extent
of the tumor. TNM classification was reported to correl-
ate with the treatment outcome and patient prognosis
[2, 3], however this method cannot completely predict
the treatment outcome due to overlap between good
and poor prognosis patients. In a recent report investi-
gated the prognosis in patients with OPSCC, around
30% of patients with early T-stage (T1 and T2) resulted
in poor treatment outcome, whereas approximately 40%
of patients with advanced T-stage (T3 and T4) resulted
in good treatment outcome [4]. Such overlap is consid-
ered one of the major limitations in the current staging
system. To add other treatment options (e.g., induction
chemotherapy, additional surgical resection, etc.), or to
receive the de-intensified treatment method might be ac-
ceptable if a more accurate predictive model is available;
this may result in personalized treatment planning.
FDG-PET depicts a tumor’s glucose metabolism, one

of the important factors that reflect tumor functional in-
formation. Currently, FDG-PET/CT scanners are widely
available for clinical use. Several studies have investi-
gated FDG-PET parameters in OPSCC patients to pre-
dict treatment outcomes as prognostic factors, mainly
investigating the maximum standardized uptake value
(SUVmax), mean standardized uptake value (SUVmean),
metabolic tumor volume (MTV), and total lesion gly-
colysis (TLG) [5–7]. Moreover, tumor quantitative mor-
phological data and intra-tumoral heterogeneity
obtained by FDG-PET imaging were reported to be use-
ful in predicting prognosis in several studies [8–11].
These previous reports indicate FDG-PET imaging has
information suitable to predict patient prognosis. Re-
cently, artificial intelligence-based diagnosis using deep
learning techniques has been introduced in medical
image analysis. The deep learning-based medical image
analysis enables identifying features and textures inher-
ent in the original images; the deep learning technique
has a potential to accomplish the image analysis with
high diagnostic performance [12]. However, few studies
investigated the usefulness of deep learning analysis in
head and neck cancer imaging to predict local treatment

outcomes [13, 14]. To our knowledge, there is no previ-
ous study to predict the local treatment outcome of
OPSCCs by deep learning techniques using the FDG-
PET imaging dataset.
This study investigated the value of deep learning ana-

lysis of FDG-PET images to predict the local treatment
outcome in OPSCC patients who received nonsurgical
treatment.

Methods
Patients
This retrospective study’s protocol was approved by the
institutional review boards at the two participating insti-
tutions (Institution A and Institution B), and written in-
formed consent from the patient was waived. One
hundred sixty-seven patients with histopathologically
proven OPSCC who underwent pretreatment FDG-PET/
CT and chemoradiation treatment with a radiation dose
of 65–70 Gy with curative intent from January 2007 to
August 2017 were enrolled. However, patients with 1)
severe motion artifact that seriously affected the image
quality of the primary lesion (n = 2) and 2) primary le-
sions that were too small with the largest diameter less
than 1.5 cm (n = 11) were excluded. Finally, 154 patients
were considered eligible for this study. We analyzed
FDG-PET/CT image datasets of patients enrolled at In-
stitution A (102 patients) for model development as a
training set and patients enrolled at Institution B (52 pa-
tients) for the model validation as a test set. All patients
were treated with chemoradiation therapy with curative
intent; the treatment regimen was composed of systemic
platinum-based chemotherapy with concurrent radio-
therapy of 65–70 Gy. No patient underwent surgery
prior to chemoradiation therapy. As an additional treat-
ment option, 25 patients in the training set and 19 pa-
tients in the test set received 1–5 courses of induction
chemotherapy before the definitive chemoradiation ther-
apy after pretreatment FDG-PET/CT. For the manage-
ment of residual nodal diseases after definitive
chemoradiation therapy, eleven patients in the training
set and five patients in the test set underwent additional
neck dissection for the resectable nodal disease. Essential
patients’ characteristics are summarized in Table 1.

Clinical assessment
Clinical and radiological follow-up at least 2 years was
performed after treatment to determine the final diagno-
sis (i.e., local control or failure) in all patients. If residual
and/or recurrent tumor was suspected in the follow-up
period by direct visualization or radiological image find-
ings (e.g., mass-like lesion development at the post-
treatment site), surgical biopsy or resection was con-
ducted for the confirmation of the presence of residual
or recurrent tumor histopathologically. If the patient
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didn’t consent to the surgical procedure, an observation
was carefully continued. Local failure was defined by the
histopathological confirmation of SCC by biopsy or sur-
gical resection or the observation of a clearly developed
or enlarged mass lesion at the post-treatment site. Local
control was defined by histopathological confirmation of
the absence of SCC by surgical resection (not by biopsy)
or no enlargement or abnormality of soft tissue at the
post-treatment site throughout the follow-up period. In
addition, we determined the local progression-free

survival (PFS) duration of all patients of the test cohort
during the individual follow-up periods after curative
treatment using the patients’ medical records.

Image acquisition
From the pretreatment FDG-PET/CT dataset, axial and
coronal FDG-PET images were used for evaluation.
FDG-PET/CT imaging was performed on specific PET/
CT scanners (Discovery STE 16, GE Healthcare, Mil-
waukee, Wisconsin) in the training cohort at Institution

Table 1 Patient characteristics

Total (n = 154) Training cohort (n = 102) Test cohort (n = 52) P-value

Age

Range 39–82 41–81 39–82 0.24

Median 60 59 62

Average 59.8 59.1 61.3

Sex

Male 128 (83%) 82 (80%) 46 (88%) 0.21

Female 26 (17%) 20 (20%) 6 (12%)

HPV status

Positive 46 (30%) 35 (34%) 11 (21%) 0.09

Negative 33 (21%) 25 (25%) 8 (15%)

Unknown 75 (49%) 42 (41%) 33 (63%)

T-stage

T1 16 (10%) 12 (12%) 4 (8%) 0.32

T2 36 (23%) 21 (21%) 15 (29%)

T3 46 (30%) 27 (26%) 19 (36%)

T4a 39 (26%) 30 (29%) 9 (17%)

T4b 17 (11%) 12 (12%) 5 (10%)

N-stage

N0 14 (9%) 5 (5%) 9 (17%) 0.16

N1 19 (12%) 14 (14%) 5 (10%)

N2a 14 (9%) 8 (8%) 6 (12%)

N2b 58 (38%) 38 (37%) 20 (38%)

N2c 42 (27%) 32 (31%) 10 (19%)

N3 7 (5%) 5 (5%) 2 (4%)

Clinical Stage

I 2 (1%) 2 (2%) 0 0.07

II 15 (10%) 12 (12%) 3 (6%)

III 30 (19%) 24 (24%) 8 (15%)

IVa 88 (57%) 51 (50%) 35 (67%)

IVb 19 (12%) 13 (13%) 6 (12%)

IVc 0 0 0

Induction chemotherapy

administered 44 (29%) 25 (25%) 19 (36%) 0.09

not administered 110 (71%) 77 (75%) 33 (64%)

P-value was obtained by comparing patients’ characteristics between training and test cohorts using Mann–Whitney U test

Fujima et al. BMC Cancer          (2021) 21:900 Page 3 of 13



A, and another specific PET/CT scanner (Asahi-Siemens
Medical Technologies, Tokyo) in the test cohort at Insti-
tution B. At all scanners, all FDG-PET raw images were
obtained with an axial-base acquisition. The following
basic parameters were used: the FOV of 30 cm, the
matrix size of 128 × 128 and the slice thickness of 3.3
mm for the training cohort, and the FOV of 21.6 cm, the
matrix of 168 × 168, and the slice thickness of 2.0 mm
for the test cohort. Coronal images were thereafter re-
constructed from FDG-PET raw data. Patients were
injected with an average of 9.98 mCi of 18F- FDG, and it
was incubated for approximately 60 min. The SUV was
defined as the tissue concentration of radioactivity (kBq/
mL) divided by the injected dose per body weight (kBq/
g).

Image processing
First, the location of FDG uptake in the primary site was
carefully identified on both axial and coronal FDG-PET
images. Simultaneously acquired CT images were used
as the reference for the identification of the primary site.
Each tumor was delineated with a threshold SUV value;
the threshold was set 42% of the maximum SUV in the

whole tumor (i.e., SUVmax) to define the tumor area
[15]. In all slices with the tumor FDG uptake, a specific
slice that included the largest tumor area (i.e., the largest
number of pixels) was selected in axial and coronal
planes and further analyzed. All selected images were
converted from the DICOM to Joint Photographic Ex-
perts Group (JPEG) picture data; the grayscale level was
set so that the pixel with non-FDG uptake (i.e., SUV = 0)
becomes black (lower limit) and the pixel with its SUV
of 30 becomes white (upper limit) [16]. These processes
are illustrated in Fig. 1. After the image selection and
conversion from DICOM to JPEG picture data, all these
images were cropped into 20 × 20 cm FOV, eliminating
peripheral background areas, thereafter an image aug-
mentation process was performed. The process was
based on a random change in image size, random image
rotation, and random pixel shift of image location along
x- and y-directions [17]; a total of 24 images were finally
generated for each image. The training image cohort
consisted of 2448 images from 102 patients (102 × 24
images) in both axial and coronal images. In addition, 52
images of the respective axial and coronal axis from 52
patients in the test cohort were generated with the

Fig. 1 Processes of FGD-PET image for deep learning analysis. The primary tumor site on FDG-PET images (A) was carefully identified with the
reference of CT images (B, arrow). Axial 2D FDG-PET image in which the largest area of the tumor was depicted was selected for analysis, and
then the FDG-PET image was outputted with the fixed grayscale level of black (SUV = 0) to white (SUV = 30) (C). Coronal FDG-PET image was also
selected and outputted in the same manner as axial image selection using a coronal reconstructed image dataset (D)
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aforementioned image processing in the training dataset
but without the data augmentation process. An overview
of the deep learning workflow is illustrated in Fig. 2.

Deep learning analysis
The deep learning analysis using the training dataset was
performed to create a diagnostic model for the discrim-
ination between local control and local failure cases.
Axial and coronal images were independently used as in-
put images. We performed all analyses using MATLAB
ver. 2019a (MathWorks, Natick, MA). As an architecture
for the convolutional neural network (CNN) analysis,
deep learning models of AlexNet, GoogLeNet (GoogLe-
Net Inception v3), and ResNet (ResNet-101), all of which
were trained on an image database (i.e., ImageNet data-
base: http://image-net.org/index), was respectively used.
Previous reports described the detail of the architectures
of AlexNet [18], GoogLeNet [19], and ResNet [20].
Hyperparameters were set as the mini-batch size of 128,
the max epoch of 500. We used the transfer learning to
adjust the image features in the ImageNet database to
account for our imaging data, including local control
and failure OPSCCs scans. Fine-tuning of the CNN over

FDG-PET images with treatment control and failure was
performed only on the fully connected layer, whereas
other prior layers were fixed. Finally, respective diagnos-
tic models were created from training dataset using the
three deep learning architectures of AlexNet, GoogleNet,
and ResNet. From two diagnostic models created by
axial and coronal images per an architecture, we defined
the diagnostic scores obtained by deep learning analyses
as follows; 1) axial image only used model; diagnosed as
local control (low-risk group, score = 0) and diagnosed
as a local failure (high-risk group, score = 1), 2) coronal
image only used model; diagnosed as local control (low-
risk group, score = 0) and diagnosed as a local failure
(high-risk group, score = 1), 3) axial and coronal images
combined model; diagnosed local control in both axial
and coronal images (low-risk group, score = 0), diag-
nosed local control either of axial or coronal image
(intermediate group, score = 1) and diagnosed local fail-
ure both of axial and coronal images (high-risk group,
score = 2). In the training set, these three types (axial im-
ages only, coronal images only, and the axial and coronal
images combined model) of a scoring system based on
deep learning diagnostic model from three types of deep

Fig. 2 Overview of Deep learning workflow. The workflow of both the training and test processes was presented. In the training session, image
processing was performed as follows: 1) slice selection; the specific slice which included the largest tumor area was selected, 2) grayscale
adjustment; setting the pixel with its SUV of 0 (=lower limit) and its SUV of 30 (=upper limit), 3) image conversion from the DICOM to JPEG
picture data, 4) data augmentation; an additional 23 images were generated from each image. These images were fed into the deep learning
training session, thereafter, the axial and coronal image-based diagnostic model was respectively created. In the test session, we performed the
same imaging processing without data augmentation in original images of test cohorts. These processed images were classified by the
diagnostic model created in the training session. Finally, diagnostic performance by axial, coronal, and axial-coronal combination use was
respectively obtained
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learning architectures for the classification were respect-
ively created; total nine classification models were ob-
tained. Thereafter, these classification models were
assessed against the test dataset to obtain the optimal
cut-off score in each model and to determine its diag-
nostic performance. In this process, the optimal cut-off
value for axial or coronal images only used models were
automatically determined because these models were
binary output (score 0 or 1), whereas optimal cut-off
value in axial and coronal images combined model was
determined by statistical analytical method (see below
Statistical analysis) because this model was based on 3
grading system (score = 0, 1 and 2).
In addition, we created a multivariate clinical model

using the patient characteristics of T-stage, clinical stage,
age, the presence of induction chemotherapy, and the
HPV status from training cohorts. Based on patient local
treatment outcome in training cohorts, a binomial logis-
tic regression model was used to fit the binary treatment
outcome. Each regression coefficient for each patient
characteristic was determined to create the regression
equation.

Statistical analysis
Firstly, essential patients’ characteristics were compared
using Mann–Whitney U test between training and test
cohorts.
After the creation of both diagnostic models using

deep learning analysis and multivariate clinical model
with training cohorts, we first conducted a receiver oper-
ating characteristic (ROC) curve analysis using three
types of deep learning risk classification obtained by ana-
lyses with AlexNet, GoogleNet, and ResNet architecture
to assess the predictive power to discriminate between
local control and failure with test cohorts. The T-stage
(1, 2, 3, 4a, and 4b), clinical stage (I, II, III, IVa, IVb, and
IVc), and the multivariate clinical model (continuous
variable) were also assessed by ROC curve analysis. In
the ROC curve analysis, we calculated the area under
curve (AUC) value and the optimal cut-off value using
the Youden index in the division of patients with local
control and failure within the whole follow-up period.
We also calculated the sensitivity, specificity, positive
predictive value (PPV), negative predictive values (NPV),
and accuracy.
The deep learning model’s diagnostic performance

with the highest AUC was subsequently analyzed to
compare to T-stage, clinical stage, and a multivariate
clinical model. First, this highest AUC value provided by
the specific deep learning model was compared to that
in T-stage and clinical stage, respectively, using the chi-
square test. A multivariate Cox proportional hazards re-
gression analysis was also performed among these four
indexes (i.e., the specific deep learning model with the

highest AUC, T-stage, clinical stage, and a multivariate
clinical model) to predict the outcomes, including the
time point at which local failure was determined with
test cohorts. Next, using optimal cut-off value, we per-
formed a Kaplan-Meier curve analysis to assess local
PFS using the deep learning model with the highest
AUC, T-stage, clinical stage, and multivariate clinical
model with test cohorts. In the Kaplan-Meier curve ana-
lysis, we divided the patients into two groups using the
cut-off value obtained in the ROC curve analysis. As
subgroup analysis to focus on the HPV status, patients
whose HPV status was available in test set cohorts were
picked up and subsequently analyzed; the Kaplan-Meier
curve analysis was performed to assess local PFS rates
using the aforementioned deep learning model with the
highest AUC and the HPV status (HPV positive versus
negative), respectively. In addition, as the more detailed
subgroup analysis, we further divided patients whose
HPV status was available in test set cohorts into HPV
positive and negative groups. Thereafter, in the HPV
positive patient group, the Kaplan-Meier curve analysis
was performed to assess local PFS rates using the afore-
mentioned deep learning model with the highest AUC
and a multivariate clinical model. The same analysis was
also performed in the HPV negative patient group. The
local PFS rates in all Kaplan-Meier curve analyses were
assessed using the log-rank test.
To assess the robustness in creating deep learning

diagnostic models when using different patient cohorts
for training and test session, we performed additional
analysis by switching patients’ cohorts between training
and test session. First, patient cohorts in institution A
(n = 102) were randomly divided into two groups; group
A-1 (51 patients) and group A-2 (remained 51 patients).
We performed a training session and created a diagnos-
tic model using the combination of group A-1 and
patients in institution B (total 103 patients) with the
aforementioned deep learning model with the highest
AUC. Thereafter, a test session was performed using pa-
tient group A-2. We also performed analysis using an-
other combination of patient cohorts with a training
session (combination of the group A-2 and patients in
institution B, total 103 patients) and test session (group
A-1, 51 patients). In each data of test session, sensitivity,
specificity, PPV, NPV, and accuracy were calculated.
Kaplan-Meier curve analysis was also performed.
P-values < 0.05 were considered significant in these

analyses. SPSS software (IBM, Armonk, NY) was used
for all statistical analyses.

Results
The training cohort included 102 patients with local
control in 69 and local failure in 33 patients as per the
review of medical records in their follow-up period. The

Fujima et al. BMC Cancer          (2021) 21:900 Page 6 of 13



test cohort included 52 patients with local control in 35
and local failure in 17 patients. Any essential patients’
characteristics were not significantly different between
training and test cohorts (Table 1).
The deep learning algorithm achieved optimal diag-

nostic performance after the training session with three
deep learning architecture types. Diagnostic accuracy re-
vealed after the final epoch in the training session were
as follows; AlexNet with axial image (accuracy: 0.77) and
coronal image (accuracy: 0.74), GoogLeNet with axial
image (accuracy: 0.87) and coronal image (accuracy:
0.84), and ResNet with axial image (accuracy: 0.89) and
coronal image (accuracy: 0.84), respectively. In addition,
a multivariate clinical model was determined using a bi-
nomial logistic regression model using training cohorts.
The standardized partial regression coefficient of each
variable was as follows; T-stage 0.55, clinical stage 0.31,
age 0.62, the presence of induction chemotherapy 0.06,
and the HPV status 0.23.
Using the test set, a total of 12 ROC curve analyses

were performed in axial, coronal, and a combination of
axial and coronal images with three architecture of deep
learning analysis and the T-stage, clinical stage, and a
multivariate clinical model classification. The highest
AUC (=0.85) was obtained using the combination use of
axial and coronal images with deep learning analysis of
ResNet architecture. All ROC curves are shown in Fig. 3.
From the optimal cut-off values determined by the ROC
curve, diagnostic test performance was computed. The
highest diagnostic accuracy (=0.83) was also seen with
the combined use of axial and coronal images with the
ResNet architecture with the specific division setting be-
tween the low-risk group (=prediction of local control,
score = 0) and intermediate/high-risk group (=predicted
local failure, score = 1 or 2). All diagnostic parameters
for all discrimination models are shown in Table. 2.
In the comparison of AUCs between ResNet with

combination use of axial and coronal images and con-
ventional methods (i.e., T-stage, clinical stage, and a
multivariate clinical model), AUC obtained by ResNet
was significantly higher than that by T-stage (P < .01)
and was also significantly higher than that by clinical
stage (P < .001). In contrast, AUC obtained by ResNet
was higher than a multivariate clinical model. However,
statistical significance was not observed (P = 0.18).
A multivariate Cox proportional hazards regression

analysis revealed that deep learning-based classification
with axial and coronal combination model in ResNet
was a significant predictor of the treatment outcome
(P < .001, Hazard ratio 3.69, 95% confidence intervals
1.72–7.88). A multivariate clinical model was also re-
vealed significant (P < .05, Hazard ratio 1.74, 95% confi-
dence intervals 1.09–2.87). In contrast, T-stage (P = 0.29,
Hazard ratio 1.24, 95% confidence intervals 0.81–1.68)

and clinical stage (P = 0.48, Hazard ratio 0.72, 95% confi-
dence intervals 0.24–1.92) was not significant
respectively.
In the Kaplan-Meier analysis with the respective cut-

off value determined by ROC curve analysis, the local
PFS rate was significantly greater in all the group of pa-
tients with lower T-stage (T1 and T2), lower clinical
stage (I, II, and III), local control predicted group by a
multivariate clinical model, and local control predicted
group by deep learning-based classification with axial
and coronal combination model in ResNet (P < .05, re-
spectively). The local PFS rate could be divided more
clearly in the Kaplan-Meier curve using the deep
learning-based classification model. Analysis of the
Kaplan-Meier curves is summarized in Fig. 4.
As subgroup analysis based on the HPV status, HPV

status of a total of 19 patients in the test set were avail-
able and assessed their PFS rate; the local PFS rate was
significantly greater using deep learning-based classifica-
tion (P < .05), whereas the local PFS rate could be visu-
ally divided in the Kaplan-Meier curve by HPV status-
based classification, however, statistical significance was
not observed (P = 0.15) (Fig.5). In further subgroup ana-
lysis with the division of HPV positive (n = 11) and nega-
tive status (n = 8) in test set cohorts, the Kaplan-Meier
curve analysis provided the division of local PFS rate
more clearly in deep learning classification compared to
a multivariate clinical model (Suppl Fig. 1).
In the assessment of the robustness of deep learning

classification models created by partly switching training
with test set cohorts, the diagnostic performance of axial
and coronal combination model in ResNet using the test
set consisting of A-1 group was as follows; sensitivity
0.78, specificity 0.83, PPV 0.89, NPV 0.68, and accuracy
0.80. In contrast, diagnostic performance of test set con-
sisting of A-2 group was as follows; sensitivity 0.83, spe-
cificity 0.80, PPV 0.90, NPV 0.67, and accuracy 0.82. The
Kaplan-Meier curve showed a clear division of PFS rate
in both classification models (Suppl Fig. 2).

Discussion
Our analysis demonstrates that it is possible to generate
a deep learning-based model using FDG-PET to predict
the treatment outcome of OPSCCs. This deep learning
diagnostic model showed high diagnostic accuracy for
predicting treatment outcome and local PFS in the test
dataset. It was superior to the T-stage and clinical stage
classification, which is widely used in current clinical
practice to assess the pretreatment prognosis. Notably,
the multi-dimensional image approach with the ResNet
architecture provided the highest diagnostic accuracy.
This demonstrates the potential of this architecture as a
clinical tool. To the best of our knowledge, this study
was the first report which investigated the utility of deep
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learning analysis for the prediction of treatment out-
come targeting patients with OPSCCs.
In the clinical setting, the local treatment outcome’s

prediction has a significant impact on clinical manage-
ment. If a poor outcome after chemoradiation therapy is
predicted, additional or alternate treatment plans such
as induction chemotherapy and earlier salvage surgery
or additional chemotherapy/immunotherapy after che-
moradiotherapy may be offered. Follow-up strategy after

the treatment, such as the frequency and duration of the
imaging follow-up, may also be optimized individually,
depending on the pretreatment risks.
Imaging findings of FDG-PET to predict the treatment

outcome in patients with OPSCC have been described in
several past reports. The utility of conventional FDG-
PET derived parameters such as SUVmax, SUVmean,
MTV, and TLG was firstly investigated in several studies
[5–7]; higher SUVmax and SUVmean, larger MTV and

Fig. 3 Results of ROC curve analyses. ROC curves obtained by deep learning analysis with axial image, coronal image, and these two images
combination models in AlexNet (A), GoogLeNet (B), and ResNet (C) to determine the treatment outcome were presented. The ROC curve
obtained by T-stage, clinical stage, and a multivariate clinical model was also shown (D). The highest AUC was obtained with the two images
combination model in ResNet (AUC = 0.85)
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TLG were respectively described as being associated
with poor prognosis. In recent years, with the develop-
ment of texture analysis in the field of radiology, the
utility of intratumoral heterogeneity in the primary
tumor was reported using texture analysis of FDG-PET
and CT [9–11, 21]. In these studies, an increase of intra-
tumoral heterogeneity in the primary site indicated a
poor prognosis in OPSCC patients. Such intratumoral
characteristics of heterogeneity might reflect the tumor
biological difference of sensitivity to chemoradiation
therapy. In addition, morphological information of pri-
mary tumor shape outlined by SUV uptake area was de-
scribed as one of the prognostic factors in head and
neck cancer patients; complicated tumor shape such as
‘larger tumor asphericity’ or ‘greater tumor irregularity’
detected by imaging are associated treatment failure [8,
9, 22]. These findings hint at tumor features that are not
captured by the popular T-staging system. Deep learning
algorithms are most suited to identify these features and
generate an optimal diagnostic model by associating
these imaging characteristics with treatment outcomes.
More recently, the radiomics approach has flourished
with new developments in image analysis. With the lat-
est methods, imaging characteristics can be selected and
associated with radiomics signature to identify parame-
ters useful for the diagnosis and prognosis; diagnostic
performance obtained with this technique was indicated
superior to a simple use of the aforementioned parame-
ters (e.g., SUVmax, SUVmean, MTV, TLG, intratumoral
texture, tumor asphericity and irregularity) [23].

Although the diagnostic power of deep learning vs.
radiomics analysis was not directly compared in the
current study, others have reported on radiomics ana-
lysis to assess OPSCCs. These studies inform us of the
diagnostic power associated with radiomic analysis [23–
27]. Notably, two studies assessed FDG-PET image-
based radiomics analysis and reported an AUC of
around 0.7 for predicting local failure [23, 24]. Our AUC
for deep learning analysis compares favorably with the
radiomics report. In addition, deep learning analysis can
be performed without complicated manual calculation
processes such as tumor outline delineation or intratu-
moral heterogeneity measurement performed in radio-
mics analysis. This could be one of the major advantages
of a deep learning-based diagnostic model. Although the
CNN might identify imaging features and metabolic
characteristics (e.g., degree of SUV uptake, intratumoral
heterogeneity of FDG uptake, the borders of the primary
tumor, type of tumor shape, and extension of the pri-
mary tumor, etc.) and integrate these features to dis-
criminate between good and poor treatment outcome,
however, actually selected features/characteristics for the
model creation were hidden and was considered in
black-box, this was one of the great limitations in deep
learning analysis. Future analysis with a new algorithm
that clarifies the internal decision process of deep learn-
ing analysis will be needed.
In the current study, three architectures of AlexNet,

GoogleNet, and ResNet were used for deep learning ana-
lysis. ResNet was revealed to have the highest AUC

Table 2 Diagnostic performance obtained by ROC curve analyses

Classifier AUC Sensitivity Specificity PPV NPV Accuracy

DL AlexNet

Ax 0.62 (0.45, 0.79) 0.47 0.77 0.5 0.75 0.67

Cor 0.61 (0.43, 0.77) 0.35 0.86 0.55 0.73 0.69

Ax and Cor combined 0.69 (0.54, 0.84) 0.71 0.69 0.52 0.83 0.69

DL GoogLeNet

Ax 0.72 (0.57, 0.88) 0.65 0.8 0.61 0.82 0.75

Cor 0.68 (0.52, 0.84) 0.53 0.83 0.6 0.78 0.73

Ax and Cor combined 0.8 (0.67, 0.92) 0.94 0.71 0.62 0.96 0.79

DL ResNet

Ax 0.72 (0.56, 0.88) 0.59 0.86 0.67 0.81 0.77

Cor 0.69 (0.53, 0.86) 0.47 0.91 0.73 0.78 0.77

Ax and Cor combined 0.85 (0.73, 0.96) 0.88 0.8 0.68 0.93 0.83

Conventional method

T-stage 0.62 (0.47, 0.78) 0.76 0.43 0.4 0.79 0.54

Clinical stage 0.59 (0.43, 0.74) 0.82 0.4 0.4 0.82 0.54

Multivariate clinical model 0.74 (0.61, 0.89) 0.76 0.62 0.5 0.84 0.67

Data in parentheses are 95% confidence intervals, AUC Area under curve, DL Deep learning, Ax Axial, Cor Coronal, PPV Positive predictive value, NPV Negative
predictive value
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Fig. 4 Results of the Kaplan-Meier analyses. The local PFS rate was significantly greater in lower T-stage (A), lower clinical stage (B), local control
predicted group by a multivariate clinical model (C), and low risk of deep learning-based classification with axial and coronal images combination
model in ResNet (D) (P < .05, respectively). The local PFS rate could be divided more clearly in a deep learning-based classification model
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among the three architectures, whereas, GoogleNet also
indicated to have high AUC and not much different
from ResNet. However, a lower AUC compared to the
aforementioned two architectures was shown in Alex-
Net. AlexNet consists of eight layers; this was so simple
structure compared to GoogLeNet and ResNet. The dif-
ference in diagnostic accuracy might be because of such
structural differences among these three architectures.
The current study has several limitations. First, FDG-

PET/CT scanners were different for the training and test
cohorts. In addition, all patients received chemoradiation
therapy with curative intent as the main treatment
method. However, quite a few patients received induc-
tion chemotherapy before the main treatment. Some pa-
tients also received surgical neck resection after the
main treatment. Furthermore, the distribution of patient
numbers was not well balanced among T1–4 groups
(mildly biased in T2 and T3) and N1–3 groups (also
mildly biased in N2b and N2c). Because deep learning
analysis generally needs a large sample size to create a
sufficiently learned model, it might be challenging to

collect a completely homogeneous cohort with imaging
from only one scanner and with the same treatments.
Next, the status of human papillomavirus (HPV) in
many patients was unknown because OPSCC patients
diagnosed in this study span 10 years (2007–2017) when
not all patients were tested for the presence of the virus.
HPV status is now known to be an independent prog-
nostic factor in OPSCCs [28]. Although a potential of
high diagnostic performance in the deep learning model
and its independence from the HPV status might be in-
dicated by results from the subgroup analysis in the
current study, further analyses with the division of total
patients into homogeneous treatment regimens and
positive/negative HPV status are needed to address these
limitations. In addition, the previous investigation de-
scribed the diagnostic model to predict the HPV status
from deep learning-based image analysis using FDG-
PET images [14]. The integrated use, including this pre-
viously described model, might contribute more accurate
diagnosis in deep learning-based local prognosis predic-
tion as a future analysis.

Fig. 5 Results of the Kaplan-Meier analyses in subgroup analysis based on HPV status. The local PFS rate was significantly greater in low risk of
deep learning-based classification with axial and coronal images combination model in ResNet (A) (P < .05). The local PFS rate was visually
divided in the Kaplan-Meier curve by HPV status-based classification (B). However, there was no statistical significance (P = 0.15)
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Conclusions
A deep learning-based diagnostic model using FDG-PET
images can potentially predict treatment outcome and
local progression-free survival rate in patients with
OPSCC who received definitive chemoradiation therapy.
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