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Abstract

Background: Lung cancer is one of the dominant causes of cancer-related deaths worldwide. Ferroptosis, an iron-
dependent form of programmed cell death, plays a key role in cancer immunotherapy. However, the role of
immunity- and ferroptosis-related gene signatures in non-small cell lung cancer (NSCLC) remain unclear.

Methods: RNA-seq data and clinical information pertaining to NSCLC were collected from The Cancer Genome
Atlas dataset. Univariate and multivariate Cox regression analyses were performed to identify ferroptosis-related
genes. A receiver operating characteristic (ROC) model was established for sensitivity and specificity evaluation.
Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to
explore the function roles of differentially expressed genes.

Results: A signature composed of five ferroptosis-related genes was established to stratify patients into high- and
low-risk subgroups. In comparison with patients in the low-risk group, those in the high-risk one showed
significantly poor overall survival in the training and validation cohorts (P < 0.05). Multivariate Cox regression analysis
indicated risk score to be an independent predictor of overall survival (P < 0.01). Further, the 1-, 2-, and 3-year ROCs
were 0.623 vs. 0.792 vs. 0.635, 0.644 vs. 0.792 vs. 0.634, and 0.631 vs. 0.641 vs. 0.666 in one training and two
validation cohorts, respectively. Functional analysis revealed that immune-related pathways were enriched and
associated with abnormal activation of immune cells.

Conclusions: We identified five immunity- and ferroptosis-related genes that may be involved in NSCLC
progression and prognosis. Targeting ferroptosis-related genes seems to be an alternative to clinical therapy for
NSCLC.
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Background
Lung cancer has become the leading deadly malignancy
across the globe [1], with non-small cell lung cancer
(NSCLC) accounting for > 85% of all cases [2]. Despite
extensive research on molecular targeted therapies and
checkpoint inhibitors, > 50% patients die within 1 year of
NSCLC diagnosis, and the 5-year overall survival (OS)
rate is < 18% [3]. These data indicate that there is an ur-
gent need for not only novel therapeutic research but
also comprehensive analyses to elucidate the molecular
mechanisms underlying NSCLC, which should facilitate
the identification of new therapeutic targets.
Ferroptosis, an iron-dependent form of programmed

cell death, chiefly relies on iron accumulation [4–6].
Emerging evidence shows that ferroptosis is closely re-
lated to the development of several human diseases, par-
ticularly cancer [7–11]. Ferroptosis has been identified
to be a novel way to induce cancer cell death [12–14].
Moreover, ferroptotic cancer cells evidently produce a
plethora of oxidized lipid mediators to affect anti-tumor
immunity, and a small proportion of cells undergoing
ferroptosis are capable of suppressing the immune sys-
tem, enhancing tumor growth [15]. The induction of fer-
roptosis can also affect the anti-tumor efficacy of
immunotherapy, suggesting that the immune system, at
least in part, functions via ferroptosis [16]. However, the

relationship between NSCLC patient prognosis and im-
munity- and ferroptosis-related genes remains unknown,
making the development of ferroptosis therapy for
NSCLC a major challenge.
In this study, we collected and analyzed of ferroptosis-

related NSCLC from The Cancer Genome Atlas (TCGA)
dataset and Gene Expression Omnibus (GEO) database.
Five immunity- and ferroptosis-related differentially
expressed genes (DEGs) were identified to establish a
risk model. Patients with NSCLC in the GEO database
were selected as the validation cohort. Gene ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed to
explore the functions and pathways enriched between
the high- and low-risk subgroups. Furthermore, to assess
prognosis, a nomogram model was developed based on
risk score and clinical features. We believe that our im-
munity- and ferroptosis-related risk model can serve as
a potential gene signature and therapeutic target for
NSCLC.

Methods
Data acquisition
RNA-seq data (n = 594) and clinical information related
to NSCLC were obtained from TCGA dataset (https://
tcga-data.nci.nih.gov/tcga/). To validate the findings in

Fig. 1 Work flow chart
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TCGA dataset, the independent cohorts GSE13213 (n =
117) and GSE72904 (n = 442) from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) were employed.
RNA-seq data and clinical information pertaining to
three datasets were independently reviewed by two au-
thors (TX-L and JY-Z) to avoid potential mistakes.

DEG identification
Sixty ferroptosis-related genes were retrieved from previ-
ous literature [14, 17–19]; (Table S1). Sixteen ferroptosis-
related DEGs between tumor and normal tissues were
identified (Table S1), and 14 ferroptosis-related prognostic
genes were found in TCGA database by excluding normal
samples (n = 59) and tumor samples without or with un-
known follow-up information (n = 26) using the “limma”
R package (version 3.6.2, https://cran.r-project.org/) with
the Wilcoxon test. The cut-off criteria were false discovery
rate < 0.05 and |log2FoldChange| > 1. Univariate and
multivariate Cox regressions were used to evaluate the re-
lationship between DEGs and OS. Patients were stratified
into high- and low-risk subgroups according to their risk
score, which was calculated as follows: risk score = ∑j

(n =

1)Coefj*Xj, wherein Coefj represents the coefficient and Xj

represents the relative expression level of each DEG stan-
dardized by z-score.

Development of receiver operating characteristic (ROC)
curves
Univariate Cox regression was used to analyze prognos-
tic DEGs with clinical information. Significant prognos-
tic DEGs (P < 0.05) were then analyzed via multivariate
Cox regression to identify independent prognostic risk
factors. ROC analysis was performed to determine the
sensitivity and specificity of the risk model in predicting
OS.

Principal components analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE)
PCA and t-SNE were used for dimensionality reduction
analysis. Based on expression levels of the genes in the
signature, PCA was performed using the “prcomp” func-
tion of the “stats” R package. In addition, t-SNE was per-
formed using the “Rtsne” package to explore the
distribution of different subgroups.

Fig. 2 Identification of ferroptosis-related genes in TCGA cohort. (a) A Venn diagram of DEGs associated with OS. (b) Heatmap of five hub genes.
(c) Univariate Cox regression analysis of five hub genes. (d) Protein–protein interaction network of ferroptosis-related genes. (e) Correlation
network of ferroptosis-related genes
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Interaction network and enrichment analysis
An interaction network of DEGs was constructed using
STRING (http://string-db.org/cgi/input.pl). GO enrich-
ment and KEGG pathway analyses were performed to
analyze the functions of differential expressed immune-
related genes using the R software.

Immune cells and Ferroptosis
The infiltrating score of 16 types of immune cells and 13
immune-related functions were calculated via single-
sample gene set enrichment analysis (ssGSEA) in the
“gsva” R package.

Statistical analysis
Statistical analysis was performed using R v3.6.2 (https://
cran.r-project.org/). Student’s t-test was used to evaluate
differences between groups. ssGSEA scores between the
high- and low-risk subgroups were compared with the
Mann–Whitney test. The Kaplan–Meier method was
used to assess OS and differences were assessed using
two-sided log-rank test. Two-sided P < 0.05 indicated a
statistically significant difference.

Results
Identification of prognostic Ferroptosis-related DEGs
As shown in Fig. 1, NSCLC from TCGA–LUAD (n = 594)
and the GEO (GSE13213 and GSE72904, n = 559) dataset
were collected and analyzed. The detailed clinical charac-
teristics of these patients are summarized in Table S2.
Overall, we identified 16 DEGs (26.7%) between tumor
and adjacent normal tissues and 14 (23.3%) prognostic
genes in tumor samples (Fig. 2a). Univariate Cox regres-
sion analysis revealed that five of them—ALOX5, DPP4,
FANCD2, GCLC, and SLC7A11—were both differentially
expressed and correlated with OS (Fig. 2b-c). Interaction
network analysis showed that SLC7A11, GCLC, HMOX1,
GCLM, G6PD, NQO1, and NOX1 were the significant hub
genes (Fig. 2d-e), suggesting that they are mainly respon-
sible for regulating ferroptosis in NSCLC.

Development of a risk model in TCGA cohort
To develop a ferroptosis-related risk model, LASSO re-
gression analysis was performed to construct a risk
model based on the hub genes (ALOX5, DPP4, FANC
D2, GCLC, and SLC7A11). High- (n = 297) and low-risk
(n = 297) risk subgroups using the median cut-off value
were found (Fig. 3a). PCA and t-SNE results also showed

Fig. 3 Prognostic analysis of the five-gene signature in TCGA cohort. (a) The risk scores of NSCLC in TCGA cohort. (b) PCA plot of NSCLC. (c) t-
SNE analysis of NSCLC. (d) Distribution of survival status. (e) Survival analysis in the two risk subgroups. (f) AUC of the risk model
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that our risk model could effectively stratify patients
(Fig. 3b-c). Moreover, patients in the high-risk group
showed a higher probability of earlier death than those
in the low-risk group (Fig. 3d). The Kaplan–Meier OS
curves revealed that patients in the high-risk group had
a significantly worse OS than those in the low-risk group
(Fig. 3e). Univariate [hazard ratio (HR): 2.97; 95% CI:
1.74–5.06; P < 0.001] and multivariate Cox regression
analyses (HR: 2.70; 95% CI: 1.57–4.64; P < 0.001) also re-
vealed that high-risk patients had a significantly worse
OS than low-risk patients (Table S3). ROC analysis indi-
cated that the area under the curve (AUC) for our model
reached 0.792 at 1 year, 0.644 at 2 years, and 0.641 at 3
years (Fig. 3f). To evaluate the value of our ferroptosis-
related risk model in indicating patient survival within
the same clinical factor subgroup, patients were further
stratified based on clinical parameters, such as age (≤65/
> 65), gender (female/male), T stage (T1–2/T3–4), N
stage (N0–1/N2–3), M stage (M0/M1), and clinical stage
(I-II/III-IV). We found that the risk model could
categorize patients in the early stage, particularly T1–2,
N0–1, M0, and I-II clinical stages, into high- and low-
risk subgroups (Fig. S1). Collectively, these results sug-
gested that the model, composed of five ferroptosis-
related genes, had a strong prognostic power.

Risk model validation
We validated our risk model in the GSE13213 dataset.
In total, 107 patients were stratified into high- and low-
risk subgroups using median risk score values (Fig. 4a).
PCA and t-SNE analysis suggested that patients were
properly classified into high- and low-risk subgroups
(Fig. 4b-c). Moreover, patients in the high-risk group
showed a higher probability of earlier death (Fig. 4d) and
had significantly worse OS than those in the low-risk
group (Fig. 4e). The predictive power of our risk model
was satisfactory (1 year, 0.792; 2 years, 0.644; and 3 years,
0.641) (Fig. 4f). Furthermore, the risk score was identi-
fied to be an independent predictor of OS by both uni-
variate (HR: 5.18; 95% CI: 1.8–14.92; P < 0.01) and
multivariate Cox regression (HR: 5.59; 95% CI: 1.79–
17.44; P < 0.001) analysis (Table S3). To further verify
the stringency of our risk model, the GSE72904 dataset
was employed for model validation. Patients in this data-
set were classified as being at a high or low risk; further,
the survival of high-risk patients was significantly poor
than that of low-risk ones (P < 0.001; Fig. S2a). The pre-
dictive power was as follows: 1 year, 0.635; 2 years, 0.634;
and 3 years, 0.666 (Fig. S2b). Altogether, these findings
suggested that our risk model had a strong predictive
power in clinical applications.

Fig. 4 Validation of the risk model in the GSE13213 dataset. (a) The risk scores in the GSE13213 dataset. (b) PCA plot of GSE13213 dataset. (c) t-
SNE analysis of of GSE13213 dataset. (d) Distribution of survival status. (e) Survival analysis in the two risk subgroups. (f) AUC of the risk model
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Functional enrichment analysis
GO enrichment and KEGG pathway analyses were per-
formed to explore the functional roles of DEGs in
TGCA–LUAD cohort and the GSE13213 dataset. GO
enrichment analysis showed that DEGs were mostly
enriched in several immunity- and ferroptosis-related
biological processes and molecular functions (P < 0.05;
Fig. 5a-b). Further, KEGG pathway analysis showed that
DEGs were mostly enriched in the ferroptosis pathway
and immune-related pathways, such as human T-cell
leukemia virus 1 (HTLV-1) infection pathway (P < 0.05;
Fig. 5c-d). These findings suggested that there exists
crosslinking between ferroptosis and tumor immunity in
NSCLC.

To further identify the immune status in different risk
subgroups, ssGSEA was used to quantify the infiltrating
scores of diverse immune cell subpopulations and
immune-related functions/pathways. For immune cells,
we found that the score of activated dendritic cells, im-
mature dendritic cells, antigen-presenting cell co-
stimulation, and human leukocyte antigen (HLA) was
significantly different between the low- and high-risk
subgroups in TCGA cohort (P < 0.05; Fig. 6a-b). The
scores of antigen-presenting cell co-inhibition and HLA
class were significantly lower in high-risk patients than
in low-risk patients (P < 0.05; Fig. 6b). The GSE13213
dataset revealed differences in the scores of HLA class
and type-I and -II immune interferon response (P < 0.05;

Fig. 5 GO enrichment and KEGG pathway analysis. (a-b) GO enrichment analysis in TCGA cohort (a) and the GSE13213 dataset (b). (c-d) KEGG
pathways analysis in TCGA cohort (c) and the GSE13213 dataset (d)
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Fig. 6c-d). More importantly, the immune score of the
subgroups in both TCGA cohort and the GSE13213
dataset was significantly different, especially the score of
macrophages and mast cells. These data were consistent
with the findings of the functional enrichment analysis.

Discussion
Cell death is an important aspect of mammalian devel-
opment and homeostasis and is tightly integrated with
the physiological and pathological state of an organism
[20]. Ferroptosis is an iron-catalyzed form of regulated
cell death, and iron accumulation and lipid peroxidation
are the main biochemical characteristics of ferroptosis
[21]. Recent studies have suggested that ferroptosis plays
a key role in cancer development and treatment [22, 23].

However, immunity- and ferroptosis-related gene signa-
tures remain largely uninvestigated in lung cancer.
Herein we found that 44% ferroptosis-related genes were
differentially expressed between lung tumor and adjacent
normal tissues and that five ferroptosis-related genes
were significantly associated with OS. A novel risk
model was developed and validated in GEO dataset by
five ferroptosis-related hub genes.
The risk model proposed in this study was composed

of five ferroptosis-related genes: FANCD2, GCLC,
SLC7A11, ALOX15, and DPP4. FANCD2 is a nuclear
protein involved in DNA damage repair and has been re-
ported to protect against ferroptosis-mediated injury in
cases of colon adenocarcinoma, clear cell renal cell car-
cinoma, and low-grade glioma [24–26]. Glutamate

Fig. 6 The ssGSEA scores between the risk subgroups. Immune scores and immune-related functions of different immune cells of TCGA cohort
(a-b) and the GSE13213 dataset (c-d). CCR, cytokine–cytokine receptor. Adjusted P values are shown: ns, not significant; *, P < 0.05; **, P < 0.01;
***, P < 0.001
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cysteine ligase is composed of the catalytic subunit GCLC,
which evidently has a glutathione-independent, non-
canonical role in conferring protection against ferroptosis,
and this is achieved via the maintenance of glutamate
homeostasis under cystine starvation [27–29]. The inhib-
ition of SLC7A11-mediated cystine uptake can lead to
intracellular glutathione deficiency, resulting in ferroptosis-
mediated cell death [17, 21, 30]. ALOX15 is closely associ-
ated to lipid ROS production in various types of tissues and
tumors [31–33]. DPP4, a mitochondria-encoded gene, is re-
sponsible for ferroptosis induction [29].
In this study, functional analyses indicated that the

identified DEGs were enriched in several immune-
related pathways, including HTLV-1 pathway, which has
been implicated in many types of cancers [34–37].
HTLV-1 encodes two viral genes, namely Tax and
HTLV-1 bZIP factor (HBZ), which play a critical role in
viral transcription and promotion of T-cell proliferation.
HBZ, a suppressor of viral transcription, can change the
immunophenotype of infected cells, conferring an ef-
fector regulatory T cell (eTreg)-like signature (CD4+
CD25+ CCR4+ TIGIT+ Foxp3+) and enhancing the pro-
liferation of this subset [38–40]. We speculate that fer-
roptosis affects prognosis via the HTLV-1 pathway,
which drives the differentiation of Treg. Our findings
also indicated that in comparison with low-risk patients,
tumor-specific cellular immunity was altered in high-risk
patients. Further, the ssGSEA score of HLA class was
significantly lower in the high-risk group, indicating the
immune suppression in the high-risk patients.
This study had several limitations. First, the retro-

spective data from public databases were used to con-
struct and validate our risk model. Future prospective
studies are needed to verify its clinical application. Sec-
ond, the risk model was only associated with ferroptosis-
related genes, the mutation status of oncogenic drivers,
such as EGFR and ALK, were not included into the risk
model, thus the model needs to be further improved.
Last, our results relevant to the signature-based risk
model and immune activity are theoretical and the po-
tential mechanism needs to be further explored.

Conclusions
We herein constructed a novel immunity- and ferroptosis-
related risk model that can serve as a potential gene signa-
ture and therapeutic target for NSCLC. Although further
studies are warranted to elucidate the mechanisms under-
lying tumor immunity, we believe that targeting both
immunity- and ferroptosis-related genes should prove ef-
fective for treating lung cancer.
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