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Abstract

Background: DNA methylation alteration is frequently observed in Lung adenocarcinoma (LUAD) and may play
important roles in carcinogenesis, diagnosis, and prognosis. Thus, this study aimed to construct a reliable methylation-
based nomogram, guiding prognostic classification screening and personalized medicine for LUAD patients.

Method: The DNA methylation data, gene expression data and corresponding clinical information of lung
adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) database. Differentially methylated
sites (DMSs) and differentially expressed genes (DEGs) were obtained and then calculated correlation by pearson
correlation coefficient. Functional enrichment analysis and Protein-protein interaction network were used to explore
the biological roles of aberrant methylation genes. A prognostic risk score model was constructed using univariate Cox
and LASSO analysis and was assessed in an independent cohort. A methylation-based nomogram that included the
risk score and the clinical risk factors was developed, which was evaluated by concordance index and calibration
curves.

Result: We identified a total of 1362 DMSs corresponding to 471 DEGs with significant negative correlation, including
752 hypermethylation sites and 610 hypomethylation sites. Univariate cox regression analysis showed that 59 DMSs
were significantly associated with overall survival. Using LASSO method, we constructed a three-DMSs signature that
was independent predictive of prognosis in the training cohort. Patients in high-risk group had a significant shorter
overall survival than patients in low-risk group classified by three-DMSs signature (log-rank p = 1.9E-04). Multivariate cox
regression analysis proved that the three-DMSs signature was an independent prognostic factor for LUAD in TCGA-
LUAD cohort (HR = 2.29, 95%CI: 1.47–3.57, P = 2.36E-04) and GSE56044 cohort (HR = 2.16, 95%CI: 1.19–3.91, P = 0.011).
Furthermore, a nomogram, combining the risk score with clinical risk factors, was developed with C-indexes of 0.71
and 0.70 in TCGA-LUAD and GSE56044 respectively.

Conclusions: The present study established a robust three-DMSs signature for the prediction of overall survival and
further developed a nomogram that could be a clinically available guide for personalized treatment of LUAD patients.
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Background
Lung cancer is the leading cause of cancer-related deaths
worldwide [1], including two main types known as
small-cell lung carcinoma (SCLC) and non-small-cell
lung carcinoma (NSCLC). Lung adenocarcinoma
(LUAD) is the most predominant subtype of NSCLC,
with increased incidence over the past decades world-
wide [2]. Despite recent advances in surgical techniques,
radiotherapeutic interventions and combined chemo-
therapy strategies, the long-term survival rate of patients
diagnosed with LUAD has not significantly improved
[3]. Thus, it is indeed urgent to identify specific details
regarding characteristic molecules in LUAD tissue to
evaluate the prognosis of LUAD and develop strategies
for personalized therapy.
DNA methylation, as the key element in epigenetic

modifications, plays a significant role in the regulation of
cellular functions and carcinogenesis. Increasing studies
demonstrated that epigenetic alterations in DNA methy-
lation were relevant to the progression and metastasis of
LUAD [4–7]. Shen et al. demonstrates that the methyla-
tion status of homeobox A9 (HOXA9), keratin-
associated protein 8–1 (KRTAP8–1), cyclin D1
(CCND1), and tubby-like protein 2 (TULP2) has great
potential for the early recognition of LUAD in the un-
determined lung nodules [8]. Seok et al. found that
TGFBI promoter methylation is associated with poor
prognosis in lung adenocarcinoma patients [9]. Further-
more, a prognostic DNA methylation signature was
established by Sandoval et al. to distinguished patients
with high- and low-risk early stage NSCLC, guiding the
adjuvant chemotherapy [10]. Additionally, researchers
suggested an internal CpG-based signature for survival
prediction of lung adenocarcinoma patients. These re-
searches demonstrated that the methylation level is
deemed a crucial molecular biomarker for the diagnosis
and prognosis of LUAD patients [11–13]. However, lim-
ited by either the current expertise on the association
between the epigenetic modifications and clinical out-
comes or lack of independent validation as small sample
size, the identification of a robust prognostic DNA
methylation signature is of considerable importance for
LUAD patients.
In the present study, we extracted the DNA methyla-

tion data, gene expression data and corresponding clin-
ical information of lung adenocarcinoma samples from
The Cancer Genome Atlas (TCGA) database to select
the differentially methylated sites (DMSs) corresponding
to dysregulated genes and further explore the biological
processes in which the aberrant methylation genes might
be involved. Moreover, performing univariate Cox and
LASSO analysis, we constructed a robust DMSs-based
prognostic signature and validated the prognostic per-
formance in an independent cohort extracted from Gene

Expression Omnibus (GEO). Furthermore, combing
DMSs-based prognostic signature with clinical risk fac-
tors, we constructed a nomogram that could provide
insight into regarding survival prediction and serve as a
clinically available guide for personalized treatment of
LUAD patients.

Methods
Data processing
All datasets and clinical information were described in
Table 1 and Supplementary Table S1. The DNA methy-
lation data (459 LUAD tissues and 30 normal tissues)
and gene expression data (513 LUAD tissues and 59
normal tissues) of lung adenocarcinoma samples were
extracted from TCGA (https://cancergenome.nih.gov/).
Methylation beta-values derived from Illumina Infinium
Human Methylation 450 BeadChip platform were ex-
tracted as site methylation measurements. The normal-
ized count values of level 3 gene expression data derived
from Illumina HiSeqV2 were extracted as gene expres-
sion measurements. Clinical information of 513 LUAD
patients was obtained from TCGA. After corresponding
patients with both methylation data and expression data,
ninety-six LUAD patients were excluded because of un-
known survival time, age, and tumor stage. Ultimately,
417 patients were retained in our study. An independent
dataset (GSE56044 [14]) collected from GEO (https://
www.ncbi.nlm.nih.gov/geo/) was used to test the prog-
nostic ability, containing 82 LUAD patients with both
methylation data and clinical information.

Identification of differentially methylated sites
The differentially expressed genes (DEGs) were firstly se-
lected between tumor and normal tissues using edgeR
package in R. Multiple test corrections was performed
using Benjamini & Hochberg’s method and the cutoff
values were set at the FDR < 0.05 and |log2FC| > 2.
Then, the methylation sites corresponding to these
DEGs were selected. For each methylation site, we test
the difference in methylation level between tumor and
normal tissues to select differentially methylated site
(DMS) by T-test with p < 0.05. More importantly, pear-
son correlation analysis was performed to calculate the
correlation between the methylation level of DMS and
expression level of corresponding DEG. Such DMSs with
significant negative correlation, which were thought to
deeply influence the expression of corresponding DEGs,
were selected for subsequent analysis.

Functional enrichment analysis
Functional annotations of DEGs containing DMSs were
performed using The Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/), which enriched gene oncology and
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pathways. Three categories, including biological pro-
cesses, molecular function and cellular components,
were involved in Gene oncology (GO). Kyoto
Encyclopedia of Genes and Genomes (KEGG, https://
www.kegg.jp/) was used to carry out the pathway enrich-
ment, which is an essential database resource for a deep
understanding of functions and biological process from
large-scale molecular cohorts produced by high-
throughput experimental technology. The criterion for
significant enrichment was p < 0.05.

Protein-protein interaction (PPI) network
To further explore the interaction among the DEGs, the
Search Tool for the Retrieval of Interacting Genes (STRI
NG, http://string-db.org/), a database containing all
known and predicted protein interactions, was used to
identify a PPI network of DEGs. Each interaction was
evaluated by combined score ranged from 0 to 1. The
higher the combined score, the more reliable the inter-
action. In present study, we used a strict combined
score > 0.7 as the cut-off criterion to identify reliable in-
teractions among the DEGs. The PPI network was visu-
alized by Cytoscape software (version 3.7.0; www.
cytoscape.org). Furthermore, the hub genes in PPI net-
work were extracted using the cytoHubba application.

Construction of DMSs-based prognostic signature
The univariate Cox regression analysis was firstly per-
formed to calculate the association between the methyla-
tion level of each DMS and patient’s overall survival
(OS) in training cohort. Those sites with P-values less
than 0.05 were identified as prognosis-related DMSs.
Then, using LASSO method to screen the prognosis-
related DMSs and obtain an optimal model subse-
quently, the prognosis-related DMSs with coefficient not
equal to 0 were retained as significant variables and a
risk scoring model was established using the combin-
ation of weighted methylation values. The risk scores
were calculated as shown in the following equation: Risk
score = methylation of site 1 * β1 +methylation of site 2
* β2 +…methylation of site n * βn. βi is the regression
coefficient of site i, which represents the contribution of
site i to the prognostic risk score. Based on the equation,
risk scores were calculated for LUAD patients in each
cohort. Using the median risk score as the cutoff point,

patients were divided into low-risk (risk score below the
median value) or high-risk (risk score above the median
value) group correspondingly.

Development of DMSs-based nomogram
To translate the prognostic value of DMSs-based signa-
ture into clinical application, a nomogram, including the
risk score and the clinical risk factors of LUAD patients
evaluated by multivariate Cox proportional-hazards re-
gression, was developed for predicting the 3- and 5-years
OS in TCGA-LUAD cohort. The discriminatory ability
of the nomogram was evaluated by calculating the con-
cordance index (C-index), which is a measure of dis-
crimination. Calibration plots were plotted to compare
the observed and predicted probabilities for the
nomogram.

Statistical analysis
The multivariate Cox proportional-hazards regression
model was used to evaluate the independent prognostic
value of the signature after adjusting for age, sex and
stage. Hazard ratios (HRs) and 95% confidence intervals
(CIs) were computed based on the Cox regression ana-
lysis. Survival curves were estimated using the Kaplan–
Meier method and were compared using the log-rank
test. Fisher’s exact test was used to observe the differ-
ences in mortality rate and lymph node metastasis rate
between different risk groups. Values of p < 0.05 were
considered significant. All statistical analysis was per-
formed using the R3.4.0.

Results
Identification of differentially methylated sites in LUAD
We initially performed differential expression analysis to
select DEGs between LUAD and normal lung tissues in
TCGA-LUAD dataset. With cut-off criteria of FDR < 0.05
and |log2FC| > 2.0, a total of 960 DEGs were identified, in-
cluding 653 up-regulated DEGs and 307 down-regulated
DEGs (Fig. 1A). We then selected the methylation sites
which were differentially methylated between LUAD and
normal lung tissues and significantly negatively correlated
with the expression of corresponding DEGs. We thought
that such methylation sites could influence the gene ex-
pression and further participate in tumor progression.
The results showed that a total of 1362 DMSs

Table 1 Cohorts analyzed in present study

Training cohort (TCGA-LUAD) Validation cohort (GSE56044)

Methylation data Expression data Clinical data Methylation data Clinical data

Normal 30 59 – – –

Tumor 417 417 417 82 82

Platform Illumina
HM450

Illumina
HiSeqV2

– Illumina
HM450

–
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corresponding to 471 DEGs were identified, including 752
hypermethylation sites and 610 hypomethylation sites
(Fig. 1B).

Functional enrichment of DMGs
To further investigate the biological processes which the
DMSs might be involved in, we performed GO annota-
tion and KEGG pathway enrichment using DAVID data-
base for the 471 corresponding DEGs. The DEGs were
significantly enriched in many cancer-related pathways.
The top significant terms emerging from the gene oncol-
ogy enrichment analysis were shown in Fig. 2A. For in-
stance, the most significant GO term, cell division, has
been reported in multiple articles related to the progres-
sion and metastasis of cancer [15–17]. We also found
that DEGs were significantly enriched in angiogenesis,
which is a core hallmark of advanced cancers, especially
in LUAD [18–20]. Besides, other significant GO terms,
such as regulation of cell cycle and regulation of small
GTPase mediated signal transduction were also related
to cancer progression and chemoresistance reported in
many studies [21, 22]. As shown in Fig. 2B, KEGG path-
way enrichment analysis found twelve significantly
enriched pathways related to cancer progression, such as
PI3K-Akt signaling pathway [23, 24], ECM-receptor
interaction [25, 26] and p53 signaling pathway [27, 28].
The results indicated that these DEGs played key roles
in multiple cancer-related pathways, and further
indicated that the DMSs might be involved in LUAD
progression by regulating the corresponding gene
expression.

Construction of PPI network
Using STRING database, a PPI network was constructed
to further explore the interactions between the 471
DEmRNAs. After removing unconnected nodes, the PPI
network of DEGs is consisted of 188 nodes and 888
edges when combined score > 0.7 was set as the cutoff
criterion (Fig. 3A). Furthermore, the top 10 hub genes,
including cyclin dependent kinase 1 (CDK1), cyclin A2
(CCNA2), cyclin B1 (CCNB1), cell division cycle 20
(CDC20), cell division cycle associated 8 (CDCA8), aur-
ora kinase B (AURKB), assembly factor for spindle mi-
crotubules (ASPM), PDZ binding kinase (PBK),
ribonucleotide reductase regulatory subunit M2 (RRM2)
and centromere protein F (CENPF), were identified
using the cytoHubba plugin for Cytoscape, with a higher
degree of connectivity (Fig. 3B). Most of ten genes had
been reported to be closely related to tumorigenesis and
progression of LUAD.

Establishment of the DMSs-based prognostic signature
Performing the univariate Cox regression analysis, we
identified DMSs with potential prognostic value in
TCGA-LUAD cohort. Details of the clinical characteris-
tics are presented in Supplementary Table S1. We found
that 59 DMSs were significantly associated with overall
survival, including 47 hypermethylation sites and 12 hy-
pomethylation sites. The list of 59 DMSs is showed in
Supplementary Table S2. Thus, these methylation sites
were defined as prognosis-related DMSs to construct the
prognostic signature. We used the glmnet package in R
to perform LASSO regression analysis in TCGA-LUAD

a b

Fig. 1 Identification of differentially expressed genes and differentially methylated sites. a Volcano plot of differentially expressed genes. b
Histogram of differentially methylated sites
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cohort. We obtained the optimal value of the parameter λ,
which controlled the degree of LASSO regression complex-
ity, and selected the significant variables through multiple
cross-validation. We found that the parameter λ reached
the optimal value, when the number of variables was three.
Therefore, combining the regression coefficients of three
DMSs under the optimal λ value, we constructed a three-
DMSs risk score model to guide the prognosis of LUAD
patients. The general information of the three DMSs is
displayed in Table 2. The risk score formula was created as
follows: Risk score = (1.0003*methylation level of
cg21339084) + (0.1484*methylation level of cg07400091) +
(− 0.2536*methylation level of cg23843180). Calculating the
risk scores for patients in TCGA-LUAD cohort, we classi-
fied patients into a high-risk or a low-risk group based on
the median risk score. We found that the three-DMSs sig-
nature significantly stratified patients in terms of overall
survival (log-rank p = 1.9E-04; Fig. 4A). Patients with high
risk scores had significantly shorter OS than those with low

risk scores. The mortality rate was 34.0% (71/209) in the
high-risk group, significantly higher than 14.4% (30/208) in
the low-risk group (p < 0.001, Fisher exact test; Fig. 4B).
The risk score distribution, survival status, and methy-
lation profile of the three prognostic DMSs are shown
in Fig. 4C. As shown in Table 3, multivariate Cox re-
gression analysis suggested that the three-DMSs signa-
ture was an independent prognostic factor, after
adjusting for age, sex and stage (HR = 2.29, 95%CI:
1.47–3.57, P = 2.36E-04). Furthermore, noticing the pa-
tients with lymph node metastasis status, we found that
patients in the high-risk group had a higher lymph
node metastasis rate than those in the low-risk group
(26.2% vs. 15.8%, p = 0.018, Fisher exact test; Fig. 4B).
From the three DMSs, two were associated with high
risk (cg21339084 and cg07400091; HR > 1) and one ap-
peared to be protective (cg23843180; HR < 1). The
methylation level of the three prognostic DMSs was de-
tected and the differences between high- and low-risk

a

b

Fig. 2 Functional enrichment of differentially expressed genes corresponding to differentially methylated sites. a Top ten terms significantly
enriched in each Gene Ontology (GO) category. b Pathways significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG)
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a

b

Fig. 3 Construction of protein-protein interaction (PPI) network and Identification of hub genes. a PPI network. b Ten hub genes extracted from
PPI network
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groups were compared. We found that patients with
high-risk scores tended to hypermethylation at risky
sites, whereas patients in the low-risk group tended to
hypomethylation at protective sites (Fig. 5A-C).

Prognostic validation of the three-DMSs signature
An independent cohort (GSE56044), containing 82
LUAD patients with both methylation data and clinical
information, was used to validate the prognosis perform-
ance of the three-DMSs signature. Similarly, we calcu-
lated the risk score for each patient using the three-
DMSs signature, after which patients were classified into
a high-risk (n = 41) or a low-risk (n = 41) group based on
the median risk score. We found that patients in high-

risk group had a shorter survival time than those in low-
risk group (HR = 2.15, 95% CI: 1.20–3.85, log-rank p =
0.008, Fig. 6A). Furthermore, we calculated the mortality
rate in each risk group. The result showed that the mor-
tality rate in high-risk group was 32% higher than that in
low-risk group (p = 0.006, Fisher exact test; Fig. 6B). The
risk score distribution, survival status, and expression
profile of the three prognostic DMSs are shown in Fig.
6C. As biased stage information, the stage variable is ex-
cluded when performed multivariate Cox regression ana-
lysis. In accordance with the result of training set, the
multivariate Cox regression analysis confirmed that the
three-DMSs signature was significantly correlated with
overall survival as an independent prognostic factor
(HR = 2.16, 95% CI: 1.19–3.91, P = 0.011, Table 3).

Construction of three-DMSs signature-based nomogram
Multivariate Cox analysis indicated that three variables
(age, stage, and three-DMSs risk score) were independ-
ent risk factors for OS. Thus, a nomogram predicting 3-
and 5-years OS was constructed based on the

a

b

c

Fig. 4 Construction of the three-DMSs prognostic signature in TCGA-LUAD cohort. a Kaplan-Meier curve of the overall survival for high-risk and
low-risk scores ranking by the three-DMSs prognostic signature. b The distribution of death and lymphatic node metastasis in high-risk and low-
risk groups respectively. c Risk score distribution, survival status and methylation heat map of three DMSs corresponding to each sample above

Table 2 General information of the three DMSs

ProbeID Gene chrom chromStart chromEnd coefficient

cg21339084 LIMS2 chr2 128,422,432 128,422,434 1.0003

cg07400091 S1PR1 chr1 101,704,472 101,704,474 0.1484

cg23843180 NGEF chr2 233,852,838 233,852,840 −0.2536
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multivariate analysis data. As shown in Fig. 7, the
total points for a patient can be obtained by adding
the points from each independent prognostic factor
listed in the nomogram. C-indexes for the nomogram
were 0.71 (95%CI: 0.58–0.85) and 0.70 (95%CI: 0.52–
0.88) in TCGA-LUAD and GSE56044 cohorts, re-
spectively. The calibration plots for the probabilities
of 3 and 5-year OS indicated no apparent departure
from the ideal line, showing good agreement between
the nomogram-predicted OS and actual OS of LUAD
patients in both the training and validation cohorts
(Fig. 8). Such results indicated that the three-DMSs
signature-based nomogram could provide insight into
regarding survival prediction and serve as a clinically
available guide for personalized treatment of LUAD
patients.

Discussion
Due to the heterogeneity of LUAD, it is still a great chal-
lenge to develop successful individual-based treatment
[29, 30]. Aberrant DNA methylation is of considerable
importance in LUAD onset and progression [31, 32]. A
special focus on DNA methylation alterations to develop
the prognostic and predictive signatures for LUAD pa-
tients would be meaningful for survival prediction, guid-
ing the personalized treatment decisions. Zheng et al.
[11] constructed a CpG-based signature for survival pre-
diction of lung adenocarcinoma patients based on
TCGA database. However, such studies were limited by
either small sample size or lack of validation of the sig-
nature as an independent prognostic factor. Therefore,
in-depth studies on the LUAD progressive mechanisms,
identification of specific methylation CpG sites and con-
struction of the robust prognostic signatures are ur-
gently required.
In the present study, we screened the DMSs that signifi-

cantly correlated with corresponding gene expression,
which may be involved in cancer progression by regulating
the gene expression. Thus, a three-DMSs methylation sig-
nature significantly associated with the OS of LUAD pa-
tients was constructed based on genome-wide DNA
methylation profiles using the Cox regression and LASSO
analyses. The three-DMSs signature performed well in
classifying patients into a high-risk or a low-risk group
with significant survival difference. Furthermore, a nomo-
gram was developed by combing the DMSs-based prog-
nostic signature with clinical risk factors, which could
provide a clinically available and robust guide for survival
prediction and personalized treatment of LUAD patients.
Our study showed that three DMSs within prognostic

signature had a critical role in progression and metasta-
sis of LUAD. The three DMSs, including cg21339084,
cg07400091 and cg23843180, correspond to LIMS2,
S1PR1 and NGEF respectively (Table S3). We found that
cg21339084 and cg07400091 were located in the S_

Table 3 Univariate and multivariate Cox regression analysis in
TCGA-LUAD and GSE56044
Variables Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

TCGA-LUAD cohort

Age

< = 60/> 60 0.96 (0.63–1.47) 0.852 1.19 (0.77–1.85) 0.437

Sex

Male/Female 0.94 (0.64–1.40) 0.774 0.99 (0.66–1.49) 0.964

Stage

I + II/III + IV 2.74 (1.82–4.13) 1.30e-06 2.79 (1.85–4.21) 1.06e-06

Risk score

Low/High 2.22 (1.45–3.42) 2.77e-04 2.29 (1.47–3.57) 2.36e-04

GSE56044 cohort

Age

< = 60/> 60 2.83 (1.26–6.35) 0.012 2.88 (1.26–6.59) 0.012

Sex

Male/Female 1.10 (0.63–1.93) 0.737 0.79 (0.44–1.43) 0.438

Risk score

Low/High 2.15 (1.20–3.85) 0.010 2.16 (1.19–3.91) 0.011

a cb

Fig. 5 Methylation difference of three differentially methylated sites between high-risk and low-risk groups respectively. a cg21339084. b
cg07400091. c cg23843180
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a

b

c

Fig. 6 Validation of the three-DMSs prognostic signature in an independent cohort. a Kaplan-Meier curve of the overall survival for high-risk and
low-risk scores ranking by the three-DMSs prognostic signature. b The distribution of death in high-risk and low-risk groups. c Risk score
distribution, survival status and methylation heat map of three DMSs corresponding to each sample above

Fig. 7 A nomogram for the prediction of 3- and 5-years overall survival in LUAD patients

Wang et al. BMC Cancer          (2021) 21:801 Page 9 of 12



Shore of CpG islands. The hypermethylation of
cg21339084 and cg07400091 was significantly correlated
with loss of expressions of LIMS2 and S1PR1. The
cg23843180 was located in the 5’UTR of promoter,
whose hypomethylation increased the expression of
NGEF. Beside, we found that all three DMSs were lo-
cated in DNase-I-hypersensitive sites (DHS) region,
indicting the relationship between DNA methylation and
DHS. Furthermore, we annotated all methylation probes
of the three genes, and calculated the methylation differ-
ence and correlation with gene expression. The results
showed that almost all 36 probes of LIMS2 were located
in the promoter region and were hyper-methylated, indi-
cating that loss of expressions of LIMS2 was significantly
affected by promoter methylation. Many researches had
demonstrated that frequent epigenetic silencing of LIMS2
could be important in GC progression events [33]. A total
of 21 methylation probes of S1PR1 were located around
the CpG islands. All probes were significantly hyper-
methylated in LUAD samples except cg10020333, indicat-
ing that the hypermethylation of S1PR1 was closely related
to LUAD progression. Previous study had shown that
S1PR1 could act as methylation-driven genes to reveal
prognostic biomarkers in LUAD [34]. Besides, 21

methylation probes were annotated within NGEF. NGEF
is a novel member of the family of Dbl genes and func-
tions as a guanine nucleotide exchange factor for the Rho-
type GTPases. Few studies described its roles in carcino-
genesis [35]. We found that the distributions and methyla-
tion levels of these probes were different, indicating that
there might be multiple regulatory mechanisms in LUAD
progression. These results indicated the aberrant methyla-
tion of three DMSs might play vital roles in promoting
LUAD progression and metastasis, but the underlying
mechanisms need further experimental verification.
In this study, we selected methylation sites that were

significantly negatively correlated with the expression to
ensure the regulatory effect on genes. However, several
important methylation sites might be lost due to lack of
significance. The expression of genes is regulated by lots
of factors rather than methylation, such as mutation and
copy number variation. For example, cg26500801 was lo-
cated in CpG island of KEAP1. We found that
cg26500801 was significantly hyper-methylated in LUAD
samples. Previous research had confirmed the effect of
methylation on KEAP1 transcription control across mul-
tiple histologies of lung cancer [36]. However, we found
that the correlation between methylation level of

a b

c d

Fig. 8 Calibration curves of the nomogram for 3- and 5-years overall survival predictions in TCGA-LUAD cohort (a,b) and GSE56044 cohort (c,d)
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cg26500801 and expression level of KEAP1 is not signifi-
cant. We observed that 17 % of samples had KEAP1 mu-
tations. Recent studies demonstrated that KEAP1/NRF2
axis dysfunction is strongly related to tumor progression
and chemo- and radiotherapy resistance of cancer cells
[37]. Fabrizio et al. reported that epigenetic abnormal-
ities were demonstrated as emerging mechanisms of
KEAP1/NRF2 axis modulation in addition to the most
frequently investigated point mutations in solid tumors
[38]. Elshaer et al. also found that KEAP1 mutations
were associated with DNA methylation changes capable
of shaping regulatory network functions [39]. Similarly,
cg00912625 is a methylation site that is located in CpG
island of CNTN4. Our results showed that cg00912625
was also significantly hyper-methylated in LUAD sam-
ples. However, the correlation between methylation level
of cg00912625 and expression level of CNTN4 is not
significant. We found that CNTN4 loss accounted for
distinctly higher proportion than its gain in LUAD sam-
ples, indicating that CNV might contribute to abnormal
expression. Therefore, combining both epigenomic and
transcriptomic changes along with genetic alterations
may provide a better understanding of the molecular
mechanisms associated with the progression of lung can-
cer and may help to provide better therapeutic
approaches.

Conclusion
Analyzing methylation and expression data comprehen-
sively, our study identified a robust three-DMSs prog-
nostic signature, which was significantly associated with
the OS of LUAD patients. Furthermore, a nomogram
was developed by combing the three-DMSs prognostic
signature with clinical risk factors, which could provide
a clinically available and robust guide for survival predic-
tion and personalized treatment of LUAD patients. Fur-
ther studies on the functional mechanism of the three
DMSs could be carried out, which might provide helpful
guidance for LUAD therapy as promising therapeutic
targets in the near future.
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