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Abstract

Background: Accumulating evidences demonstrated tumor microenvironment (TME) of bladder cancer (BLCA) may
play a pivotal role in modulating tumorigenesis, progression, and alteration of biological features. Currently we
aimed to establish a prognostic model based on TME-related gene expression for guiding clinical management of
BLCA.

Methods: We employed ESTIMATE algorithm to evaluate TME cell infiltration in BLCA. The RNA-Seq data from The
Cancer Genome Atlas (TCGA) database was used to screen out differentially expressed genes (DEGs). Underlying
relationship between co-expression modules and TME was investigated via Weighted gene co-expression network
analysis (WGCNA). COX regression and the least absolute shrinkage and selection operator (LASSO) analysis were
applied for screening prognostic hub gene and establishing a risk predictive model. BLCA specimens and adjacent
tissues from patients were obtained from patients. Bladder cancer (T24, EJ-m3) and bladder uroepithelial cell line
(SVHUC1) were used for genes validation. qRT-PCR was employed to validate genes mRNA level in tissues and cell
lines.

Results: 365 BLCA samples and 19 adjacent normal samples were selected for identifying DEGs. 2141 DEGs were
identified and used to construct co-expression network. Four modules (magenta, brown, yellow, purple) were
regarded as TME regulatory modules through WGCNA and GO analysis. Furthermore, seven hub genes (ACAP1,
ADAMTS9, TAP1, IFIT3, FBN1, FSTL1, COL6A2) were screened out to establish a risk predictive model via COX and
LASSO regression. Survival analysis and ROC curve analysis indicated our predictive model had good performance
on evaluating patients prognosis in different subgroup of BLCA. qRT-PCR result showed upregulation of ACAP1,
IFIT3, TAP1 and downregulation of ADAMTS9, COL6A2, FSTL1,FBN1 in BLCA specimens and cell lines.

Conclusions: Our study firstly integrated multiple TME-related genes to set up a risk predictive model. This model
could accurately predict BLCA progression and prognosis, which offers clinical implication for risk stratification,
immunotherapy drug screen and therapeutic decision.
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analysis, Immune cell
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Background
Bladder cancer (BLCA) is the 11th common malignancy
of urinary system worldwide, and represented mainly by
histological type of urothelial carcinoma [1]. Every year
around 430,000 new BLCA cases are diagnosed globally
with about 16,500 death cases [2]. BLCA is classified
into two clinically categories at the time of diagnosis:
Non-muscle invasive bladder cancer (NMIBC) and
muscle invasive bladder cancer (MIBC). Although
NMIBC patients usually have a good prognosis, approxi-
mately 70% of NMIBC cases will have a recurrence in
the first year after initial diagnosis, and nearly 10–50%
of NMIBC will progress to MIBC that is featured with
higher grade and poorer prognosis [3]. Therefore, there
is urgent need to highlight the BLCA carcinogenesis
mechanism and find effective biomarkers to guide clin-
ical treatment.
In recent studies, a growing body of emerging evi-

dences raise the awareness in cancer research commu-
nity that tumor microenvironment (TME) may play a
pivotal role in carcinogenesis, immune evasion and
treatment response [4–7]. TME is critical for both tumor
maintenance and progression, as well as a desirable par-
ameter to assess the treatment efficacy. TME is a com-
plicated interactive network involving immune cell,
stromal cell, fibroblasts, endothelial cell, blood vessels,
secretory factors and extracellular matrix (ECM) [8]. Ab-
normal changes of extracellular environment compos-
ition and biochemical response result in disease
progression at both primary site and metastatic lesion.
For instance, elevated extracellular matrix metallopro-
teinase inducer (EMMPRIN) expression is associated
with more invasive phenotype of tumor cell, advanced
grade and stage in bladder cancer [9]. In addition, some
studies reported that degree and ratio of tumor-
infiltrating cell contributed to distinct prognosis of
BLCA patients. Tumor-infiltrating neutrophils (TINs)
and NLR (neutrophils-lymphocytes ratio) are signifi-
cantly correlated with pathological T stage of BLCA.
High TIN indicates higher risk of recurrence in NMIBC,
while high Tumor-infiltrating lymphocytes (TILs) leads
to longer survival [10]. Intravesical instillation of Bacille
Calmette–Guérin (BCG) is standard and the most
commonly-used immunotherapy for carcinoma in situ
(CIS) and high-risk NMIBC following TURBT. Makito
et al. [11] found that both recurrence-free survival (RFS)
and progression-free survival (PFS) dramatically short-
ened with regulatory T cells (Treg) and tumor-
associated macrophages (TAM) increasing in the tumor-
enriched area after intravesical BCG therapy, implying
immune cell infiltration could be an effective tool to
evaluate immunotherapy response.
Therefore, strengthening our knowledge of TME and

clarifying the underlying mechanism will benefit the

diagnosis and treatment of BLCA. In this study, we con-
ducted weight gene co-expression network analysis
(WGCNA) and ESTIMATE algorithm to construct co-
expression networks in effort to identify TME-related
gene expression module. We aimed to identify hub
genes in these important modules and establish a gene
signature predictive model to determine risk subset of
BLCA.

Methods
Gene expression extraction
RNA sequencing data of BLCA containing count format
data were downloaded from The Cancer Genome Atlas
(TCGA) database (https://www.cancer.gov/tcga). Clinical
data including gender, age, grade, tumor stage and sur-
vival time were also obtained from TCGA portal. The
microarray dataset GSE31684 and the corresponding
clinical information data were downloaded from the
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), which was performed on
Affymetrix Human Genome U133 Plus 2.0 Array plat-
form. TCGA dataset was used to screen out differentially
expressed genes and construct the predictive model, and
GSE31684 data was applied to validate the model as an
external validation dataset. The immune score, stromal
score and ESTIMATE score that reflecting the TME-
related cell infiltrating degree in tumor tissue of BLCA
calculated using the ESTIMATE algorithm were ob-
t a i n e d f r om EST IMATE d a t a b a s e ( h t t p s : / /
bioinformatics.mdanderson.org/estimate/). To analyze
the correlation of gene expression profile and TME-
related score, a total of 365 patients with completed clin-
ical information were enrolled in this study, after filter-
ing out samples with unknown clinical traits, lack of
ESTIMATE score and invalid survival information.

Differentially expressed genes (DEGs) screening
The “edgeR” R was employed for identifying the DEGs
by R language software (version 3.5.3). Genes were ex-
cluded when too many missing values was detected or
mean expression counts were less than 5. Cut-off criteria
for screening DEGs were |log2fold change| ≥ 1 and false
discovery rate (FDR) < 0.05.

Constructing the gene co-expression network
The DEGs were input to construct a weighted co-
expression network using R software (version 3.5.3)
based on the R package “WGCNA”, as previously de-
scribed [12]. Firstly, The function “goodSamplesGenes”
in “WGCNA” package was applied to check if input
samples and genes were qualified to build co-expression
network. Secondly, Pearson’s correlation analysis of all
genes was performed to construct an adjacency matrix.
Then a weighted adjacency matrix were generated by a
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formula amn = |cmn|
β (β is a weighted parameter of the

adjacency function for ensuring a scale-free network).
The adjacency matrix was transformed into a topological
overlap matrix (TOM). TOM could estimate the net-
work connectivity of a gene and was used for network
generation [13]. Finally, we categorized genes with simi-
lar expression profiles into the same modules, average
linkage hierarchical clustering was performed according
to the TOM-based dissimilarity measure with a mini-
mum size of 40 for the genes dendrogram.

Functional enrichment analysis
R package “clusterProfiler” was used to conduct Gene
Ontology (GO) analysis for further studying the poten-
tial biological function of DEGs, including biological
process, molecular function, and cellular component in
R software. P value < 0.05 was selected as the cut-off
threshold.

Identification of hub gene and module visualization
Hub genes were defined as genes with the maximum
intramodular connectivity. Firstly, the most significant
module was identified. Module Membership (MM) was
represented as the absolute value of Pearson’s analysis
correlation between genes in order to reflect module
connectivity, while Gene Significance (GS) conveyed the
correlation between genes and clinical traits. In current
study, Hub genes were identified according to the cri-
teria that |MM| > 0.8 and |GS| > 0.2. All genes in re-
spective hub module were visualized by Cytoscape to
present the molecular interaction network.

COX regression analysis
The R package “survival” was applied to perform univar-
iate cox regression analysis for overall survival (OS) to
determine the survival related genes. Genes with p value
< 0.05 was considered as significant survival impact fac-
tor. Least absolute shrinkage and selection operator
(LASSO) was conducted to further screen hub gene and
construct TME related risk predictive model via
“glmnet” package in R [14].

Survival analysis and receiver operator characteristic (roc)
curve analysis
Time-dependent ROC was employed to evaluate the
predictive efficacy of risk score generated by our prog-
nostic model for 1-year, 3-year and 5-year OS by using
“survivalROC” package [15]. The optimal cutoff of the
risk score was determined by Youden index calculation.
Patients were dichotomized into high-risk group and
low-risk group according to the optimal risk score cutoff
of 5-year OS. Survival analysis was performed in 365 pa-
tients. The Kaplan-Meier survival curve and the log-rank

test were used to estimate survival by clinical features
and risk score.

Evaluation of TME cell infiltration
TIMER (https://cistrome.shinyapps.io/timer/) is a com-
prehensive online database to systematically analyze im-
mune cell infiltration across diverse cancer types. An
estimated abundance of immune cells, including B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and dendritic cells was performed via special statistical
method with pathological approach validation [16].
TIMER was used for calculating correlation between
survival-related hub genes and immune cell infiltration
in this study.

Drug sensitivity evaluation
GSCALite (http ://b io info. l i fe .hust .edu.cn/web/
GSCALite/) is a comprehensive web-based analysis plat-
form for gene set cancer analysis and drug sensitivity
analysis. It integrated cancer genomics data of 33 cancer
types from TCGA database, Drug response data from
GDSC and CTRP databases as well as normal tissue data
from GTEx for gene set analysis in a one-in-all data ana-
lysis workflow. In our study, we used GSCALite database
to evaluate drug sensitivity of our TME-related genes in
order to find out potential molecular compounds for tar-
geted immunotherapy.

Patients sample collection and cell lines
All ten bladder cancer specimens and adjacent normal
tissues were obtained from patients during operation.
The study was approved by our institutional review
board, and written informed consent was provided be-
fore surgery according to the World Medical Association
Declaration of Helsinki. The histology of all samples
were reviewed by two independent pathologist to con-
firm histopathological feature. None of these patients re-
ceived any surgical intervention or therapeutical
medication before this study. Bladder cancer cell line
T24 and immortalized uroepithelial cell line SVHUC1
were obtained from the American Type Culture Collec-
tion (ATCC). The highly invasive human bladder cancer
EJ-M3 cell line was purchased from Shanghai Don-
ghuang Biotechnology Corp. All cell lines were cultured
in RPMI 1640 medium (Gibco, NY, USA) supplemented
with 10% fetal bovine serum (FBS) and incubated at
37 °C in a humidified atmosphere containing 5% CO2.

Quantitative real-time PCR
Total RNA was extracted by using the RNeasy Mini Kit
(QIAGEN, Hilden, Germany) according to the instruc-
tions. Quantitative Real-time PCR (qRT-PCR) was per-
formed in ABI Step-One Plus PCR system (Applied
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Biosystems, Foster City, CA). The primers sequences for
qRT-PCR was listed in Table S4.

Results
ESTIMATE scores and stromal scores are significantly
correlated with BLCA subtypes
ESTIMATE algorithm (Estimation of Stromal and Im-
mune cells in Malignant Tumors using Expression data)
is a tool for predicting the presence of immune/stromal
cells infiltration and tumor purity in tumor tissue based
on single sample gene set enrichment analysis (ssGSEA).
Stromal score captures the presence of stromal cells in
tumor tissue, while immune score represents the infiltra-
tion of immune cells in tumor area. ESTIMATE score
reflects tumor purity [17]. Gene expression profiles and
clinical traits data were downloaded from TCGA data-
base and GSE31684. Clinical information is shown in
Table 1.
We plotted the distribution of the immune score, stro-

mal score and ESTIMATE score in TCGA BLCA cohort
stratified by tumor grade and stage. Based on our results,
the immune score ranged from − 1869.18 to 3085.28, the
stromal score ranged from − 2628.68 to 2175.37, and the
ESTIMATE score ranged from − 4398.47 to 4704.79.
The results also showed that immune score, stromal

score and ESTIMATE score were significantly higher in
high grade BLCA than those in low grade BLCA (Fig. 1A-
C). In addition, stromal score and ESTIAMTE score were
correlated with the tumor stage, both of these two score
were higher in stage III-IV compared with stage I-II. But
there was no significant difference in immune score of
four stages (Fig. 1D-F).

Gene co-expression network construction of BLCA
through WGCNA
After screening DEGs under the criteria of |log2FC| ≥
1and p value < 0.05, a total of 2141 genes in 365 sam-
ples were regarded as DEGs (1083 up-regulated and
1058 down-regulated) for constructing WGCNA net-
work (Supplementary Fig. S1A).
To ensure the reliability of the co-expression network,

we employed “hclust” function to plot a clustering den-
drogram for excluding outlier samples, no sample was
removed from our cohort (Supplementary Fig. S1B). To
build a scale-free network, β = 3 was set up as optimal
soft threshold to ensure high scale independence degree
(near 0.9) and low mean connectivity (close to 0) with
scale free R2 = 0.95 (Fig. 2A-B). Module eigengenes were
calculated and modules were clustered based on their
correlation. Furthermore, as shown in Fig. 2C-E, 14
modules (pink, purple, salmon, magenta, black, tan,
greenyellow, turquoise, yellow, blue, red, brown, green
and grey module) with size ranging from 42 to 585 were
identified based on their co-expression pattern, and no
module needed to be merged as dissimilarity of the
modules was set as 0.2. These modules contained 78
(pink), 70 (purple), 42 (salmon),75 (magenta),97 (black),
46 (tan),61 (greenyellow),585 (turquoise), 142 (yellow),
439 (blue),106 (red),286 (brown),106 (green) and 8 genes
(grey module), respectively. Generally, genes without any
significant co-expression pattern would be designated as
“grey module” according to “WGCNA” algorithm, so the
8 genes in this group was removed.
To identify genes associated with BLCA TME, we ana-

lyzed the association between modules and clinical traits.
The correlations between TME scores and module
eigengenes were shown in Fig. 2F. This result showed
that 8 modules, including red, brown, magenta, green,
purple, salmon, yellow, turquoise were significantly cor-
related with immnue score, stromal score and ESTIMA
TE score. Brown module has the highest correlation
with immune score (r = 0.85, p = 5e-11). In addition,
ESTIMATE score (r = 0.79, p = 5e-88) were most signifi-
cantly associated with magenta module by Module-
feature relationship analysis. Red module was negatively
correlated with all of these score (p < 0.05). In order to
explore the function and biological relevance of genes in
these modules, the lists of all genes in each module were
uploaded and mapped into Gene Ontology (GO) analysis

Table 1 Clinical characteristics of TCGA data and GSE31684

Datasets TCGA GSE31684

Sample number

Total 365 93

Age (years old)

> 70 162 41

≤ 70 203 52

Gender

Male 271 68

Female 94 25

Grade

High Grade 345 88

Low Grade 20 5

Stage

Stage I 2 –

Stage II 101 –

Stage III 137 –

Stage IV 125 –

T stage

Ta 0 8

T1 3 19

T2 116 55

T3 190 10

T4 56 1
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for a functional annotation analysis based on “cluster-
Profiler” and “org. Hs.eg.db” packages. The analysis re-
sult revealed that four out of 8 modules, magenta,
brown, yellow, and purple modules were associated with
TME (Supplementary Fig. S2, Supplementary Table S1).

Identification and visualization of TME-related hub genes
Genes with high connectivity in modules were investi-
gated as hub genes that played a critical role in pathways
coordinated with other genes. We selected 55 genes
from these four key modules as hub genes, through the
criterion: |Module-Membership| > 0.8, |Gene-Signifi-
cance| > 0.2. There were 11, 24, 4 and 16 genes in

magenta, yellow, purple and brown module, respectively.
A protein-protein interaction (PPI) network was con-
structed and visualized using Cytoscape software, which
showed these genes were highly connected in respective
module (Fig. 3A, Supplementary Table S2).
To further explore the potential function of these hub

genes associated with BLCA TME, GO functional and
KEGG pathway enrichment analyses were conducted. In
GO enrichment analysis, 55 hub genes were associated
with extracellular microenvironment. A sum of 68 bio-
logical process (BP) items, 16 molecular function (MF)
items, 3 cellular component items and 3 KEGG pathway
were determined to significantly associated with hub

Fig. 1 Relationship between Immune-related score and clinicopathological variables of BLCA. A-C Immune score, stromal score and ESTIMATE
score in high- and low-grade of BLCA. D-F Immune score, stromal score and ESTIMATE score in different tumor stage. ** p < 0.01, **** p < 0.0001
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genes (adjusted p value < 0.05, Benjamini and Hochberg
method, Supplementary Table S3). BP of genes ontology
analysis showed that hub genes were mainly associated
with extracellular structure organization, extracellular
matrix organization, endothelium development and
regulation of vasculature development (Fig. 3B). MF ana-
lysis revealed that extracellular matrix structural con-
stituent, cytokine binding, structural molecule activity
conferring elasticity were predominantly involved (Fig.
3C). Collagen-containing extracellular matrix, collagen
trimer and external side of plasma membrane were

significantly enriched in CC analysis result (Fig. 3D).
The result of KEGG pathway analysis was shown in Fig.
3E. The significantly enriched pathways were leukocyte
transendothelial migration, cell adhesion molecules
(CAMs) and malaria pathway.

Construction of risk predictive model
To identify the association between hub genes and
BLCA prognosis, univariable Cox proportional hazards
regression analysis was performed. We identified 26 out
of 55 genes that were correlated to OS of BLCA in

Fig. 2 Weighted gene co-expression network of BLCA. A The scale-free fit index and mean connectivity for various soft-thresholding powers. B
Histogram of connectivity distribution and Checking the scale free topology when β = 3. C Clustering dendrogram of consensus module
eigengenes. The red line represents merging threshold is 0.25. D Eigengene adjacency heatmap. E Dendrogram of all DEGs enriched based on
dissimilarity measure (1-TOM) and the corresponding cluster module colors. F Heatmap of the correlation between the clinical traits and
module eigengenes
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TCGA cohort. (p < 0.05, Table 2). In order to screen out
prognostic genes for constructing risk predictive model,
we conducted LASSO regression with 26 survival-related
genes. LASSO regression analysis showed 7 genes were
powerful prognostic factors (Fig. 4A-B). The coefficient
of each factor was listed in Fig. 4C. Based on these risk
predictive factors, a gene signature for risk evaluation
was constructed. The risk score was calculated by the
formula based on factor coefficients: Risk score = (−
0.0589 * expression value of ACAP1) + (0.0515 * expres-
sion value of ADAMTS9) + (− 0.0022 * expression value
of TAP1) + (− 0.001 * expression value of IFIT3) +
(0.0184 * expression value of FBN1) + (0.0029 * expres-
sion value of FSTL1) + (2.4572e-06 * expression value of

COL6A2). Samples were divided into high risk and low
risk group based on the cutoff of risk score median
value. The heatmap showed that these prognostic genes
expression were associated with risk group (Fig. 4D).
The expression level of these genes was significantly dif-
ferent in tumor and normal tissues (p < 0.05, Fig.5).
Considering potential role of prognostic genes in TME

regulation and remodeling, we investigated whether our
prognostic genes expression levels were correlated with
the abundance of TME-related six types of immune cells
in TIMER database. The result demonstrated that all
these seven prognostic genes presented a variety of cor-
relation to immune cell infiltration. As shown in Fig. 6,
ACAP1 was strongly correlated with infiltration level of

Fig. 3 Functional enrichment analysis and PPI network of 55 hub genes. A Visualization of hub genes in magenta, brown, purple and yellow
module, based on weight. B Biological process terms of GO enrichment from 55 hub genes. C Molecular function terms of GO enrichment from
55 hub genes. D Cellular component terms of GO enrichment from 55 hub genes. E KEGG pathway enriched from 55 hub genes
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neutrophil (r = 0.574) and dendritic cell (r = 0.557).
ADAMTS9 showed a weak correlation with infiltration
level of B cell (r = 0.119) and macrophage (r = 0.343).
COLA62 presented a moderate correlation with macro-
phage infiltration level with r value of 0.443, while FBN1
have the highest correlation with macrophage infiltration
level (r = 0.54). FSTL1 was in correlation with five im-
mune cell infiltration (r ranged from 0.255 to 0.51) ex-
cept B cell. IFIT3 and TAP1 were highly correlated with
infiltration level of neutrophil and dendritic cell (r
ranged from 0.506 to 0.68), and relatively low correlated
with other immune cells (r < 0.4).

Prognostic value evaluation of the risk signature
established based on seven TME-related genes
Time-dependent ROC curve analysis was implemented
to evaluate the predictive efficacy of our prognostic
model for predicting survival outcome. In our study, the

Area Under Curve (AUC) of our prognostic model for
1-year, 3-year, and 5-year OS was 0.65, 0.71 and 0.68, re-
spectively. It indicated risk scores calculated by gene sig-
nature model can accurately predict BLCA patients
outcome (Fig. 7A). Patients were distributed significantly
differently after divided into high-risk and low-risk
group based on median value of risk score (Fig. 7B).
Kaplan-Meier curve analysis was employed to assess pre-
dictive capability of risk score for OS. As shown in Fig.
7C, patients in high-risk group presented poor overall
survival than those in low-risk group (p = 2.403e-08).
We also performed stratified survival analysis to evalu-
ated prognostic value of the risk signature in subgroups
of BLCA. When stratified by tumor grade, no survival
difference was observed between high- and low-risk
group in low-grade subgroup, whereas low-risk group
had better survival outcome than high-risk group in
high-grade subgroup (Fig. 7D). When tumor stage and
risk score were enrolled jointly, patients with high risk
had worse prognosis in late stage (stage III and stage IV)
of BLCA than those with low risk, but not in stage I/II
(Fig. 7E). Similarly, poor prognosis was observed in pa-
tients with high risk in T3-T4 subgroup when patients
were stratified by T stage (Fig. 7F).
To identify the association between risk group and

BLCA clinicopathological factors, we calculated the stat-
istical difference of these factors in high-risk and low-
risk groups through chi-square test. The heatmap
showed that significant differences between the high-risk
and low-risk group in N stage, tumor stage and survival
status (Fig. 8A). We then conducted univariate and
multivariate Cox regression analyses to determine
whether the risk signature is an independent prognostic
factor. In univariate analysis result, the risk score, T
stage, N stage and tumor stage were significantly corre-
lated with the OS (p < 0.05). When enrolling these vari-
ables into the multivariate Cox regression analysis, the
risk score remained significantly associated with the OS
(p < 0.05, Fig. 8B-C). Furthermore, this model was vali-
dated in external validation dataset GSE31684. In
GSE31684, the AUC of this model for 1-, 3-, and 5-year
OS was 0.64, 0.63 and 0.62, respectively (Fig. 8D).
Kaplan-Meier also showed significantly different OS in
high- and low-risk group of GSE31684 cohort (Fig. 8E).
These results confirmed that the risk signature derived
from TME-related genes is a risk factor for BLCA and
can predict BLCA prognosis as an independent factor.

Drug sensitivity analysis
In drug sensitivity evaluation, we analyzed the correl-
ation between TME-related genes expression and small
molecular compounds IC50 in Genomics of Drug Sensi-
tivity in Cancer (GDSC) database via GSCALite plat-
form. We found low expression of ACAP1 was sensitive

Table 2 Univariable COX regression analysis for screening
genes with prognostic value for further LASSO analysis

Gene HR HR.95% CI Low HR.95% CI High p-value

ACAP1 0.896998 0.807783 0.996065 0.04198

LRRC32 1.022943 1.007794 1.038319 0.002883

CD93 1.022456 1.005694 1.039496 0.008456

KLF9 1.030471 1.004251 1.057376 0.022457

GNG11 1.027446 1.005875 1.049479 0.012382

VWF 1.014997 1.003073 1.027063 0.013553

LDB2 1.106704 1.012021 1.210246 0.026295

CLDN5 1.024293 1.001453 1.047654 0.036967

ADAMTS9 1.130324 1.05282 1.213533 0.000724

TAP1 0.994936 0.991298 0.998587 0.006602

TAP2 0.975461 0.955545 0.995793 0.01825

IFIT3 0.992828 0.986062 0.99964 0.039095

OLFML1 1.099223 1.009179 1.1973 0.030044

EMILIN1 1.004574 1.000075 1.009094 0.046293

FBN1 1.036808 1.014818 1.059274 0.00095

CYBRD1 1.016109 1.001224 1.031216 0.033802

GLT8D2 1.054755 1.019277 1.091469 0.00226

TGFB3 1.028558 1.004636 1.053049 0.019015

HSPA12B 1.090216 1.01379 1.172403 0.019843

FSTL1 1.008764 1.003476 1.014079 0.001137

CTHRC1 1.003454 1.000365 1.006552 0.028366

TIMP2 1.002793 1.00043 1.005161 0.020493

COL6A3 1.004288 1.001193 1.007393 0.006586

COL6A2 1.000884 1.000268 1.001501 0.004929

ADAM12 1.029261 1.00426 1.054884 0.021516

DCN 1.004866 1.001381 1.008364 0.006177

SSC5D 1.043881 1.00232 1.087165 0.038287
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to over 70 small molecular drugs, including IKK inhibi-
tor TPCA-1, ATM kinase inhibition CP466722 and
Hsp90 inhibitor SNX-2112. High expression of FSTL1
contributed to desirable drug response to histone deace-
tylases (HDAC) inhibitor vorinostat, CDK inhibitor
AT7519 and cytotoxic drug methotrexate (Supplemen-
tary Fig. S3).

TME-related gene validation in vitro
To validate these TME-related genes expression in
BLCA patients, we collected 10 BLCA clinical specimens
and adjacent normal tissue and performed RT-PCR. We
found ACAP1, IFIT3 and TAP1 were upregulated in
tumor samples, while ADAMTS9, COL6A2, FBN1 and
FSTL1 were downregulated in tumor specimens (Fig. 9).
To further validate it in vitro, bladder cancer (T24, EJ-
M3) and bladder uroepithelial cell line (SVHUC1) were
employed in gene expression validation. We found that
these seven TME-related genes were also deregulated in
T24 and EJ-M3 cell line (Fig. 10).

Discussion
In recent years, a growing body of studies have demon-
strated that tumor microenvironment plays a pivotal
roles in tumorigenesis and response to treatments [18,
19]. Moreover, Prognostic gene signature based on
TME-related geneswas been investigated in a wide range
of cancers, including glioblastoma, lung carcinoma and
hepatocellular carcinoma [20–22]. However, the expres-
sion profile-based risk signature in BLCA has not been
established. Previous studies simply focused on expres-
sion value of multiple genes to stratify patients and pre-
dict the outcome [23, 24], which lack of rigorous
accuracy for comprehensive assessment of BLCA prog-
nosis. Therefore, in order to establish a predictive model
with prognostic value, we mined transcriptome data of
365 tumor and 19 adjacent normal samples from TCGA
database and eventually identified seven-gene signature
by analyzing immune features and gene expression pro-
file jointly.
ESTIMATE analysis can infer tumor cellularity and

various TME cell infiltration via evaluating based on

Fig. 4 Identification of independent prognostic TME-related genes by LASSO regression. A LASSO coefficient profiles of 26 genes. B Partial
likelihood deviance for the LASSO coefficient profile. C Seven TME-related prognostic hub genes with corresponding coefficients. D Heatmap of
seven TME-related prognostic hub genes expression in different risk groups
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distinct properties of the gene transcriptional expression
profiles of cancer samples. This bioinformatics algorithm
has been widely used in tumor immune research, includ-
ing in glioblastoma, hepatocellular carcinoma, acute
myeloid leukemia and breast cancer [21, 22, 25, 26]. In
our study, we included 365 tumor samples and 19 adja-
cent normal tissue with completed clinical information
from TCGA database . Through ESTIMATE algorithm,
we observed immune score, stromal score and ESTIMA
TE score were positively correlated with tumor grade.
High grade tumor had higher score than low grade
BLCA. Stromal and ESTIMATE score, two generally ac-
cepted indicator for poor prognosis in recent publica-
tions, increased with tumor stage (Fig. 1). European
Association of Urology Guidelines 2020 gave the

definition of locally advanced bladder cancer: T3-T4,
N0/N1, M0, which were linked to a more aggressive
phenotype with extravesical invasion [27]. Tumor pro-
gression is usually accompanied by specific cellular re-
sponse or molecular alteration in TME. In invasive and
metastatic tumor, intercellular bonds are loosened when
individual cancer cells or a group of cancer cells leave
the carcinoma in situ to disseminate [28]. Mast cells in
tumor microenvironment were reported to strengthen
bladder cancer metastasis by regulating ERβ/CCL2/
CCR2 EMT/MMP9 signals [29]. IL-6 and STAT3 in
TME are linked with angiogenesis that is the step for
tumor migration and metastasis [30]. Taken together,
the advanced tumor is usually featured with more note-
worthy changes in TME structure, regulators or

Fig. 5 Boxplots represents expression differences of seven TME-related prognostic hub genes in tumor and adjacent normal samples. * p < 0.05;
** p < 0.01, *** p < 0.001

Wang et al. BMC Cancer          (2021) 21:692 Page 10 of 18



Fig. 6 Correlation analysis between the expressions of seven TME-related prognostic hub genes and infiltration levels of B cell, CD8+ T cell, CD4+
T cell, macrophage, neutrophil, and dendritic cell
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Fig. 7 Construction of prognostic model in BLCA cohort. A Time-dependent ROC curve shows good performance of our risk predictive model on 1-,
3-, and 5-year OS. B The distribution of risk scores. C Kaplan-Meier curve for OS in BLCA patients stratified by the risk predictive model into high- and
low-risk group. D Kaplan-Meier curve for OS between high- and low-grade patients with high- and low-risk. E Kaplan-Meier curve for OS between
patients in different tumor stage with high- and low-risk. F Kaplan-Meier curve for OS between patients in different T stage with high- and low-risk
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infiltration cells. This observation is consistent with
TME regulation theory implied from previous studies,
suggesting that bladder cancer tumorigenesis and pro-
gression is potentially associated with immune cell infil-
tration. Thus, we hypothesize that non-tumor
constituent TME cell infiltration might participate in
BLCA progression.
Considering similarities of all genes across samples,

WGCNA provides a systematic approach to explore the
correlation and function of the whole transcriptome.
WGCNA algorithm weighs on genes regulatory role in

molecular pathway and biological process rather than
simply gene expression levels [31]. After applying
WGCNA algorithm, 14 co-expression modules were
identified via the dynamic tree cut method (Fig. 2). Then
we screened out eight co-expression modules that were
correlated with immune score, stromal score, and ESTI
MATE score. Furthermore, we obtained four modules
with a sum of 573 genes correlated to innate immune re-
sponse, such as cytokine activity and leukocyte migra-
tion. Of note, extracellular structure organization were
concurrently enriched in multiple modules, indicating

Fig. 8 Relationship between the seven-gene signature performance and clinicopathological variables. A Heatmap of the distribution of
clinicopathological variables between the high- and low-risk groups. B Univariable COX regression analysis of clinicopathological variables and risk
score for OS. C Multivariable COX regression analysis of clinicopathological variables and risk score for OS. D Time-dependent ROC validates
model predictive efficiency in GSE31684. E Kaplan-Meier curve for OS in GSE31684 stratified by the risk predictive model into high- and low-risk
group. Status: Survival status, Time: Survival time * p < 0.05; *** p < 0.001
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that extracellular structure organization is one of the
major target for BLCA microenvironment abnormal
regulation (Supplementary Fig. S2). A cluster of genes
with highest internal connectivity and clinical feature
correlation are defined as hub genes, which are usually
located at central position in network [32]. 55 hub genes
were screened out under a rigid connectivity evaluation

criteria. By function analysis, we found hub genes from
these four modules were significantly enriched in the
immune response and extracullar structure formation.
KEGG pathway analysis revealed hub genes were
enriched in leukocyte transendothelial migration and cell
adhesion (Fig. 3). This finding supports the hypothesis
that hub genes might play key role in BLCA

Fig. 9 Gene validation in clinical specimens by qRT-PCR. * p < 0.05; ** p < 0.01, *** p < 0.001
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tumorigenesis and progression by altering immune re-
sponse pattern and microenvironment structure, which
contributed to the poor prognosis of BLCA.
Considering that previous studies have only focused

on expression value of multiple genes to stratify patients
and predict the outcome [23, 24], we attempted to de-
velop a gene-signature formula model. LASSO is a

widely used approach for establishing prognostic gene
signature models, of which main advantage is the ability
of preventing overfitting [33] .Based on the 55 genes, we
identified seven TME related hub genes that could be
enrolled in construction of predictive model via univari-
ate COX and LASSO regression analysis (Fig. 4). In
addition, we conducted RT-PCR to quantify the

Fig. 10 Gene validation in cell lines by qRT-PCR. * p < 0.05; ** p < 0.01
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expression level of these 7 genes. This in vitro assay
turned out a similar trend in clinical specimens and
well-established cell line, which provided vigorous evi-
dence to support the importance and functional role of
these genes in tumor environment modulation.
Increasing numbers of studies demonstrated infiltra-

tion of immune cells has a prognostic prediction value
for clinical management of BCLA patients [34–36]. In
our study, ADAMTS9, COL6A2, FBN1 and FSTL1
showed significant correlation with infiltration level of
macrophage, while ACAP1, IFIT3 and TAP1 presented a
strong correlation with infiltration level of neutrophil
and dendritic cell. Other immune cells also exhibited
some novel correlations to these hub genes, which had
never been reported before. In some published studies,
ACAP1 was found to be associated with tumor purity
and CD8+ T cell toxicity in BCLA basal squamous sub-
type and luminal infiltrated subtypes [37]. ADAMTS9, a
disintegrin and metalloproteinase with a thrombospon-
din type-1 motif, could be induced in fibroblasts follow-
ing CD4+ T cell co-culture, leading to change of ECM
components [38]. FSTL1 was found to strengthen the
antigen presentation ability of drendritic cell by activat-
ing NF-κb pathway in nasopharyngeal carcinoma [39].
Thus, our finding does not only lay a potential founda-
tion of participation of these gene in BLCA TME, but
also provided new evidences to the interaction between
gene alteration and immune cell infiltration.
Thus, based on the 7 genes, we established a seven-

gene signature model for predicting prognosis of pa-
tients. We firstly classified patients by the risk score of
each patient. Our result demonstrated that the seven-
gene-based classifier had the ability to distinguish the
high-risk group patients from those in the low-risk
group effectively. Correlation analysis showed patients in
these two groups had distinct tumor stage, N stage and
prognostic consequenc. Furthermore, after adjusted for
clinicopathological factors, the risk score was not only
an prognostic factor independent of tumor stage, but
also associated with overall survival. We further vali-
dated this signature by performing survival analysis and
ROC analysis based on another independent datasets
GSE31684. The result was consistent with our findings
in TCGA data, which made our result more convincing.
Taken together, this gene signature model was capable
of distinguish high-risk and low-risk group well and have
great predictive value of prognosis of BLCA patients.
TPCA-1 is a small molecular compound targeting in-

hibitory κB (IκB) kinase complex in NF-κB pathway. It
was reported to block TNFα-induced IL-8 secretion to
inhibit head and neck squamous cell carcinoma progres-
sion and enhance sensitivity to TNFα-induced cell death
[40]. SNX-2112 remarkably enhanced TRAIL-induced
cytotoxicity, promoted the accumulation of reactive

oxygen species (ROS) and disrupted Akt/mTOR signal-
ing pathway in cervical cancer cells [41]. CDK inhibitor
AT7519 could suppress phosphorylation of CDK1,
CDK2 and RNA polymerase II in colon and cervical can-
cer cells as well as overcome chemoresistance [42]. But
few studies focused on usage and assessment of these
compounds in BLCA. Our study found TME-related
genes may be new potential biomarkers for target selec-
tion of these drugs. We found a strong correlation be-
tween TME-related genes and drug sensitivity, which is
very helpful for future research on the individualized
therapy in BLCA.
There are also several limitations in our study. Firstly,

the limited size of samples and the nature of retrospect-
ive cohort study might compromise its validity. Sec-
ondly, our study lacks enough validation experiments
in vitro and vivo to elucidate the molecular mechanism
of these genes regulation.
In summary, using weighted gene co-expression ana-

lysis, our study identified seven key genes associated
with tumor microenvironment. A risk signature with
these seven genes can independently predict the progno-
sis of BLCA patients. These TME-related genes were ab-
errantly expressed and remarkably associated with
immune cell infiltration in BLCA, implying that their
potential role of targets for immunotherapy.
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represents drug response to input genes. The positive correlation means
that the gene high expression is resistant to the drug, vise verse.
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