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Abstract

Background: The aim of this study was to identify sources of variability including patient gender and body surface
area (BSA) in pharmacokinetic (PK) exposure for high-dose methotrexate (MTX) continuous infusion in a large
cohort of patients with hematological and solid malignancies.

Methods: We conducted a retrospective PK analysis of MTX plasma concentration data from hematological/
oncological patients treated at the University Hospital of Cologne between 2005 and 2018. Nonlinear mixed effects
modeling was performed. Covariate data on patient demographics and clinical chemistry parameters was
incorporated to assess relationships with PK parameters. Simulations were conducted to compare exposure and
probability of target attainment (PTA) under BSA adjusted, flat and stratified dosing regimens.

Results: Plasma concentration over time data (2182 measurements) from therapeutic drug monitoring from 229
patients was available. PK of MTX were best described by a three-compartment model. Values for clearance (CL) of
4.33 [2.95–5.92] L h− 1 and central volume of distribution of 4.29 [1.81–7.33] L were estimated. An inter-occasion
variability of 23.1% (coefficient of variation) and an inter-individual variability of 29.7% were associated to CL, which
was 16 [7–25] % lower in women. Serum creatinine, patient age, sex and BSA were significantly related to CL of
MTX. Simulations suggested that differences in PTA between flat and BSA-based dosing were marginal, with
stratified dosing performing best overall.

Conclusion: A dosing scheme with doses stratified across BSA quartiles is suggested to optimize target exposure
attainment. Influence of patient sex on CL of MTX is present but small in magnitude.
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Introduction
Methotrexate (MTX) is considered an efficacious, cost-
effective and acceptably safe drug for the treatment of
many hematological/oncological disorders and auto-
immune diseases [1]. The folate analogue MTX acts as
an antineoplastic agent via competitive inhibition of
dihydrofolate dehydrogenase, resulting in depletion of
purines and thymidylate leading to impairment of DNA
synthesis [2, 3]. The drug can be administered via mul-
tiple routes of administrations and has a wide variation
in dosing regimens including low (< 50 mg/m2), inter-
mediate (50–500 mg/m2) and high (> 500 mg/m2) dose
regimens [1, 4]. The pronounced inter-individual vari-
ability (IIV) of PK and toxicity of MTX [5–7] renders
individualization of dosing regimens difficult.
Hepatic metabolism accounts for a considerably lower

fraction of its clearance (CL) compared to renal elimin-
ation, as the main fraction (80–90%) of the drug is pri-
marily eliminated via glomerular filtration and active
tubular secretion [8, 9]. Nephrotoxicity associated with
MTX impairs its CL, leading to further aggravation of
toxicity such as myelosuppression and mucositis. In
subjects with extracellular fluid accumulations, the drug
has been shown to undergo delayed elimination [10]. A
recent in vitro study by Euteneuer et al. [11] showed a
sex-dependent regulation of renal transport proteins,
which might play a role in the CL of MTX. To handle the
variability associated with MTX exposure, monitoring of
its plasma concentrations (therapeutic drug monitoring,
TDM) and serum creatinine (SCr) is recommended to
safeguard a relatively constant drug exposure with an ac-
ceptable risk/benefit ratio particularly in patients with im-
paired renal function [12]. Furthermore, MTX dosing is
often guided by body surface area (BSA) estimates to ac-
count for body size-related differences in CL and volume
of distribution (V). However, concerns regarding potential
under- and over-exposure in certain patient groups, such
as with obesity, have been expressed [13]. BSA is further-
more a highly variable measure that depends on the arbi-
trary choice of a BSA equation [14]. Thus, further
clarification of the clinical implications of BSA based
dosing for MTX is required.
Modeling of PK data has the potential to optimize

TDM, where tailored dose adjustments can be made ac-
cording to model-predicted concentrations of a drug
[15]. Bayesian population PK analysis has been used to
assist TDM guided dose adjustments for MTX [15]. In
addition, population PK analysis provides the possibility
to identify and quantify covariate effects on drug expos-
ure [16, 17]. This may provide a better understanding of
drug’s pharmacology and assist adjustments in dosage
regimen according to patient’s individual characteristics
e.g., renal/hepatic function, genotype of drug metaboliz-
ing enzymes or transporters, and/or anthropometric

characteristics. Models capturing covariate relationships
have been found useful in oncology for individualized
dose adaptations such as in case of busulfan, topotecan
and docetaxel [16].
The current study was aimed to identify and evaluate

covariates influencing PK of MTX, particularly patient
sex and body surface area (BSA), by developing a popu-
lation PK model using the TDM data collected from pa-
tients with hematological and solid malignancies. The
model was further aimed to be used for the evaluation
of the ongoing clinical practice of administering MTX
based on individual BSA via a simulation study.

Methods
Patients, treatment and sampling
MTX plasma concentration and covariate data was ob-
tained from the Cologne Cohort of Neutropenic Patients
(CoCoNut) [18]. Experimental protocols were approved
by the local ethics committee (name and email address:
Ethics Committee of the Faculty of Medicine, University
of Cologne, Cologne, Germany, ek-med@uni-koeln.de;
date of approval: 14.01.2014, approval file number: 13–
108). All methods were performed in accordance with
the local and international guidelines and regulations.
Data from neutropenic patients (neutrophils < 500
/mm3) with hematological malignancies or solid tumors
and treated with high-dose MTX at the Department I of
Internal Medicine, University Hospital of Cologne, be-
tween January 2005 and February 2018 were considered.
The data from clinical laboratory was imported via
Health Level Seven from the laboratory information sys-
tem. The dosing information was imported from the in-
tegrated software for chemotherapy using a csv export.
Further patient characteristics were documented manu-
ally in the CoCoNut database.
MTX was administered via 4 h or 24 h intravenous in-

fusions depending on underlying malignancy. TDM was
routinely performed at 42 h and 48 h post-dose for both
the 4 h and 24 h protocols, while an additional sample
was scheduled for 4 h MTX infusion at 24 h. If target
plasma concentration exceeded the desired thresholds
(> 1 μmol/L at 42 h and > 0.3 μmol/L at 48 h), TDM was
performed at least every 6 h. These thresholds reflect the
internal guidance document developed to translate the
available heterogenous evidence [10, 19] to an actionable
recommendation also appropriate for the organisational
conditions in our hospital. On the same basis, for the 24
h MTX infusion, leucovorin rescue was routinely per-
formed with 30mg/m2 (after 42 h and 48 h) and 15mg/
m2 (after 54 h and 60 h). If the desired plasma concen-
tration of MTX was not reached, leucovorin was admin-
istered every 6 h at a dose (mg) equivalent to the
product of MTX plasma concentration (μmol/L) and
body patient weight (kg).
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MTX plasma concentrations were quantified using
competitive immunoassays with 0.009 μmol/L as the
lower limit of quantification (LLOQ). Demographic co-
variates included patient’s age, sex, weight and height.
Covariate data from clinical chemistry analysis included
SCr, plasma total bilirubin (BT), γ-glutamyltransferase
(GGT), uric acid concentrations, absolute leukocyte
counts (WBC), and BSA.
Dosing, concentration and covariate data was sub-

jected to screening prior to PK analysis. R (version 3.5.1)
was used to prepare the dataset for model development.
Dataset preparation was assisted by visual inspection of
individual concentration time profiles. Patients with
missing dosing information at treatment initiation were
identified for exclusion from subsequent analysis. Sub-
jects with missing dosing information during the treat-
ment were flagged and concentration measurements at
time points subsequent to the missing dosing informa-
tion were excluded. Due to the significant amount of
missing covariate data throughout the treatment course,
the covariate evaluation was based on baseline covariate
data for the start of treatment.

PK model development
Data were analyzed by the nonlinear mixed effects mod-
eling approach using NONMEM 7.4.3 (ICON, Develop-
ment Solutions, Elliot City, MD, USA). Perl speaks
NONMEM (PsN), Pirana and Xpose4 were used to assist
model development, evaluation and post processing
[20–22]. Structural model development. A combination
of iterative two-stage (ITS) and first order conditional
estimation with interaction (FOCE-I) methods was ap-
plied for parameter estimation. Likelihood ratio tests
(LRT) or the Akaike information criterion (AIC) were
used for the evaluation of nested and non-nested
models, respectively. A nested model with fewer parame-
ters or a decrease in objective function value (OFV) by
3.84 (i.e., p < 0.05, one degree of freedom) was given
preference. The model with a lower AIC value in case of
non-nested models was preferred.
Model evaluation criteria comprised of plausibility of

parameter estimates, reduction in unexplained and re-
sidual variability, shrinkage and precision in parameter
estimates. Visual inspection through goodness of fit
(GOF) plots included observed versus individual/popula-
tion predicted concentrations (IPRED/PRED) over time.
Residual error models were evaluated with the help of
conditional weighted residuals (CWRES) versus observed
concentrations and versus time after first dose (TAFD).
Numerical predictive checks (NPCs) were used for fur-
ther assessment by comparing the empirical cumulative
distribution function of the observed concentrations
with the theoretical cumulative distribution, computed
from simulated data.

Compartmental analysis was performed in a stepwise
manner. IIV was incorporated using exponential terms
(ηiiv) which describes the deviation of PK parameter
values of an individual from the population estimate
[17]. Interoccasion variability (IOV), defined as the vari-
ability between individual cycles of MTX therapy, was
incorporated in the model via random effects (ηiov) [23].
The PK parameter P in a specific subject was parame-
trized as shown in Eq. 1.

P ¼ θ� eηiivþηiov ð1Þ

Where θ is a fixed effect, representing the median PK
parameter in the population. Additive, proportional and
combined error models were tested to estimate the re-
sidual unexplained variability (RUV).

Covariate model development
Covariate data was analyzed to identify covariate-
parameter relationships. Covariate preselection was per-
formed considering scientific plausibility as an essential
criterion. Graphical evaluation of covariates was per-
formed including CWRES vs covariate, empirical Bayes
estimates (EBEs) versus covariate, and covariate versus
covariate plots. Significance of covariate relationship was
principally guided by decrement in OFV and/or unex-
plained variability. A stepwise covariate evaluation was
carried out as follows. At each step, the covariate provid-
ing the largest reduction in OFV was included (forward
inclusion) or the covariate providing the lowest increase
in OFV was eliminated (backward elimination). Selection
criteria were a ΔOFV of 3.84 (p < 0.05) for forward in-
clusion and a ΔOFV of 6.63 (p < 0.01) for backward
elimination.
Continuous covariates were included as linear relation-

ships (Eq. 2) or power relationships (Eq. 3) centered
around their median values. BSA effect was centered
around the typical value of 1.73 m2.

Covariateeffect ¼ 1þ Covariatei−Covariatemedianð Þ � θCovariate

ð2Þ

Covariateeffect ¼ Covariatei
.
Covariatemedian

� �θCovariate

ð3Þ

Categorical relationships were given as Covariateeffect =
1 + Covariatei × θCovariate, where Covariatei is the individ-
ual covariate value in the ith subject and θCovariate repre-
sents the effect size of the covariate relationship to a PK
parameter. Covariate inclusion and evaluation criteria
are presented in the supplementary material.
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Evaluation of BSA-based, flat and stratified dosing
regimens
Stochastic simulations were designed using the final
model, including covariates, for the comparative evalu-
ation of drug exposure under BSA-based (linear scaling
using BSA), flat and stratified dosing 24 h infusion regi-
mens. Stratified dosing regimens comprised of 3 BSA-
based stratifications i.e., subjects at lower and upper
BSA extremes (< 25th and > 75th BSA percentiles) as
well as the middle (25th–75th percentile) proportion of
population. No further differences in virtual patient
characteristics were part of the simulated populations.
The three sets of simulated populations differed only in
the administered dosing regimens. Target for an ad-
equate dosing regimen included two criteria. First,
plasma concentrations should not exceed 1.0 and
0.3 μmol/L at 42 h and 48 h after the start of infusion, re-
spectively, based on the current TDM protocol at the
University Hospital, Cologne. Second, the achieved AUC
should be in the range of ±30% of the AUC of a subject
with a typical BSA of 1.73m2.

Results
Patient and treatment characteristics
In total, 229 cancer patients (83 females) with 2182
plasma concentration measurements were included in
the PK analysis. The majority of patients received 4 h
and 24 h infusions, while 18 patients occasionally re-
ceived 12 h and 48 h infusions. Only a single patient re-
ceived a 72 h infusion. A median of 3 dosing cycles
(range, 1–9) per patient were part of the available data.
The number of plasma concentration measurements per
patient ranged from 1 to 65 with a median of 7 measure-
ments. Patient and clinical laboratory parameters are
summarized in Tables 1 and 2.

PK model
A three-compartment model with linear elimination ad-
equately described MTX plasma concentrations (Supple-
mentary Figure 1 & 2). We decided to use a linear CL
model instead of a model with an additive nonlinear CL
component (combined model) for the subsequent evalu-
ations, although the latter provided a better fit with
(ΔOFV of − 70 points). The fraction of CL contributed
by the linear component in the combined model was
4.77 L/h, whereas nonlinear CL solely contributed 0.42
L/h at median MTX concentrations (2.20 μmol/L). Fur-
thermore, run times were distinctly longer (~ 60 h com-
pared to ~ 1 h), preventing from a proper covariate

Table 1 Population characteristics. Median and range for measured values are shown

Characteristics Total
n = 229

Females
n = 83

Males
n = 146

Age (years) 58 [19, 82] 66 [19, 77] 51 [19, 82]

Weight (kg) 78.4 [41.5, 227 70.2 [41.5, 96.5] 84.3 [50.0, 227]

Height (cm) 176 [154, 203] 167 [154, 180] 180 [162, 103]

Body surface area (m2) 1.96 [1.34, 3.42] 1.80 [1.34, 2.11] 2.06 [1.54, 3.42]

Body mass index (kg/m2) 25.4 [15.7, 66.3] 25.3 [15.7, 38.7] 26.0 [17.3, 66.3]

Serum creatinine (mg/dL) 0.74 [0.36, 1.66] 0.67 [0.38, 1.34] 0.84 [0.36, 1.66]

Total plasma bilirubin (mg/dL) 0.48 [0.09, 2.90] 0.45 [0.09, 1.60] 0.50 [0.09, 2.90]

Plasma γ-glutamyltransferase (mg/dL) 69.8 [14.0, 442] 67.2 [16.0, 442] 72.1 [14, 441]

Plasma urea (mg/dL) 32.0 [2.90, 949] 29.1 [2.90, 58.0] 47.0 [12.0, 949]

Absolute leucocyte count (×109/L) 6.28 [0.05, 61.1] 5.77 [0.29, 33.29] 6.63 [0.05, 61.1]

Body surface area was computed using Du Bois Formula [46]
Normal levels Serum creatinine: females 0.5–0.9 mg/dL; males 0.5–1.1 mg/dL; total plasma bilirubin: 0–1.2 mg/dL; plasma γ-glutamyltransferase: females 0–40 mg/
dL; males 0–60mg/dL; plasma urea: 0–50 mg/dL; absolute leucocyte count: 4.4–11.3 × 109/L; Missing data was interpolated (last observation
carried forward/backward)

Table 2 Population disease characteristics

Tumor type n

Solid tumors

Sarcoma 4

Carcinoma 2

Hodgkin lymphoma 5

Non-Hodgkin lymphoma 9

Leukemia / very aggressive Non-Hodgkin lymphoma

Acute lymphoblastic leukemia 64

Acute myeloid leukemia 1

Others 43

Low aggressive Non-Hodgkin lymphoma 101

Diagnoses were defined as following ICD-10 codes
Sarcoma: C30.1, C34.1, C34.3, C34.8, C40.0, C40.2, C41.2, C41.3, C41.9
Carcinoma: C49.9, C58
Hodgkin lymphoma: C81.1, C81.2, C81.7, C81.9
Non-Hodgkin lymphoma: C71.0, C71.1, C71.2, C71.8, C78.2, C79.3, C79.5
Acute lymphoblastic leukemia: C91.00, C91.01, C91.50, C91.51, C91.80, C91.81
Acute myeloid leukemia: C92.00, C92.01, C94.70, C95.00
Others: C83.1, C83.7, C83.8, C84.4, C84.5, C86.2, C91.40, C91.60, C91.61
Low aggressive Non-Hodgkin lymphoma: C82.2, C82.4, C82.7, C82.9, C83.0,
C83.3, C83.5, C85.1, C85.2, C85.7, C85.9, C91.10
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analysis, and parameter estimation was unstable. Estimates
from the combined model with linear and nonlinear CL
components are presented in the Supplementary Table.
RUV was appropriately described by a combined

(additive and exponential) error model. Mean PK param-
eters with 95% CI and RSE obtained from the bootstrap
analysis (1000 samples) are presented in Table 3.

Covariate analysis
SCr was found to be a significant covariate on CL
with an OFV reduction by 191. Inclusion of patient’s
sex and age on CL further improved the model fit
(ΔOFVs of 32.0 and 13.0, respectively). Inclusion of
BSA provided a significant reduction in OFV by 4.40
on CL. A 16% [7–25%] lower CL was estimated in fe-
males. Reduction in IIV of individual parameters was
limited, with a decrease in 2.40, 0.56 and 1.44 (%)
after inclusion of SCr, age and sex, respectively. IIV
and IOV on CL in the covariate model were 29.7 and

23.1%, respectively. The resulting equation for the in-
dividual CL (CLi) is shown in Eq. 4.

CLi ¼ 4:52 SCri
.
0:74

� �−0:49 Agei
.
58

� �−0:18 BSAi
.
1:73

� �−0:23
1þ Sexi � −0:16ð Þ

ð4Þ

Where, sex was coded as 0 for males and 1 for fe-
males. Estimates for covariate relationships are summa-
rized in Table 3.

BSA-based versus flat and stratified dosing regimens
Figures 1 and 2 presents the distribution of AUC and
plasma concentrations respectively, in the virtual popu-
lation stratified by BSA quartiles for BSA-based, flat and
stratified dosing regimens. A gradual increase in MTX
AUC with increase in BSA was associated with BSA-
based regimen, while the contrary was observed with flat
dosing regimen. Stratified dosing displayed a consistent
AUC across all the BSA quartiles. Concerning the de-
cline of MTX concentrations until 42 and 48 h postdose,
the higher clearance for higher BSA values more than
compensated for the concentration differences between
BSA-based and stratified dosing just at the end of the
infusions.
The percentage of subjects attaining both the target

criteria (probability of target attainment; PTA) was cal-
culated for dose levels of 500, 1000 and 2000mg/m2

(reference dose). An optimized flat dosing regimen, i.e. a
regimen in which each subject received the same dose,
was identified by simulating a range of doses and choos-
ing the dose that provided the highest PTA. Subse-
quently, the procedure was repeated with doses stratified
according to the BSA groups (lower extreme: < 25%,
middle proportion: 25–75% and upper extreme > 75%)
and the above-mentioned dose optimization was re-
peated for each of the three BSA regions separately.
Thus, the stratified dosing approach resulted in three
separate doses, corresponding to the three defined BSA
groups. Figure 3 presents the PTA across the BSA
groups for respective dose levels under BSA-based, flat
and stratified dosing regimens. Stratified dosing provided
marginally higher PTA for both the upper and lower
BSA extremes compared to BSA-based and flat dosing,
respectively. Based on simulation results, selection of
doses with the highest PTA (comparable to BSA-based
doing regimen) identified under flat and stratified dosing
regimens are presented in Table 4.

Discussion
High-dose MTX is essential in cancer therapies despite
its high toxicity. However, the management of delayed
MTX elimination challenges clinicians to prevent poten-
tially life-threatening MTX-associated toxicities. Further,

Table 3 Population PK parameter estimates from bootstrap
analysis

Median % RSE 95% CI

PK parameters

CL (L h− 1) 4.33 21.4 2.95–5.92

V1 (L) 4.29 52.5 1.81–7.33

V2 (L) 2.51 61.1 0.82–5.37

V3 (L) 2.36 35.5 0.65–7.25

Q1 (L h
− 1) 0.37 38.2 0.16–0.62

Q2 (L/h) 0.02 51.38 0.01–0.06

Covariate effects on CL

SCr (mg− 1 dL) − 0.49 −21.1 − 0.31 - -0.08

Age (year−1) − 0.18 − 37.7 − 0.30 - 0.05

Sex (fractional decrease in females) −0.16 −35.4 − 0.25 - -0.07

BSA (m− 2) 0.23 151 −0.33 - 0.67

IIV (ω2)

CL 0.11 17.1 0.08–0.14

V1 1.34 144 0.83–2.27

COV (CL, V1) 0.29 77.6 0.18–0.39

IOV (ω2)

CL 0.09 15.7 0.07–0.11

V1 – – –

RUV (σ2)

Additive error 0.02 17.3 0.02–0.03

Exponential error 0.26 6.93 0.24–0.29

PK pharmacokinetic, RSE relative standard error, CI confidence interval, CL
clearance, V1 central volume of distribution, V2 and V3 peripheral volumes of
distribution, Q1 and Q2 inter-compartmental clearances, AUC Area under the
curve, SCr Serum, Creatinine, IIV inter-individual variability, COV covariance, IOV
inter-occasion variability, RUV residual unexplained variability
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the high toxicity can cause a premature termination of
the MTX administration, which decreases its potential
efficiency [10]. In this study, we investigated the
optimization of MTX dose adjustment as a potential fac-
tor to reduce MTX toxicity.
A three-compartment PK model of MTX is presented.

Patient sex, age, BSA and SCr were related to CL. A 16%
lower CL was estimated for females compared to males.

Simulations using the final covariate model support dos-
ing stratified for BSA quartiles.
The identification of clinically relevant covariates has

been the main objective of numerous population PK
evaluations of MTX, providing inconsistent findings on
covariate relationships [24–34] . In contrast to our study,
several previously published studies did not support a
sex effect [24, 30–34]. Apart from differences in sample

Fig. 1 Distribution of simulated area under the curve (AUC; median with 95% CI) across body surface area (BSA) quartiles for BSA-based, flat and
stratified dosing. Description of doses under each regimen is presented in Table 4

Fig. 2 Distribution of simulated plasma concentrations (median with 95% CI) across body surface area (BSA) quartiles for BSA-based, flat and
stratified dosing. Dashed horizontal lines represent the desired threshold plasma concentrations (< 1 μmol/L at 42 h post-dose and < 0.3 μmol/L at
48 h post-dose). Description of doses under each regimen is presented in Table 4
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sizes, the particular combination of covariates in the
model might have contributed to this inconsistency. For
example, the inclusion of sex in a model containing SCr
effect provided a distinct model improvement (OFV re-
duced by 32.0 points). In comparison, only a marginal im-
provement (OFV reduced by 4.40 points) resulted in the
univariate evaluation (i.e., without considering any other
covariates). This finding supports that a sex effect should
be considered to account for differences in creatinine gen-
eration rates in male and female subjects. To quantify the
contribution of sex effects beyond renal function, data on
urinary excretion might be useful. However, such data was
not available for patients in our database. The effect of sex
on CL needs further investigation.

Age was related to MTX CL in a few studies [30, 32]
while inconsistencies exist in the majority of studies [25,
34–38]. Some studies presented the influence of body
weight and patient’s age on both the CL and V of MTX
[31, 33]. Mei et al. showed that V of MTX increased with
increasing age and supported the preference of age over
body weight as a covariate influencing V. A relationship
between weight and V was reported by some other studies
as well [30, 31, 34, 39, 40]. Age was found to be significant
on CL in our study with a ΔOFV of 13.0.
SCr was the most significant covariate with a ΔOFV of

191. This is in line with other studies, where MTX elimin-
ation was significantly correlated with SCr [34, 41, 42]. The
observed effect is physiologically plausible as MTX is pri-
marily eliminated by the kidney [24]. Nevertheless, the co-
variate relationship between SCr concentrations and MTX
CL faces disagreements in other studies [30, 31, 33, 37].
The covariate analysis in the present evaluation was

based on baseline covariate information due to missing
covariate data during the treatment time course for a
significant number of patients. The development of co-
variate models incorporating time-varying covariate data
is a useful approach in general, as it may provide a better
explanation of IIV and IOV of PK parameters and
thereby improve the predictive ability of the model. This

Fig. 3 Probability of target attainment (PTA) across body surface area (BSA) groups under BSA-based, flat and stratified dosing regimens.
Reference BSA-based dose levels range from 500 to 2000 mg/m2. Numbers in the bars represent respective PTA values. (0 = < 25%, 1 = 25–50%,
2 = 50–75%, 3 = > 75%). Description of doses under each regimen is presented in Table 4

Table 4 Selection of stratified doses with highest probability of
target attainment (PTA) compared to that of the body surface
area (BSA)-based and flat doses of MTX administered as 24 h
continuous infusion

BSA-based Flat Stratified

< 25%
(< 1.7m2)

25–75%
(1.7–2.12m2)

> 75%
(> 2.12m2)

500mg/m2 850mg 775mg 850mg 975mg

1000mg/m2 1700 mg 1550 mg 1700 mg 1900 mg

2000mg/m2 3400 mg 3000 mg 3400 mg 3800 mg
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might be of particular interest if a population PK model
is used for Bayesian TDM over a prolonged treatment
course. However, we intended to use covariate data
mainly to generate an initial idea on expected concentra-
tions before administering the first dose. During the
treatment course, concentration data becomes available,
and covariate data is of less clinical relevance. If im-
proper imputation methods are applied, a misspecified
model and distorted predictions might result. Thus, we
believe that a model comprising solely baseline covariate
data provides advantages and might therefore be prefera-
ble over a model with time-varying covariate data.
Preference of BSA-based dosing over flat dosing or

based on other measures, such as patient genotype /
phenotype, is an ongoing debate. In contrast to the
BSA-based dosing, flat dosing is proposed for several
anticancer drugs where BSA has been shown not to
reduce the random PK variability to a clinically rele-
vant degree [43–45]. Apart from the simplified clin-
ical handling of flat dosing, BSA-based dosing
introduces additional uncertainties which are difficult
to assess due to the arbitrary choice of BSA equation
[46]. Therefore, BSA as a body size measure should
ideally be avoided if precise dose calculations are
intended. Furthermore, scaling doses with BSA is
likely to provide implausibly low or high doses in
subjects with exceptionally low or high BSA. Owing
to the simplicity needed to implement body size-
based dosing regimens in clinical practice, a direct,
proportional relationship between BSA and dose is
often assumed. This is contradictory to our current
knowledge on physiology and PK and further adds to
the uncertainties. Although MTX PK is linear, i.e. ex-
hibits a proportional increase in exposure (in terms of
AUC) with the increase in dose, it does not imply
that MTX exposure is reciprocally proportional to
BSA. In our study, the change of exposure attribut-
able to BSA was smaller and we only observed rele-
vant differences between BSA and flat dosing for
patients with either very low or very high BSA. A
stratified approach is a reasonable alternative to BSA-
based dosing with individuals in the upper and lower
BSA quartiles. A stratified approach is a reasonable
alternative to BSA-based dosing with individuals in
the upper and lower BSA quartiles. It is important to
mention that the current findings are based on retro-
spective data and need to be further validated in a
prospective study. It should be noted that these find-
ings are conditional on the defined TDM target. The
TDM target is a concentration threshold associated
with overexposure, while no threshold for under-
exposure is currently available. To avoid possible
underexposure, achieving 70–130% of the AUC for a
subject with a typical BSA of 1.73m2 was used as an

additional criterion in the simulation analysis. No
pharmacokinetic/pharmacodynamic (PK/PD) target re-
lated to efficacy is part of the TDM at the University
Hospital Cologne, and, to the best of our knowledge,
no validated PK/PD target related to efficacy is cur-
rently available.
Apart from the covariate and BSA evaluation, a non-

linear CL component was identified in this study. Non-
linear elimination has been reported before and might
be attributable to the transporter-mediated tubular se-
cretion of MTX [47–49]. Despite the significant im-
provement of the model after inclusion of non-linear
CL, the impact of the non-linear component on esti-
mated exposure and the excess of TDM thresholds was
negligible. Thus, non-linearity seems to be of minor clin-
ical relevance in the current cohort of patients. This
might change if additional targets, such as PK/PD targets
related to efficacy, become available. In this case, the
model with the non-linear component as presented in
the Supplement might be re-evaluated. Furthermore, the
non-linear CL component might have a more pro-
nounced impact on PK in presence of genetic polymor-
phisms and when MTX is co-administered with
substrates, inducers, or inhibitors of the relevant mem-
brane transporters.
A major limitation of the current investigation is

that the optimal target exposure regarding the efficacy
of MTX in various malignancies is unknown. Data on
minimum drug exposure needed to achieve a positive
therapeutic outcome with minimal toxicity is cur-
rently scarce. Dedicated efforts are needed to draw
conclusions based on the efficacy profile of the drug
with respect to the underlying disease. Furthermore,
TDM data is generally obtained from clinical practice
and therefore provides a reduced data quality com-
pared to clinical trial data. Although the data was
checked carefully for inconsistencies, it cannot be pre-
cluded that errors in TDM procedures translate into
model misspecifications.

Conclusions
A three-compartment model described PK of MTX. A
lower CL estimated for the female patients needs to be
investigated in future studies. Plasma SCr, patient age,
sex and BSA were found additionally as statistically sig-
nificant covariates on CL. Stratified MTX dosing can be
a reasonable alternative to BSA guided dosing.
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Additional file 1: Supplementary Table. Bootstrap population PK
parameter estimates of the combined linear and nonlinear model
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obtained from bootstrap analysis. Supplementary Figure 1. Goodness
of fit plots; A: observed vs individual predicted (IPRED) concentration
(mg/L); B: observed vs population predicted (PRED) concentrations; C:
conditional weighted residuals (CWRES) vs population predicted
concentrations; D: conditional weighted residuals vs time after first dose
(TAFD). Concentrations are presented on log scale in the upper panel.
Supplementary Figure 2. Numerical predictive check comparing each
observation with its own simulated distribution: Continuous line is the
empirical cumulative distribution function of the observed
concentrations. Dashed line with shaded area is the predicted cumulative
distribution with 95% prediction interval computed from simulated data.
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