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Abstract

Background: The clinical pathologic stages (stage |, Il, lll-IV) of hepatocellular carcinoma (HCC) are closely linked to
the clinical prognosis of patients. This study aims at investigating the gene expression and mutational profile in
different clinical pathologic stages of HCC.

Methods: Based on the TCGA-LIHC cohort, we utilized a series of analytical approaches, such as statistical analysis,
random forest, decision tree, principal component analysis (PCA), to identify the differential gene expression and
mutational profiles. The expression patterns of several targeting genes were also verified by analyzing the Chinese
HLivHO60PG02 HCC cohort, several GEO datasets, HPA database, and diethylnitrosamine-induced HCC mouse
model.

Results: We identified a series of targeting genes with copy number variation, which is statistically associated with
gene expression. Non-synonymous mutations mainly existed in some genes (e.g.,TTN, TP53, CTNNBT). Nevertheless,
no association between gene mutation frequency and pathologic stage distribution was detected. The random
forest and decision tree modeling analysis data showed a group of genes related to different HCC pathologic
stages, including GAS2L3 and SEMA3F. Additionally, our PCA data indicated several genes associated with different
pathologic stages, including SNRPA and SNRPD?2. Compared with adjacent normal tissues, we observed a highly
expressed level of GAS2L3, SNRPA, and SNRPD2 (P =0.002) genes in HCC tissues of our HLivHO60PGO2 cohort. We
also detected the high expression pattern of GAS2L3, SEMA3F, SNRPA, and SNRPD? in the datasets of GSE102079,
GSE76427, GSE64041, GSE121248, GSE84005, and the gPCR assay using diethylnitrosamine-induced HCC mouse
model. Moreover, SEMA3F and SNRPD2 protein were highly stained in the HCC tissues of the HPA database. The
high expression level of these four genes was associated with the poor survival prognosis of HCC cases.

Conclusions: Our study provides evidence regarding the gene expression and mutational profile in different clinical
pathologic stages of TCGA HCC cases. Identifying four targeting genes, including GAS2L3, SNRPA, SNRPD2, and
SEMA3F, offers insight into the molecular mechanisms associated with different prognoses of HCC.
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Background

Several factors (e.g., genetic, epigenetic alteration, immune
microenvironment, hepatitis B/C virus infection) contrib-
ute to the progression, diagnosis, and prognosis of hepato-
cellular carcinoma, the primary histological subtype of
liver cancer [1-4]. The pathologic stages (I, II, III, IV) of
HCC are closely related to the clinical prognosis of liver
cancer [5, 6]. The radical therapies, such as resection, ra-
diofrequency ablation, or transplantation, are often valid
and feasible for the HCC patients with early pathologic
stage [7, 8]. It is therefore meaningful to identify the po-
tential pathologic stage-related genes of HCC.

The TCGA (The Cancer Genome Atlas) data-
base stores the multiple-genomics data from more than
13 types of cancer, such as gene expression, CNV (copy
number variation), SNV (simple nucleotide variation),
SNP (single nucleotide polymorphism), and clinical in-
formation (http://tcga-data.nci.nih.gov/tcga/) [9, 10].
There are more than 360 HCC cases within the TCGA-
LIHC (liver hepatocellular carcinoma) cohort, and
the corresponding expression/mutation matrix and clin-
ical features are available. As another public data reposi-
tory, the GEO (Gene Expression Omnibus) database of
NCBI (National Center for Biotechnology Information)
also contains a series of available functional genomics
datasets for different types of clinical diseases (https://
www.ncbi.nlm.nih.gov/geo/) [11]. The HPA (Human
Protein Atlas) database contains various types of human
proteomic datasets, such as mass spectrometry-based
proteomics or immunohistochemistry images (https://
www.proteinatlas.org/about) [12].

In the present study, we first conducted the statistical
analysis, random forest, decision tree, and principal com-
ponent analysis to identify the differential gene expression,
CNV, SNV, and SNP profiles linked to the HCC patho-
logic stages within the TCGA-LIHC cohort. Furthermore,
we confirmed the expression feature and prognostic value
of several novel targeting genes, using our Chinese
HLivHO60PG02 HCC cohort, the Diethylnitrosamine-
induced HCC mouse model, the available datasets of
TCGA, GEO, and HPA database, respectively.

Methods

HCC pathologic stage-associated gene analysis

We first downloaded the liver cancer-associated mRNA,
IncRNA expression matrix with the workflow type of
“HTSeq-Counts” and clinical data from the TCGA-
LIHC cohort, using a “TCGAbiolinks” R package. Then,
the clinical information (e.g., gender, age, race, ethnicity,
height, weight, clinical pathologic T/N/M stage, neo-
plasm histologic grade, survival status, follow-up time,
and various clinical, biochemical indicators) was ex-
tracted. Three groups of clinical pathologic stages (I, II,
and III-IV) were investigated. We performed the
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Kruskal-Wallis test or chi-square test to analyze the cor-
relation between the pathologic stages and the clinical
indicators of HCC cases through GraphPad Prism soft-
ware (San Diego, California, USA). Also, we performed a
series of logrank test and KM (Kaplan-Meier) survival
curve analyses using SPSS 20.0 statistical analysis
software.

The expression matrix and clinical feature information
were merged, and the non-HCC case data were ex-
cluded, using R language software (https://www.r-
project.org/). We then used an “EdgeR” package for the
followed TMM data standardization and differential
gene screening work. Logarithm base 2 (log 2)-treated
gene expression matrix was applied. The volcano maps
were generated by a “ggplot” R package. Based on an on-
line venn tool (http://bioinformatics.psb. ugent.be/webt-
ools/Venn/), an intersection analysis was performed to
obtain the common genes of different groups. Then,
Morpheus online software (https://software.
broadinstitute.org/Morpheus/) was applied to obtain a
heat map of cluster analysis. Gene ID conversion was
implemented by a conversion tool of DAVID (database
for annotation, visualization and integrated discovery;
https://david.ncifcrf.gov/conversion.jsp). We performed a
protein-protein interaction network analysis of common
genes through a STRING online analysis tool (https://
string-db.org/). The expression pattern among the
groups of total HCC, negative control, stage I, stage II
and stage III-1V, and the prognostic survival value of tar-
get genes were analyzed by a web server GEPIA2 (gene
expression profiling and interactive analyses, version
two; http://gepia2.cancer-pku.cn/#index) [13, 14].

Copy number variation analysis

The CNV datasets with the type of masked copy number
segment within the TCGA-LIHC cohort were down-
loaded from the TCGA database. Based on the CNV
chromosome location information, the corresponding
gene annotations were added by the Perl script. Seg-
ment_mean value between —0.2 and + 0.2 was consid-
ered as no variation and marked as “0”. There were the
CNV types of the double deletion (dd, “-2”), single dele-
tion (sd, “-1”), single gain (sg, “+ 1”), and amplication (A,
“+2 or +>2”). We obtained the CNV differential target-
ing genes between HCC and the normal control group
by a chi-square test and the Bonferroni-adjusted P value
correction method. Circos 2D track plot was generated
by a “RCircos” R package.

After combining gene expression matrix and CNV dif-
ferential targeting gene data, a Kolmogorov-Smirnov test
for correlation analysis was performed to identify the
expression-correlated targeting genes with CNV. Then,
the “enrichGO” function was applied for a GO (Gene
Ontology) analysis, while “enrichKEGG” function was
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for a KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) analysis. Finally, we constructed a PPI (protein-
protein interaction) network using a “STRINGdb” R
package and identified key hub genes within the PPI net-
work using a “Molecular Complex Detection” (MCODE)
modular analysis of cytoscape software.

Random forest and decision tree analysis

After merging the above clinical information, mutation,
and expression matrix, we performed a random forest
modeling analysis using a “randomForest” R package.
The specific gene profiles of normal controls, overall
HCC cases, and HCC cases with different patho-
logic stages were effectively classified by the principles of
“mean decrease accuracy” and “mean decrease Gini”.
The result was visualized by a “ggpubr” R package. Multi
dimension scale plot was obtained by a “MDSplot” func-
tion. Using the “pROC” R package, ROC (receiver oper-
ating characteristic) curves were plotted, and the AUC
(area under the ROC curve) value was calculated. More-
over, we performed a decision tree modeling analysis
using “rpart” and “rpart.plot” R packages.

Genetic mutational analysis

From the TCGA-LIHC cohort, we directly downloaded
the SNV data with the type of masked somatic mutation
and extracted the mutation matrix using the Perl script.
Based on the mutation rate, the top 15 genes were se-
lected, and the “GenvisR” R package was utilized to draw
a waterfall map containing the clinical stage information.
Also, we extracted the SNP data, and performed a wilcox
test to analyze the correlation between gene mutation
and expression in overall HCC and different pathologic
stages. The data was visualized by a “boxplot” function.
We further used a “survminer” R package to correlate
the specific gene mutations and the clinical prognosis
and performed logrank test and KM survival curve ana-
lyses to drew the corresponding survival curves.

Principal component analysis

To identify the HCC pathologic stage-associated genes
of TCGA-LIHC, we performed a principal component
analysis (PCA) using the “prcomp” function. The princi-
pal component (PC) gravity and gene contribution maps
were obtained by two R packages of “factoextra” and
“ggplot2”. A three-dimensional map (PC1l, PC2, and
PC3) was drawn using a “scatterplot3d” R package; while
a two-dimensional map (PCl, PC2) was gener-
ated through a “ggord” R package. Additionally, for spe-
cific genes selected by a decision tree, random forest,
and principal component analysis, we applied the R lan-
guage to obtain the expression matrix of overall HCC
tissue and adjacent normal tissue and performed a wil-
cox.test using GraphPad Prism software. Also, we
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analyzed the expression pattern of these genes among
stage I, II, III and IV using the “Stage Plot” modules of
GEPIA2 (http://gepia2.cancer-pku.cn/#analysis) [13, 14].

Chinese HLivH060PG02 HCC cohort analysis

Besides the above TCGA-LIHC cohort, we also utilized
the datasets of a Chinese HLivH060PG02 HCC cohort
(Shanghai Outdo Biotech Co., Ltd., Shanghai, China). The
main clinical characteristics of HCC cases were shown in
Additional file 1: Table S1, and the use of human bio-
logical materials (Number: YB M-05-02) was approved by
the Use Ethics Committee of Shanghai Outdo Biotech
Company. We detected the expression difference of five
targeting genes (GAS2L3, CUZDI, SNRPA, SNRPD2,
SEMAS3F) between 30 HCC tissues and corresponding ad-
jacent normal tissues. The correlation of gene expression
with pathologic stages was also analyzed. Based on an ABI
7500 Real-Time PCR System (Thermo Fisher Scientific), a
quantitative real-time PCR (qPCR) assay was performed
with a TB Green™ Premix Ex Taq™ II (Takara, RR820A).
Primer sequences: GAS2L3 [5'-CTGAGGACCCTCCTTG
TAGTTG-3" (Forward, F), 5-CCTTGAAGAGTATC
CCAGCCTC-3" (Reverse, R)]; CUzZDI [5'-CCAGCCTT
TCAACAGTGTGC-3’ (F), 5'-GCCACGAGGTAGCATT
TCCT-3" (R)]; SNRPA [5'-ACCCGCCCTAACCACACT
AT-3" (F), 5'-GGAGAAGATGGCGTACAGGG-3" (R)];
SNRPD2 [5'-CAAGTGCTCATCAACTGCCGCA-3" (F),
5-GCGGTCTTTGTTGACTGGCTTG-3" (R)]; SEMA3F
[5'-CAAGGATGTCAACGGCGAGT-3" (F), 5-TGAG
TCTGGGTCCATGGTGT-3" (R)]; beta-actin [5'-GAA-
GAGCTACGAGCTGCCTGA-3’ (F), 5'-CAGACAGCAC
TGTGTTGGCG-3" (R)]. Finally, we performed a wilcox.t-
est using GraphPad Prism software. Differences with P
less than 0.05 were considered significant.

GEO dataset verification

First, we utilized the “GeoQuery” R package to download
the expression matrix and clinical information of
GSE102079, GSE76427, GSE64041, GSE121248 and
GSE84005 from the GEO database, respectively. After
data sorting, “match” function was used to combine the
expression matrix and paired clinical information. Then,
referring to the published report [15], we utilized the
“compare_means (paired =T)” function within the
“ggpubr” R package to perform a wilcox.test. The results
were finally visualized by the “ggdotchart” function of
“ggpubr” package.

DEN-induced HCC mouse model

At 2 weeks after birth, C57BL/6 mice (purchased from
Academy of Military Medical Sciences, China) were in-
traperitoneally injected with 20 mg/kg saline solution
containing DEN  (Diethylnitrosamine) (N0258-1G,
Sigma). After 48 weeks, the mice were sacrificed for
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dissection, and the tissue samples of HCC and adjacent
non-tumor controls were obtained successfully (n=14).
Total RNA was then extracted and reverse-transcribed
into cDNA using the RevertAid First Strand cDNA Syn-
thesis Kit (K1622, Thermo Fisher). Finally, a qPCR was
performed using an ABI-StepOne Plus (Life Technolo-
gies). Primer sequences: GAPDH [5'-CATCACTGCC
ACCCAGAAGACTG-3" (F), 5'-ATGCCAGTGAGCTT
CCCGTTCAG-3" (R)]; GAS2L3 [5'-GAGACCTTGC
TTAATGCCTCGG -3" (F), 5'-CGATGAGAGCAGCT
ACAAGGAG-3'(R)]. Then, we performed a wilcox.test
by the “compare_means (paired = T)” function and visu-
alized the data through a “ggplot2” R package.

Immunohistochemistry analysis

As reported previously [16], we logged into the HPA
database (https://www.proteinatlas.org/pathology) to ob-
tain the available immunohistochemistry analysis data of
SNRPD2 and SEMASF proteins in the normal liver and
HCQC tissues.
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Survival curve analysis

Targeting the four genes (GAS2L3, SNRPA, SNRPD2,
SEMAS3F), we utilized the “Survival Analysis” module of
GEPIA2 to perform the survival curve analysis of OS
(overall survival) and DFS (disease-free survival), re-
spectively. The group cutoff of “Median” and axis units
of “Months” were used. The plots with 95% confidence
interval, P value of logrank test, HR (hazards ratio), and
P value of Mantel-Cox test were generated. The survival
curve analyses of two signatures, including “SNRPA/
SNRPD2” and “SNRPA/SNRPD2/GAS2L3/SEMA3F’,
were performed as well.

Results

HCC pathologic stages of TCGA-LIHC cohort

From the TCGA-LIHC cohort, we extracted the expres-
sion matrix and clinical information of 367 hepatocellu-
lar carcinomas, three fibrolamellar carcinomas, seven
hepatobiliary mixed carcinomas, and 50 adjacent normal
controls (Fig. 1a). The correlation between the histologic
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grades of HCC (Fig. 1b, G1/G2/G3/G4) and clinical out-
comes of HCC cases were analyzed. As shown in Fig. 1c,
we did not detect a statistically significant difference in
the survival assessment of OS/DFS among different
histologic grades (P >0.05). Figure 1d showed the de-
tailed case number information regarding the clinical
pathologic stages (stage L, II, III-IV) and TNM staging of
HCC cases within the TCGA-LIHC cohort. As expected,
stage III-IV or T4 patients showed the worst prognosis,
whereas stage I or T1 patients had a better prognosis
(Fig. e, P < 0.001).

Besides, we analyzed the association between different
pathologic stages (stage L, II, III-IV) and clinical parame-
ters. The total bilirubin, albumin, fetoprotein, and plate-
let count indicators, but not creatine and protherombin
time, showed a statistical correlation with the different
HCC pathologic stages (Additional file 2: Fig. S1 a-f, P<
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0.05). Furthermore, we failed to observe a correlation be-
tween HCC pathologic stages and other factors, includ-
ing age, height, weight, race, ethnicity, and gender
(Additional file 2: Fig.S1g-1). In this study, we explored
the gene expression and mutational profiles associated
with different clinical pathologic stages of HCC cases
within the TCGA-LIHC cohort.

Differential gene screening

First, we tried to identify the genes that showed an incre-
ment or decrement trend in the normal, stage I, stage I,
and stage III-IV groups. A range of differential genes for
the three comparison groups, including Tumor vs. Nor-
mal, stage II vs. stage I, stage III + IV vs. stage II, were
screened out. We showed the volcano plots of the above
three sets in Additional file 3: Fig. S2a. Then, we con-
ducted an intersection analysis of the up- and down-

CCNE2

GADD45G

monosa

ccharide transmembrane transporter activity
hexose transmembrane transporter activity’

- GO_molecular function

0.03
0.02
0.01

Fanconi anemia pathway

glucose transmembrane transporter activity (MF) Cellular senescence
lipoprotein particle binding BN
fatty acid ligase activity replication
C-acltransferase activity Melanoma
NADPH binding| - Mineral absorption
single-stranded DNA-dependent ATPase activity| - & i i
orestancid receptor actity|- ycine, serine and threonine metabolism
0.1 002 003 0 20 30
Gene Ratio
u CCNE2 copy number P=5.447¢-05 P=19546-04 P=0843 P=0.036
s 9 T T 8 . 9
£ 20 55 9
< < c 8 H < c g
2. 2 50 <l g7 28 3 I
H § s g 7 g 8 §
5 12 g £ g g g 7 T 3 sg
[ — — — 2 2
] g g MNP T -
2 g g s g g | B § °|sd
£ 3 2 F = Z sg 2
5 3 40 3 8 3 S 5
2 4 © G 4 4 ° S
£ L
£, 35 3 L 3 4
PR
<o Normal Tumor stage | stage Il stage IV
GADD45G copy number P=6.4516.07 P=1.8276-04 P=0.014 P=0401
H 14 - 14
£ s00 H L e 14 s £ 43 S fmm————— .
£ 2 [ TS I §  fmmm———- 8 % 2
£ 400 ] - . g 12 E g ., § 1 - 8
H s s s g, sg g
5 300 3. 3 3 3 10
& Q @ 1 Q 2 i 8
5 8
2 200 3 3 g 3 3
5 Q11 Q 8 9 9 9 I
] e 4 < s
2 100 3 3 1 3 3 . 3
S o7 10 6 L = 6 -
P
o\ Normal Tumor stage | stage Il stage Ill-IV

a Y b organelle fission | c chromosomal region o |
22 X = 7—71; . nuclear division . proteinaceous extracellular matrix (]
1 r@ﬂm\» Ul'ﬂqb\ 3 response to drug . spindle .
0 Sy 2 small molecule catatbolic process | GO biological transmembrance transporter complex.  GO_Cellular component .
19, ST ™ chromosome segregation _Diological process ion channel complex (cc) .
L ERN
18, S%‘t% H 5;% \ DNA replication (BP) . external side of plasma membrane .
Sy 54 = E S B\ 3 nuclear chromosome segregation . condensed chromosome .
1 7/5[7< 4 b \ response to metal ion B cation channel complex .
16/5 [episée s \ meiotic cell cycle . I protein-DNA complex . Count
Sl 2z ) mitotic nuclear division . out chromosome, centromeric region . .20
15 EU énwcizu CNV e 7 4 carboxylic acid catabolic process . 40 spindle pole . ® 40 |
8l Lcocm. s organic acid catabolic process . .60 blood microparticle . ® 0
%@%««ﬁ P 7 = meiotic cell cycle process . @80 | condensed chromosome, centromeric region .
148 “E: & 0, 5 A meiotic nuclear division q DNA packaging complex . padjust |
N By response to ketone . p.adjust platelet alpha granule - » 10.0125
128 ETAIES.
s o} response to nutrient . 5504 nucleosome . 0.0100
%\& \fé” gg%%%% LA § DNA-dependent DNA replication . platelet alpha granule lumen . 0.0075
12NV K % 6 response to corticosteroid . 2e-04 spindle microtubule 0.0050
PN S~ <4 meiosis | 1e-04 MCM complex 0.0025
S %ﬂtmu@ 7 DNA replication initiation fibrinogen comples
10 8 001 002 0.03 004 005 001 0.02 003
Gene Ratio Gene Ratio
d cofactor binding . Fatty acid degradation | RS
coenzyme binding . Complerent and coagulation cascades |
catalytic activity, acting on DNA . ca
organic acid binding . el cycle I
carboxylic acid binding . Butanoate metabolism [N
oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor . Count Valine, leucine and isoleucine degracation [N
oxidoreductase activity, acting on the CH-CH group of donors . .10 B i o
o 8 sinaingpatnvey |
carbohydrate transmembrane transporter activity . 40 Systemic lupus erythematosus 0.0020
sugar transmembrane transporter activity: 50 Propanoate metabolism 0.0015
acid-thiol ligase activity p.adjust ) 00010
Fatty acid metabolism 0.0005

Fig. 2 Genetic CNV analysis for different pathologic stages of HCC. a Circos 2D track plot of CNV profile. b-e GO and KEGG analysis data of the
genes with CNV, which was correlated with gene expression. f-g Expression levels of CCNE2, GADD45G in normal and tumor by GEPIA2, and the
correlation between gene expression and CNV in normal and different pathologic stages of HCC




Gao et al. BMC Cancer (2021) 21:786

regulated genes. As shown in Additional file 3: Fig. S2b,
we obtained a total of 12 up-regulated genes but no
down-regulated genes. These genes did not establish the
protein-protein interaction relationship and mainly
existed in the stage III+IV, but not with a high
proportion (Additional file 3: Fig. S2c-d). The full name
information of these genes were listed in Additional file 3:
Fig. S2e.
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Next, we analyzed the expression patterns of these genes in
normal, tumor, and different pathologic stages of HCC cases,
respectively. As shown in Additional file 4: Fig. S3a-b, except
CRTACI gene, other genes showed a higher expression level
in the tumor group compared with the normal controls.
However, only the gene expressions of DUOX2, IQCAI,
PCSK1, HOXBY, KCNH2, and NPTX1 were statistically asso-
ciated with the distribution of HCC stage I-IV. Further, the
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survival analysis results of the OS and DFS suggested that the
highly expressed CUZD1 and IQCAI were related to a poor
prognosis of HCC cases (Additional file 4: Fig. S3c).

Copy number variation analysis

We performed the somatic CNV analysis and identified a
total of 16,644 genes with CNV from the TCGA-LIHC co-
hort. Circos 2D track plot for the CNV distribution in the
chromosomes was shown in Fig. 2a. We then utilized a
Kolmogorov-Smirnov test to analyze the correlation be-
tween CNV and gene expression and screened a group of
genes. Our GO and KEGG analysis data further showed
that most of these genes were implicated in cell division
or the cell cycle (e.g., organelle fission, nuclear division,
and spindle location) (Fig. 2b-e). For instance, the CNV of
cell cycle-related CCNE2 gene in the groups of Tumor,
stage I, and stage III-IV was statistically correlated with
the gene expression (Fig. 2f). However, the GADD45G ex-
pression level in HCC cases was lower than that in the
negative controls, hinting at the presence of other poten-
tial gene expression inhibition mechanisms (Fig. 2g). We
presented some CNV-driven genes involved in the cell
cycle pathway in Additional file 5: Fig. S4.
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Protein-protein interaction network analysis

Targeting the above-identified genes, we built a protein-
protein interaction (PPI) network and identified several
hub genes. As shown in Fig. 3a-b, there were two mod-
ules with the highest ratings. The expression levels of
identified hub genes were statistically related to the copy
number variation. Of them, highly expressed cell cycle-
related genes (e.g., TTK, CDC20, and ASPM) exhibited a
significant positive correlation with copy number vari-
ation (Fig. 3c).

Genetic mutation analysis

We downloaded the HCC-related SNV data and selected
the top 15 genes with the most frequent mutation fre-
quency (e.g.,TTN, TP53, CTNNBI, MUCI6, and ALB) to
map the waterfall with clinical stage information. As
shown in Additional file 6:Fig. S5a, the gene mutation
types were mainly non-synonymous mutations. The mu-
tation frequency of 286 HCC cases with mutations was
not related to the clinical pathologic stages of HCC
(stage I, II, III-1V). Additionally, for CTNNBI, we ob-
served the correlation between high expression and mu-
tation status in overall HCC, stage I, II, III-IV groups
(Additional file 6: Fig. S5b). TP53 gene mutation was
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statistically linked to a reduced expression of TP53 in
the overall HCC, stage I, II groups (Additional file 6:
Fig. S5b). However, OBSCN mutation was correlated
with the low expression of OBSCN in overall HCC and
specific stage I groups (Additional file 6: Fig. S5b).

We further performed a waterfall map analysis of the
above-mentioned CENPF, ASPM, MELK, TTK,
GADDA45G, CDC20, CCNE2, and other interesting genes.
We did not detect the association between the low mu-
tation frequency of these genes and pathologic stages or
gene expression, although non-synonymous mutations
mainly existed (Additional file 7: Fig. S6). Also, we found
that variations in the CTNNB1, TP53, TTN, and OBSCN
genes were not related to the clinical prognosis of HCC
cases with different pathologic stages (Additional file 8:
Fig. S7; Additional file 9: Fig. S8).

Subsequently, we extracted the SNP data of HCC cases
from the TCGA-LIHC cohort and found that the
rs121913396, rs121913400, rs121913407 SNP of CTNNBI,
and rs28934571 SNP of TP53 gene were relatively high fre-
quency (Additional file 10: Fig. S9a). There were more than
10 types of SNP for the CTNNBI gene (Additional file 10:
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Fig. S9b). Compared with the wild-type group, we observed a
higher expression level for CTNNBI gene with rs121913396
and rs121913400 (Additional file 10: Fig. S9c). But there was
still a lack of positive correlation between the rs121913396,
rs121913400, rs121913407 of CTNNBI gene and the clinical
prognosis of HCC (Additional file 11: Fig. S10a-c). Although
there was no statistical correlation between TP53
1rs28934571 and gene expression (Additional file 10: Fig. S9c),
we observed a worse prognosis of HCC cases with AA and
CA genotypes of TP53 rs28934571, compared with wild-type
CC controls (Additional file 11: Fig. S10d).

Random forest and decision tree analysis

We integrated the above clinical, mutation, and expression
information to conduct a random forest modeling ana-
lysis. Multiple dimension scale plot in Additional file 12:
Fig. S11a indicated an effective classification for the overall
HCC cases and normal controls. AUC value of ROC
equals 0.956, indicating a high classification accuracy
(Additional file 12: Fig. S11b). We also provided the fea-
ture vectors extracted from the classification model in
Additional file 12: Fig. S11c-d and identified the largely
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contributed genes (e.g. ECMI1, FCN2, ANGPTL6, OIT3,
ADAMTSI13 and LRRCI14). Next, we performed a decision
tree modeling analysis according to these genes. We first
randomly selected 260 HCC cases for modeling, and then
tested other 107 cases, and found that the predicted rates
of the genes were larger than 90% (Additional file 12:
Fig. S11e). Meanwhile, we analyzed the expression differ-
ence of these genes between 50 HCC tissues and adjacent
non-tumor controls. There showed the higher expression
levels of ECM1, FCN2, ANGPTL6, OIT3 and ADAMST13
genes in overall HCC tissue, compared with that in con-
trol tissues (Additional file 12: Fig. S11f, P < 0.0001).

We tried to build a random forest modeling with differ-
ent HCC pathologic stages, which was closely related to
the clinical TNM information. To prove the validity of this
classification method, we conducted random forest and
decision tree modeling analysis without removing TNM
information. We found that T1 and T2 information could
effectively distinguish stage I, II, III-IV with the AUC value
0f 0.994 in ROC and the prediction rate of 99.2% (Fig. 4a-
¢). Then, we excluded the TNM information for a new
round of random forest modeling and observed a reduced
classification effect (Fig. 4d-f, AUC=0.675, predicting
rate = 56.0%). Fig. 4g-h showed the genes that contributed
significantly to the classification model. Compared with
adjacent normal controls, FAM99A and GNAI4 genes
were lowly expressed in the HCC tissues (Fig. 4i, P<
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0.0001), whereas GAS2L3, CEP55, SEMAS3F, and PRRI11
genes were highly expressed (P <0.0001). Moreover, the
expression levels of these genes were statistically associ-
ated with the different HCC pathologic stages (Fig. 4j).

Principal component analysis

Besides, we performed a principal component analysis to
identify the target genes associated with different patho-
logic stages of HCC. As shown in Fig. 5a, the calculated
variances of the PC1, PC2, and PC3 equaled 9.4, 8.1, and
6.3%, respectively. Based on the PC1/2 (Fig. 5b) and
PC1/2/3 (Fig. 5c), we could effectively distinguish the
normal controls and overall HCC cases, rather than the
stage L, II, III-IV groups. Fig. 5d showed the top 10 genes
that contributing mainly to PC1 and PC2. We analyzed
the expression level of these genes between HCC tissue
and adjacent normal tissue, or among different patho-
logic stages. As shown in Fig. 5e-f, compared with nor-
mal controls, the SLC27A5, ALDH2, and DCXR genes
were lowly expressed (P<0.0001), while SNRPA (P<
0.0001), SNRPD2 (P<0.0001), LAMTOR4 (P=0.003),
ROMO1 (P=0.012) genes were highly expressed, in
overall HCC tissues. Additionally, the expression of the
SNRPA, SNRPD2, SLC27A5, ADAMI17, and ALDH2
genes was statistically related to the different HCC
pathologic stages (Fig. 5e-f).
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as well. A wilcox.test was conducted
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Expression verification of targeting genes

A series of HCC pathologic stage-associated genes were
obtained through the above analyses of the TCGA-LIHC
cohort. After the assessment of publication novelty
through an online PubMed database retrieval, we further
selected a total of six interesting genes, including
GAS2L3, SNRPA, SNRPD2, SEMA3F, IQCA1 and OIT3.
We tried to verify the expression difference of these
genes between the HCC tissues and adjacent normal tis-
sues within our Chinese HLivHO60PG02 HCC cohort.
Unfortunately, due to the lower amplification efficiency
of the IQCAI and OIT3, we finally selected the
remaining four genes, namely GAS2L3, SNRPA, SNRP
D2, and SEMAS3F. Compared with adjacent normal tis-
sues, we observed a highly expressed level of GAS2L3
(Fig. 6a, P =0.036), SNRPA (P<0.001), and SNRPD2
(P =0.002) genes in HCC tissues. Moreover, as shown in
Fig. 6b, these genes in pathologic stage III showed a
higher expression trend than in stage III, but statistical
significance was only observed for the GAS2L3 gene
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To further confirm the high expression feature of these
genes, we downloaded five available datasets (GSE102079,
GSE76427, GSE64041, GSE121248, GSE84005), which
containing the expression matrix between clinical tumor
and adjacent non-tumor tissues. As shown in Fig. 7, Add-
itional file 13: Fig. S12, and Additional file 14: Fig. S13, we
observed the obviously high expression level of GAS2L3,
SNRPA, SNRPD2 in the HCC tissues, compared with adja-
cent non-tumor controls (all P < 0.05). The qPCR analysis
using the DEN-induced HCC mice model also confirmed
the high expression status of GAS2L3 in HCC tissue (Add-
itional file 15: Fig. S14, P=0.0006 n = 14). Based on the
available data from the HPA database, we observed the
high expression of SNRPD2 in tumor tissues compared
with normal liver tissue (Fig. 8a).

Regarding SEMAS3F, we observed a higher expression
trend of the SEMAS3F gene in HCC and stage III groups,
compared with the control group, although non statis-
tical difference (Fig. 6a-b). Also, we observed the highly
expressed SEMA3F in HCC tissues in the datasets of
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Fig. 8 Immunohistochemistry staining of SNRPD2 and SEMA3F. Based on the available data of HPA database, the immunohistochemistry staining
images of a SNRPD2 and b SEMA3F proteins in the normal liver and HCC tissues were provided. Bar, 200 pm.
A

(Additional file 16: Fig. S15, all P < 0.05), only apart from
the GSE76427 (P =0.12). Besides, there existed a stron-
ger staining signal of SEMA3F protein in the HCC tis-
sues than the normal liver tissues (Fig. 8b).

Survival curve analysis of target genes

The survival analysis of OS and DFS further indicated
the correlation between high expression levels of
GAS2L3, SNRPA, SNRPD2, SEMAS3F with the poor clin-
ical prognosis (Fig. 9a-b, all P<0.05, HR > 1). Further-
more, we observed the potential prognosis values of two
signatures, including “SNRPA/SNRPD2” and “SNRPA/
SNRPD2/GAS2L3/SEMA3F”, for the HCC cases (Fig. 9c,
all P<0.05, HR > 1).

Discussion

Considering the complexity of etiology and pathogenesis
of liver cancer, it is essential to continuously identify
the potential oncogenes closely related to the pathogen-
esis of liver cancer. Based on the expression, mutation,
and clinical evidence of liver cancer cases within the
TCGA-LIHC cohort, we attempted to identify the

potential liver cancer-related oncogenes. It should be
noted that the TCGA-LIHC cohort includes not only
HCC cases but also a tiny amount of fibrolamellar car-
cinomas and hepatobiliary mixed carcinomas cases.
Considering the differences of distinct liver cancer types
and limitation of sample sizes, we finally selected the
cases of HCC for investigation. There are still very lim-
ited reports regarding differential gene expression, CNV,
SNV, and SNP profiles from the points of different clin-
ical pathologic stages (stage L, II, III, IV) and histologic
grades (G1, G2, G3 and G4) of HCC cases within the
TCGA-LIHC cohort, although several publications from
other aspects or with different analysis strategies were
retrieved [17-20]. We observe a statistical correlation
between clinical outcomes of HCC cases and the patho-
logic stages, but not the histologic grades. Thus, we were
interested in performing the genetic expression and mu-
tational profile analysis in different pathologic stages of
HCC cases.

Considering the small sample sizes, we combined the
data of stage III and IV and focused on identifying differ-
entially expressed genes associated with normal, stage I,
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Fig. 9 Survival curve analysis of GAS2L3, SNRPA, SNRPD2, SEMA3F. Targeting the four genes (GAS2L3, SNRPA, SNRPD2, SEMA3F), we utilized the GEPI
A2 tool to perform the survival curve analysis of a OS and b DFS. ¢ We also analyze the potential prognostic value of two signatures, including
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stage II, and stage III-IV classifications. We first utilized
the “EdgeR” package for the statistically significant dif-
ferential genes in three comparisons (Tumor vs. Normal,
stage II vs. stage I, stage III + IV vs. stage II), and further
screened out the common genes. We did not identify
the target genes with a decreasing trend in the groups of
normal, stage I, stage II and stage III +IV), but several
genes with an increasing trend and low expression fre-
quency in stage III-IV. Thus, this strategy did not work
well. Then, we utilized a PCA approach [15, 21, 22] to re-
duce the dimensionality of the datasets for the groups of
normal, stage I, stage II, and stage III-IV, and to iden-
tify the genes that contributed largely to the main com-
ponent. It was found that the PC1/2/3 could better
distinguish the normal and tumor groups, but not the

groups of stage I, stage II, and stage III-IV, may due to
the low sample sizes and the complexity of different
pathologic staging mechanisms of HCC. Despite this, we
obtained the top 10 genes that mainly contributed to the
PC1 and PC2. Of them, the expression levels of SNRPA
and SNRPD2,two Ul snRNP component genes (SNRPA
and SNRPD?2) [23], were significantly associated with dif-
ferent HCC pathologic stages. Apart from PCA, we ap-
plied the random forest, a robust classification and
regression approach [15, 24, 25], for the classification
analysis of normal, tumor and stage I, stage II, stage III-
IV groups. Although the classification effect for stage I,
II, HI-IV was worse than that for normal/tumor, we
identified some critical contributing genes as well. Of
them, GAS2L3 and SEMAS3F gene was targeted.
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Our data of the Chinese HLivHO60PG02 HCC cohort,
several GEO datasets, HPA database further confirmed
the high expression status and potential clinical predict-
ive value of SNRPA, SNRPD2, GAS2L3 and SEMAS3F
gene in HCC tissues. However, there still lack the mo-
lecular mechanism explored in-depth regarding the po-
tential role of these genes in the tumorigenesis of HCC.
In particular, GAS2L3, a member of GAS2 (growth
arrest-specific 2) protein family, is associated with cell
division [26]. We have established a DEN-induced HCC
model, and observed the high expression of GAS2L3 in
HCC tissues of mice. For the correlation of GAS2L3 and
HCC, only one study reported that GAS2L3 could work
as a member of six gene prognosis signature for the OS
prediction of HCC cases [27]. Very recently, we reported
that the high expression of GAS2L3 is closely related to
an enhanced proliferation and migration of glioma cells
[28]. The potential role of GAS2L3 in the oncogenesis of
HCC merits more experiments.

Genetic CNV refers to the genome rearrangement-
induced the copy number amplification or deletion of a
large genome fragment (> 1kb) [29, 30]. CNV-induced
the gene expression alteration works as anessential
mechanism of tumorigenesis [31, 32]. Herein, we utilized
an analysis strategy to identify the interesting genes with
CNV that are related to gene expression and clinical
HCC pathologic stages within TCGA-LIHC cohort. We
found that a group of cell cycle or cell division-
associated genes with CNV. Additionally, we utilized
MCODE modular analysis to screen out some key
genes from the perspective of protein binding, which
were also linked to cell cycle and division behavior. It is
worth noting that the expression levels of some down-
regulated genes in HCC (e.g., GADD45G, FPR2, PPBP)
were closely linked to the CNV in a dose-dependent
manner. Apart from CNV, some other key inhibition
mechanisms of gene expression, such as hypermethyla-
tion modification, may exist for these genes.

Genetic mutation is considered the critical mechanism
of tumorigenesis [33], and single nucleotide polymorph-
ism is closely linked to the susceptibility of HCC in the
population [34]. We performed a series of gene muta-
tion alanalyses as well. We found that non-synonymous
mutation was the main mutation type of these genes,
and the gene mutation frequency was not statistically as-
sociated with the HCC pathologic stages. Although a
correlation between the overall variation and expression
of CTNNBI and TP53 genes in HCC and different
pathologic stages was observed, we failed to obtain the
positive results for the mutations of a specific site in
HCC cases with limited sample sizes. Additionally, there
were more than 10 SNPs with low frequency for the
CTNNBI gene in HCC cases. We also did not observe
the correlation between these SNPs and CTNNBI high
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expression or clinical prognosis of HCC cases. More
HCC cases may be required to validate this point.

Conclusion

Taken together, we first utilized different bioinformatic
approaches to provide the differential gene expression,
CNV, SNV, and SNP profiles, which are associated with
the different pathologic stage I, II and II-IV of HCC
cases within the TCGA-LIHC cohort. Importantly, we
identify four targeting HCC pathologic stage-associated
genes, including GAS2L3, SNRPA, SNRPD2 and
SEMAS3F. Compared with adjacent non-tumor tissues,
these four genes were highly expressed in HCC tissues,
presenting prognostic value for the HCC patients. More
clinical sample tests are needed to determine whether
the identified genes serve as the prognostic biomarker or
therapeutic targets of HCC. The underlying molecular
mechanisms merit further biology experiment evidence.
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