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Abstract

Background: Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-
recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for
GC prognosis and targeted therapy.

Methods: Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database.
Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba
plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling
interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs.

Results: Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in
E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-
regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1,
CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using
qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1,
which correlated with tumor relapse and predicts poorer prognosis in GC patients.

Conclusions: We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients
with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and
therapeutic targets for GC treatment.
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Background
Gastric cancer (GC), the fifth most frequently diagnosed
cancer and the third leading cause of cancer-related
death [1], has become a major global health challenge.
About 934,000 new GC cases and 700,000 mortalities
occurred annually [2]. Despite improvement in diagnosis
and treatment, the prognosis of GC patients remains
poor, which has become an active topic of clinical and
basic research. Genetic mutations, epigenetic alterations
and aberrant molecular signaling pathways are involved
in the processes of gastric carcinogenesis, spread and
metastasis [3]. In particular, the new molecular charac-
teristics can be applied in early risk assessment, the
identification of better specific biomarkers, and the im-
provement of clinic treatment and survival.
In recent decades, microarray and high-throughput sequen-

cing have been considered as reliable techniques to quickly de-
tect differentially expressed genes (DEGs) [4] that are able to
make various slice data be produced and stored in public data-
bases. Consequently, many valuable clues could be explored
for new research on the base of these data. However, with the
data getting updated, a large amount of genetic information
uploaded to public databases was not used effectively.
In this study, we downloaded related mRNA expression

datasets from ArrayExpress and Gene Expression Omni-
bus. A set of DEGs in these datasets were extracted by
comparing gene expression profiles of carcinoma speci-
men and adjacent normal tissues. By analyzing the GO
and Kyoto Encyclopedia of Gene and Genome (KEGG)
pathway enrichment [5, 6], along with the construction of
protein–protein interaction (PPI) network [7], we selected
vital genes. After evaluating the clinical prognosis of these
genes and their transcriptional factor (TF) regulatory net-
work, we further validated these genes by quantitative
real-time PCR (qRT-PCR) in GC tissue samples.

Methods
Gastric cancer microarray data information
Microarray data information of GC and adjacent gastric
tissues were obtained from Arrayexpress (https://www.
ebi.ac.uk/arrayexpress/) and NCBI-GEO (https://www.
ncbi.nlm.nih.gov/geo). When “gastric cancer” was used
as a keyword to perform queries, we selected the original
studies of RNA assay and array assay in Homo sapiens
which samples with available clinical information for
analysis. The expression microarray datasets E-MTAB-
1440, GSE79973, GSE19826, GSE13911, GSE27342,
GSE33335 and GSE56807 were downloaded. Overall,
183 patients with gastric cancer enrolled in this study.
The workflow chart is shown in Fig.1.

Gene expression profile data
Microarray data of 7 databases were on account of three
platforms. E-MTAB-1440 genome-wide gene expression

profile data were generated from the Illumina platform
GPL6947 (A-MEXP-1171-Illumina Human HT-12 v3.0
Expression BeadChip). GSE19826, GSE13911 and
GSE27342 microarray data from the Affymetrix platform
GPL570 (HG-U133_Plus_2 Affymetrix Human Genome
U133 Plus 2.0 Arrays) and GSE27342, GSE33335 and
GSE56807 microarray data from the Affymetrix platform
GPL5175(HuEx-1_0-st-v1 Affymetrix Gene Chip Human
Exon 1.0 ST Array version 1). Detailly, GPL6947 dataset
consisted of 20 GC tissues and 20 adjacent normal gas-
tric samples. GPL570 and GPL5175 respectively include
53 and 110 GC tissues as well as same number of
matched normal specimen.

Data processing of DEGs
Significant DEGs between GC specimen and normal gas-
tric tissues specimen were analyzed via software and
packages from Bioconductor (http://www.bioconductor.
org/) in R (version 3.6.0). The microarray data were first
preprocessed using the RMA (robust multi-array aver-
age) which contains background adjustment,
normalization with the quantile method, and expression
calculations. The probes were removed when they were
not able to be matched to a specific gene symbol, and
the average value was taken as the expression value for
each gene when different probes matched to the same
gene symbol. Then the statistically significant DEGs was
selected by Moderated T statistic approach with “limma
[8]” and “oligo [9]” package of Bioconductor. After pre-
processing, SVA batch difference processing of combat
was used to consolidate these 7 datasets to obtain the
final dataset (GC tissues: corresponding normal adjacent
tissues =183:183). Finally, DEGs were annotated through
annotation table downloaded from the GEO website.
The resulting P values were adjusted by the default Ben-
jamini & Hochberg (BH) false discovery rate method.
The adj. P value < 0.05, P value < 0.05 and |log fold
change (FC)| > 0.58 were considered as significantly dif-
ferent for DEGs.

Protein–protein interactions (PPI) network and module
analysis
Information of DEGs’ protein experimental interactions
and prediction was obtained by Search Tool for the Re-
trieval of Interacting Genes (STRING, Version 11.0,
http://www.string-db.org/) [10] with the parameters set
to species = Homo sapiens, and PPI score ≥ 0.4 (medium
confidence) [11]. Subsequently, a specific PPI network of
DEGs was constructed by cytoscape (version 3.7.2,
http://www.cytoscape.org/) [12] based on the interac-
tions retrieved from STRING. The gene-interaction rela-
tionship was represented by nodes and edges graphically
for better visualization, which included phosphorylation,
dephosphorylation, inhibition and activation. In the
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signaling network, the size of the cycle was considered
as the frequency of the gene interaction. The most
prominent central genes in the network indicated the
genes with the highest frequency. In addition, the mo-
lecular complex detection (MCODE) analysis (Version
3.7.2, http://apps.cytoscape.org/apps/MCODE) [13] in
cytoscape was used to identify the significant modules of
the PPI network with degree cut-off 2, max depth 100, k-
core 2, and node score cutoff 0.2. To screen the hub
genes that may be involved in GC, we applied the cyto-
hubba plug-in, using various parameters such as degree,
betweenness centrality, and closeness. The DEGs from
cytohubba were then subjected to VEEN analysis using

the online tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/), and overlapping genes were considered
selected genes.

Evaluation of prognostic value of selected genes
Expression and prognostic values of the hub genes were
analyzed using two online datasets, Kaplan Meier-plotter
dataset (http://kmplot.com/analysis/) and Gene Expres-
sion Profiling Interactive Analysis (GEPIA, http://gepia.
cancer-pku.cn) [14]. The hazard ratio (HR) with 95%
confidence intervals and log rank p value were calculated
and displayed on the plot. GEPIA was established for
customized genomic analysis based on the Cancer

Fig. 1 Flowchart of the multistep screening strategy used in this study on bioinformatics data in Arrayexpress and GEO database
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Genome Atlas (TCGA) database, which was used to
compare poor prognosis related hub genes expression
between GC patients and healthy people.

Transcriptional factor (TF) regulatory network
construction
NetworkAnalyst (http://www.networkanalyst.ca/faces/
home.xhtml) is used to explore TF-gene interactions for
the input genes and assess the effect of the TF on the
expression and functional pathways of the hub gene. In
this study, the TFs of the hub genes were predicted from
this database and a transcriptional regulatory network
was constructed and visualized by the cytoscape
software.

Analysis of significant functions and pathway enrichment
After computing hub genes and evaluating prognosis,
the database for annotation, visualization and integrated
discovery (DAVID 6.8, http://david.abcc.ncifcrf.gov/) [6]
was applied to re- analyze the KEGG pathway and Gene
Ontology annotations for selected hub genes. P-value <
0.05, and count ≥2 were considered to indicate
significance.

Validation of selected DEGs’ transcription in fresh GC
tissue specimens using quantitative real-time PCR
We analyzed samples from 10 GC patients who under-
went tumor resection at the Department of Pathology,
Shanxi Cancer Hospital (Shanxi, China). The detailed
clinicopathological information for all the enrolled pa-
tients was available. GC and their corresponding normal
adjacent tissue samples were immediately frozen in li-
quid nitrogen and stored at − 80 °C until further process-
ing. Every specimen was anonymously handled based on
ethical standards. All patients provided written informed
consent and our study was approved by the hospital’s
Ethical Review Committee.
The total RNA was extracted using Trizol reagent and

reverse-transcribed into complementary DNA (cDNA)
for quantitative real-time polymerase chain reaction
(qRT-PCR) following the manufacturer’s instructions.

GAPDH gene served as an endogenous control. The pri-
mer sequences of selected genes (HMMR, SPP1, FN1,
CCNB1, CXCL8, MAD2L1 and CCNA2) used in the ex-
periment are illustrated in Table 1. Each sample was
tested in triplicates, and each sample underwent a melt-
ing curve analysis to check for the specificity of amplifi-
cation. The relative expression level was determined as a
ratio between the hub genes and the internal control
GAPDH in the same mRNA sample, and calculated by
the comparative CT method. Levels of hub genes’ ex-
pression were calculated by the 2−ΔΔCt method [15, 16].

Statistical analysis
Demographic and clinical data were analyzed using Chi-
squared test, student’s t-test or paired t-test to evaluate
group balance of variables. All statistical analyses were
performed using SPSS 26.0, the GraphPad Prism V8.0
and R 3.6.0. Two-tailed P < 0.05 were considered statisti-
cally significant.

Results
Identification of DEGs in GC
A total of 366 samples were included in the present
study: 183GC and 183 adjacent normal tissues used as
normal controls (NCs). Via R software, a total of 3224
DEGs (gastric cancer tissues vs. NCs), including 117 up-
regulated and 178 down-regulated genes were selected.
The statistical metrics for key DEGs was shown in Sup-
plemental Table 1. The data distributions were neat after
background adjustment and normalization with the
RMA method, and values with an unchanged position in
the boxplot were used for subsequent analysis.
(Figure 2A). Principal component analysis (PCA) was

conducted to obtain better insights into the data. The
DEGs of GC and normal tissues were relatively well sep-
arated in 2D score plot PCA. (Fig. 2B) The volcano plots
of DEGs were shown in Fig.3A. DEGs expression heat-
maps of the top 50 significant up-regulated genes and
top 50 significant down-regulated genes were depicted
in Fig. 3B, and hierarchical clustering analysis revealed

Table 1 Primer sequences of PCR

gene Forward primer(5–3) Reverse primer(5–3)

HMMR GCTAAGCAAGAAGGCATGGA CCACTTGATCTGAAGCACAAC

SPP1 GCCGAGGTGATAGTGTGGTT AACGGGGATGGCCTTGTATG

FN1 AATAGATGCAACGATCAGGACA GCAGGTTTCCTCGATTATCCTT

CCNB1 GACTTTGCTTTTGTGACTGACA CCCAGACCAAAGTTTAAAGCTC

CXCL8 AACTGAGAGTGATTGAGAGTGG ATGAATTCTCAGCCCTCTTCAA

MAD2L1 ACGGTGACATTTCTGCCACT TGGTCCCGACTCTTCCCATT

CCNA2 AGAAACAGCCAGACATCACTAA TTCAAACTTTGAGGCTAACAGC

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC
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that DEGs can be easily distinguished from GC tissues
and normal gastric tissues.

PPI and modular analysis
Based on the STRING online database, a total of 295
DEGs were imported into the DEG PPI network com-
plex which included 291 nodes and 1016 edges. All the
parameters were set as defaults [10]. The average node
degree of PPI network was 6.98 and the local clustering
coefficient was 0.446. To further investigate the PPI, the
PPI network was visualized by cytoscape. (Fig. 4) Nine
modules were exhibited after analyzing the entire PPI
network by MCODE plug-in (Fig. 5& Supplemental
Table 2).

Identification of the selected genes
The vital genes were determined from the PPI network
by cytohubba plug-in. All the gene code and edge were
calculated (Fig.6A.B.C& Supplemental Table 3). Three
groups of DEGs calculated from degree, betweenness
centrality and closeness were subjected to VEEN analysis
(Fig.6D& Supplemental Table 3 & Supplemental

Table 4). The overlapping genes were sequentially listed
as follows: HMMR (hyaluronan mediated motility recep-
tor), SPP1 (secreted phosphoprotein 1), FN1(fibronectin
1), CCNB1 (cyclin B1), CXCL8 (C-X-C motif chemokine
ligand 8), MAD2L1 (mitotic arrest deficient 2 like 1),
CCNA2 (cyclin A2). (Table 2) Besides, the selected genes
also showed significant enrichment in modules by
MCODE analysis (Fig. 5). Some of these genes exhibited
potential prognostic values for patients with GC.

Survival analysis of selected genes by the Kaplan Meier
plotter and GEPIA
To further analyze the prognostic value of the selected
genes, the overall survivals (OS) with selected genes
were analyzed for 875 patients with GC by using the
Kaplan-Meier plotter. It was found that most of the
genes had a significantly worse survival (P < 0.05, Fig.7).
High expression of HMMR (P = 5.0e-9), FN1 (P = 1.0e-
6), CCNB1(P = 9.5e-7), CXCL8(P = 1.5e-5), MAD2L1(P =
2.4e-8), CCNA2(P = 9.9e-8) were correlated with signifi-
cantly worse OS in GC patients, while SPP1 expression
was not relevant to survival (P = 0.2713). Then, we used

Fig. 2 Data normalization and the distribution of differentially expressed genes (DEGs). (A) Box plots illustrating data normalization: the data
distributions were neat after background adjustment and normalization. (B) Principal component analysis (PCA): each point in the PCA diagram
represents a sample, and the distance between samples reflects the difference. After batch correction, individuals with similar genetic background
were clustered together, and obvious stratification was observed between GC and adjacent normal gastric tissue samples. Gastric cancer, GC.
normal controls, NCs
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GEPIA to dig up the expression levels of selected genes
in GC patients and healthy controls. Results reflected
that, contrasted to normal samples, all the selected genes
reflected high expressed in GC samples (P < 0.05, Fig. 8).

Transcriptional factor regulatory network analysis of
selected genes
For the genes we identified, a gene-TF regulatory net-
work was constructed including 129 interaction pairs
among the selected genes and 102 TFs (Fig. 9 & Supple-
mental Table 5). While HMMR was found to be regu-
lated by 39 TFs, SPP1 by 5 TFs, FN1 by 45 TFs, CCNB1
by 11 TFs, and CCNA2 by 14 TFs. In addition, various
TFs were found to regulate more than one hub gene,
and twenty TFs were identified with a connectivity de-
gree ≥ 2 in the gene-TF regulatory network, which
means that these TFs have close interactions with these
hub DEGs. For example, zinc finger protein 2 (ZNF2)
was predicted to regulate HMMR, and MAD2L1; ETS
variant transcription factor 4 (ETV4) was found to regu-
late HMMR, FN1, MAD2L1, and CCNB1; Kruppel like
factor 16 (KLF16) was found to regulate HMMR, SPP1,
FN1, and CCNA2.

Analysis of 7 selected genes via gene ontology and
pathway enrichment
To understand the possible pathway of these 7 se-
lected DEGs, KEGG pathway enrichment was re-
analyzed via DAVID (P < 0.05). GO analysis revealed
7 selected genes that are involved in a number of
biological processes (BP), including positive regula-
tion of fibroblast proliferation, cell division, and
negative regulation of ubiquitin-protein ligase activ-
ity involved in mitotic cell cycle. In terms of cellu-
lar components, 7 selected genes were mostly
enriched in spindle pole, extracellular space, and
extracellular region. The 7 selected genes were
mainly associated with protein binding in terms of
molecular functions. With regards to the KEGG
pathway analysis of the 7 selected genes, ten path-
ways were enriched: ‘ECM-receptor interaction’,
‘Progesterone-mediated oocyte maturation’, ‘Cell
cycle’, ‘Amoebiasis’, ‘Toll-like receptor signaling
pathway’, and ‘Oocyte meiosis’. Detailed results are
displayed in Table 3.These results suggested that
Toll-like receptor signaling pathway and Cell cycle
played extremely important roles in progesterone
resistance and should be further studied.

Fig. 3 Volcano plot and heatmap of DEGs. (A) Volcanic map of DEGs: each colored dot represents a DEG based on the criteria of P < 0.05 and
|log FC| > 0.58; red: up-regulation, blue: downregulation, black: normally expressed mRNAs. (B) Heatmap of top 50 significant up-regulated and
down-regulated DEGs expressed in mRNAs microarrays. The horizontal axis shows clusters of DEGs, and the right vertical axis represents each
sample. Gene expression levels were indicated by colors: red: high expression level and blue: low expression level
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The transcription levels of selected genes were verified
within GC tissues
To further verify the results of bioinformatics analysis,
we applied qRT-PCR to validate the mRNA levels of
HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and
CCNA2 in 10 paired tumor and adjacent normal tissues
with qRT-PCR. Among the genes we validated, HMMR,
CCNB1, CXCL8, MAD2L1, and CCNA2 showed in-
creasing expression levels in GC. As illustrated in Fig. 10,
high expression of CCNB1 and CCNA2 significantly cor-
relates with tumor relapse and predicts poorer prognosis
in GC patients (P < 0.05). The expression of HMMR,
CXCL8 and MAD2L1 shows an increasing trend in GC,
whereas COL1A2 and SPP1 expression levels might not
affect the prognosis of patients with GC. We identified 5
hub genes including HMMR, CCNB1, CXCL8,
MAD2L1, and CCNA2 with poor prognosis in GC on
the basis of integrated bioinformatical methods, which
could be potential biomarkers and therapeutic targets
for GC treatment.

Discussion
GC is a gastroenterological malignancy with high rates
of prevalence and mortality [1, 2, 17, 18]. Therefore, sen-
sitive and specific biomarkers of GC are urgently needed
to be detected. In the present study, bioinformatic

methods are promising methods to analyze the critical
genes and pathways, which might provide novel clues
for diagnosis, therapy, and prognosis of GC. We inte-
grated seven gene expression profile datasets from differ-
ent groups and used R software and bioinformatics to
deeply analyze these datasets. DEGs PPI network was
successfully constructed via the STRING online database
and cytoscape software. Seven vital regulated genes in-
cluding HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1,
and CCNA2 were screened from the PPI network com-
plex by cytohubba plug-in of cytoscape.
Through Kaplan Meier plotter analysis, we found

that most of the selected genes were associated with
a significantly worse survival, except SPP1. The ex-
pression of the genes was higher in GC samples than
normal samples by GEPIA analysis. Importantly, using
qRT-PCR, we could validate the higher mRNA ex-
pression of the selected genes based our bioinformat-
ics analysis; most selected genes, except SPP1 and
FN1, were upregulated in tumor tissue. They showed
the same trend in expression as predicted by bioinfor-
matics verifying the accuracy of our method. In the
light of important roles in cells, the selected hub
genes in GC (HMMR, CCNB1, CXCL8, MAD2L1,
and CCNA2) may represent potential prognostic bio-
markers and/or therapeutic targets for GC.

Fig. 4 PPI network of the DEGs in GC. The PPI network of DEGs was constructed using Cytoscape. The nodes meant proteins; the edges meant
the interaction of proteins. Upregulated genes are marked in light red; downregulated genes are marked in blue. PPI: protein–protein interaction;
DEG: differentially expressed gene; GC: gastric cancer
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For a more in-depth understanding of these DEGs, we
analyzed the selected genes for GO and KEGG enrich-
ment analyses and found that ‘Cell cycle’ signaling path-
ways was significant enriched. HMMR, CCNB1,
MAD2L1 and CCNA2 play important roles in cell cycle.
HMMR, a cell surface hyaluronan receptor and mitotic
spindle protein and the driver of tumor progression [19]
[20] [21], plays an important role in the modulation of
motor activities and the maintenance of genome stability
[22, 23]. High expression of HMMR significantly corre-
lates with tumor relapse [24, 25] and predicts poorer
prognosis in GC patients. Furthermore, HMMR has
been identified as a promising target for antibody ther-
apy to block the extracellular function of HMMR on the
surface of tumor cells [26], which might be a potential
prognostic marker or therapeutic target against the dis-
ease. The protein encoded by CCNB1 gene is an import-
ant monitoring protein in mitosis, which is necessary for
proper controlling the cell cycle at the G2/M transition
phase [27]. Previous studies have reported that the
CCNB1–Cdk1 complex is a key regulator of mitotic
entry [28]. Recently, increasing evidence demonstrated
that CCNB1 was over-expressed in considerable cancers
with poor prognosis, including hepatocellular carcinoma
[29, 30], breast cancer [31, 32], and pancreatic cancer
[33, 34]. The expression of CCNB1 is often used to

estimate prognosis after treatment with anticancer drugs
[29, 35]. Studies had shown that CCNB1 were associated
with gastric cancer [36, 37]. HnRNPR-CCNB1/CENPF
axis may be a potential therapeutic target for GC treat-
ment [38].
The function of MAD2L1 is to maintain the separation

state of chromosomes during the dissociation of mitotic
chromosomes and spindle, and to play a role in the
checkpoint during mitosis [39, 40]. Abnormal regulation
of MAD2L1 is associated with chromosomal instability
and a large number of aneuploidy, which can lead to
tumorigenesis [41]. Studies have found that MAD2L1 is
overexpressed in lung adenocarcinoma tissues, and the
overexpression of MAD2L1 may indicate poor prognosis
and increased risk of tumor recurrence in patients,
which can be used as a prognostic marker for lung
adenocarcinoma [39]. Our bioinformatics analysis
showed that MAD2L1 was highly expressed in tumor
tissues compared with normal tissues. MAD2L1 is a
pro-oncogene which is upregulated in GC [42, 43], and
we need to further study its specific mechanism. The
protein encoded by CCNA2 belongs to the highly con-
served cyclin family, whose members function as regula-
tors of the cell cycle at the G1/S and the G2/M
transitions [44]. CCNA2 is overexpressed in several hu-
man cancers and closely related to tumor progression

Fig. 5 The 9 modules identified in the PPI network. Module analysis via Cytoscape software (degree cutoff = 2, node score cutoff = 0.2, k-core = 2,
and max. Depth = 100). Node size represents the degree score; lines represent interactions
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Table 2 Details of seven selected genes
N Gene

symbol
Full name Function

1 HMMR hyaluronan mediated
motility receptor

the driver of tumor progression, plays a important role in the modulation of motor activities and the maintenance of genome stability.

2 SPP1 secreted phosphoprotein 1 The protein encoded by this gene is involved in the attachment of osteoclasts to the mineralized bone matrix

3 FN1 fibronectin 1 Fibronectin 1 (FN1) is involved in cell adhesion and migration processes including embryogenesis, wound healing, blood coagulation, host defense,
metastasis, and implicated in various biochemical processes.

4 CCNB1 cyclin B1 an important regulator in cell cycle machinery, is a monitoring protein in mitosis and expressed primarily in G2/M phase which is critical for
controlling the cell cycle at the G2/M (mitosis) transition

5 CXCL8 C-X-C motif chemokine
ligand 8

a chemokine that acts as an important multifunctional cytokine to modulate tumour proliferation, invasion and migration in an autocrine or paracrine
manner.

6 MAD2L1 mitotic arrest deficient 2 like
1

a component of the mitotic spindle assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the
metaphase plate

7 CCNA2 cyclin A2 The protein encoded by this gene belongs to the highly conserved cyclin family, whose members function as regulators of the cell cycle.

Fig. 6 Seven hub genes selected from PPI network. (A) Hub genes screened by betweenness centrality according to cytoHubba plug-in. (B) Hub
genes screened by closeness according to cytoHubba plug-in. (C) Hub genes screened by degree according to cytoHubba plug-in. (D) Venn
diagram of DEGs. Hub genes were HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1, and CCNA2; PPI, protein–protein interaction

Lu et al. BMC Cancer          (2021) 21:697 Page 9 of 17



Fig. 7 Genes associated with patient’s survival outcomes by applying the K-M method. Prognostic curves of most selected genes showed a
significantly worse survival rate (P < 0.05). The red lines represent patients with high gene expression, and black lines with a low gene expression.
HR: hazard ratio.
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Fig. 8 Differentially expressed genes related with poor prognosis were analyzed using GEPIA website. These genes had significantly upregulated
expression in gastric cancers compared to normal specimen (*P < 0.05). The red and gray boxes represent cancer and normal tissues, respectively.
STAD: Stomach adenocarcinoma
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and shorter survival in lung, breast, and colorectal can-
cer [45–49]. Poor prognosis in GC patients related with
high expressions of cyclins [50].CCNA2 is a novel pre-
dictive biomarker of sensitivity to PLK1 inhibitors for
the treatment of advanced gastric cancer [51], whose
overexpression was an indicator of poor prognosis. Lim-
ited by few studies about evaluating the expression and
prognostic role of CCNA2 in GC patients, more efforts
are necessary to confirm expression pattern and prog-
nostic role of CCNA2 in GC patients.
CXCL8 is a member of the CXC chemokine family

that acts as an important multifunctional cytokine to
modulate tumor proliferation, invasion and migration in
an autocrine or paracrine manner. Neovascularization,
which provides a basis for fostering tumor growth and
metastasis, is now recognized as a critical function of
CXCL8 in the tumor microenvironment [52]. CXCL8
signaling axis also plays an indispensable role in colorec-
tal carcinoma [53, 54], renal cell carcinoma, pancreatic
cancer, thyroid tumors, gastric cancer [55, 56], and
lymphomas [57]. Aberrant activation of CXCL8 in
cancer-associated fibroblasts is correlated with poorer

survival in gastric cancer patients [58]. Microarray ana-
lysis revealed that protein tyrosine phosphatase receptor
delta-inactivation-induced CXCL8 promotes angiogen-
esis and metastasis in gastric cancer [59]. Interruption of
the related signaling pathways may thus provide promis-
ing therapeutic avenues for tumors. Studies have found
that CXCL8 is predominantly secreted by macrophages
and contributes to the immunosuppressive microenvir-
onment by inducing PD-L1+ macrophages in GC [60].
CXCL8 could be an early detection marker for perineu-
ral invasion-related GC, with a potential to be utilized as
individual therapy targets [61]. CXCL8 inhibitors may
drive antitumor response, providing potential thera-
peutic effects for patients with gastric cancer.
To further screen the TFs in hub genes, we con-

structed a gene-TF regulatory network and found IRF1,
ETV4, KLFs, and SMAD5 that were meaningful in GC.
It was reported that MTMR2 mediated epithelial-
mesenchymal transition through the IFNγ/STAT1/IRF1
pathway to promote GC invasion and metastasis [62].
KIF2A expression is a potential target for GC therapy,
which can be upregulated by transcription factor ETV4

Fig. 9 The hub gene-transcription factor (TF) regulatory network. Pink circle stands for the hub gene and orange node stands for the
transcription factor
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[63]. Krüppel-like factors (KLFs) have been extensively
investigated in multi-cancers, which plays a significant
role in GC progression and could be a new thera-
peutic target for GC patients. Interestingly, SMAD5
was frequently altered in human GC [64]. The intri-
cate interaction between TFs and other hub genes
made great contribution to the development of
cancer.

Studied have proved that Toll-like receptor (TLR) sig-
naling pathways play important roles in development of
GC. TLR signaling pathways are involved in innate and
adaptive immunity responses [65] and activation of both
inflammatory and carcinogenic processes [66]. Thus, the
pattern of the host’s immune response beyond genetic
and environmental factors is also essential for under-
standing the pathology of GC [67]. TLRs, a class of

Table 3 Analysis of 7 selected genes by GO and KEGG pathway enrichment. FDR, false discovery rate. GO, gene ontology; BP,
biological process, CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEMs,
differentially expressed miRNAs

Category Term Count % PValue Genes FDR

GOTERM_
BP_DIRECT

GO:0048146 ~ positive regulation of fibroblast proliferation 3 0.263 1.51E-04 CCNB1, CCNA2, FN1 0.174735

GOTERM_
BP_DIRECT

GO:0051301 ~ cell division 3 0.263 0.006147477 CCNB1, MAD2L1, CCNA2 6.892135

GOTERM_
BP_DIRECT

GO:0051436 ~ negative regulation of ubiquitin-protein ligase activity
involved in mitotic cell cycle

2 0.175 0.025106263 CCNB1, MAD2L1 25.50655

GOTERM_
BP_DIRECT

GO:0051437 ~ positive regulation of ubiquitin-protein ligase activity
involved in regulation of mitotic cell cycle transition

2 0.175 0.026854324 CCNB1, MAD2L1 27.03882

GOTERM_
BP_DIRECT

GO:0022617 ~ extracellular matrix disassembly 2 0.175 0.026854324 SPP1, FN1 27.03882

GOTERM_
BP_DIRECT

GO:0031145 ~ anaphase-promoting complex-dependent catabolic
process

2 0.175 0.027901906 CCNB1, MAD2L1 27.94322

GOTERM_
BP_DIRECT

GO:0071456 ~ cellular response to hypoxia 2 0.175 0.033820471 CCNB1, CCNA2 32.86331

GOTERM_
BP_DIRECT

GO:0000086 ~ G2/M transition of mitotic cell cycle 2 0.175 0.047971221 CCNB1, HMMR 43.40814

GOTERM_
BP_DIRECT

GO:0042787 ~ protein ubiquitination involved in ubiquitin-
dependent protein catabolic process

2 0.175 0.053446406 CCNB1, MAD2L1 47.06463

GOTERM_
BP_DIRECT

GO:0030198 ~ extracellular matrix organization 2 0.175 0.068031098 SPP1, FN1 55.77698

GOTERM_
BP_DIRECT

GO:0001525 ~ angiogenesis 2 0.175 0.077092848 CXCL8, FN1 60.50819

GOTERM_
CC_DIRECT

GO:0000922 ~ spindle pole 2 0.175 0.035359174 CCNB1, MAD2L1 26.96429

GOTERM_
CC_DIRECT

GO:0005615 ~ extracellular space 3 0.263 0.067058677 CXCL8, SPP1, FN1 45.44016

GOTERM_
CC_DIRECT

GO:0005576 ~ extracellular region 3 0.263 0.092078284 CXCL8, SPP1, FN1 56.9647

GOTERM_
MF_DIRECT

GO:0005515 ~ protein binding 7 0.613 0.019847501 CCNB1, MAD2L1, CXCL8,
CCNA2, SPP1, FN1,
HMMR

13.51086

KEGG_
PATHWAY

hsa04512:ECM-receptor interaction 3 0.263 0.002294922 SPP1, FN1, HMMR 2.054976

KEGG_
PATHWAY

hsa04914:Progesterone-mediated oocyte maturation 3 0.263 0.002294922 CCNB1, MAD2L1, CCNA2 2.054976

KEGG_
PATHWAY

hsa04110:Cell cycle 3 0.263 0.004611117 CCNB1, MAD2L1, CCNA2 4.090835

KEGG_
PATHWAY

hsa05146:Amoebiasis 2 0.175 0.088997082 CXCL8, FN1 56.93087

KEGG_
PATHWAY

hsa04620:Toll-like receptor signaling pathway 2 0.175 0.088997082 CXCL8, SPP1 56.93087

KEGG_
PATHWAY

hsa04114:Oocyte meiosis 2 0.175 0.093026279 CCNB1, MAD2L1 58.62208
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transmembrane receptors [68], play an important role in
defense against Helicobacter pylori (H. pylori) widely
known as a class I carcinogen in GC [68]. Therefore, the
abnormal expression of TLRs is closely related to
tumorigenesis and cancer progression and a better un-
derstanding of TLRs will provide new diagnostic or pre-
dictive markers for the diagnosis of GC.
We failed to validate SPP1 as a DEG in our fresh

GC samples, which may be as a result of the small
sample size and inter-sample variation. The protein
encoded by SPP1 plays an important role in tumori-
genesis, invasion and metastasis [10, 69]. Overex-
pressed SPP1 expression had been confirmed in
various types of cancers [70–73]. A study based on
gastric cancer cell lines indicated that the elevated ex-
pression of SPP1 is a critical determinant of poor
prognosis [74]. In addition, in a recent study, SPP1
rs4754 polymorphism was observed to be associated
with the risk of gastric cancer and has an important
effect in gastric carcinogenesis [75]. However, it has

been reported that SPP1 might not affect the progno-
sis of patients with GC [73], which needs more study
in the future.
All above, we found that high expression of 5 validated

hub genes should promote the progress of GC patients,
suggesting that their antagonism may improve the prog-
nosis of GC. Although some of these genes were found
before, our study could validate and explain the expres-
sion status of these genes and their impact on prognosis
in GC again. These findings provide a set of useful driv-
ing genes and key pathways of cancers, which are worth
future investigating for novel therapeutic targets, a prog-
nostic evaluation index, and the detailed pathogenesis of
them in GCs.
However, there were several limitations of the present

study. Firstly, validation with qRT-PCR study need more
tumor and adjacent normal tissues samples. Second,
more experiments, such as immunohistochemistry and
Western blot, should be conducted to confirm the pro-
tein levels in GC.

Fig. 10 Validation of 7 selected gene expression in gastric cancer samples was performed by qRT-PCR analysis. (A) HMMR; (B) SPP1; (C) FN1; (D)
CCNB1; (E) CXCL8; (F) MAD2L1; (G) CCNA2. Expression of these DEGs was normalized against GAPDH expression. The statistical significance of
differences was calculated by the Student’s t-test
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Conclusion
Taken above, our bioinformatics analysis identified 295
DEGs of GC. Among them, HMMR, CCNB1, CXCL8,
MAD2L1 and CCNA2 were verified and considered as
Hub genes were associated with disease prognosis, which
could be predictive and therapeutic targets.
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