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Persistent Newcastle disease virus infection
in bladder cancer cells is associated with
putative pro-survival and anti-viral
transcriptomic changes
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Abstract

Background: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both
in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent
infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of
persistency of infection remains poorly understood.

Methods: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P.
Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes
(DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set
Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were
validated by RT-qPCR.

Results: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow
cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when
compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were
upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the
upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the
survivability of EJ28P cells and the development of persistent infection of NDV.

Conclusions: This study provides insights into the transcriptomic changes that occur and the specific signalling
pathways that are potentially involved in the development and maintenance of NDV persistency of infection in
bladder cancer cells. These findings warrant further investigation and is crucial towards the development of
effective NDV oncolytic therapy against cancer.
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Background
Newcastle disease virus (NDV) is a negative, non-
segmented, single-stranded RNA paramyxovirus. Despite
being pathogenic against the avian species, NDV only
causes pharyngitis, conjunctivitis and mild flu-like symp-
toms in humans [1]. NDV has been studied extensively
in vitro and in vivo for its oncolytic properties against
various types of cancers [2–5]. The virus has been
shown to selectively target cancer cells while leaving
normal cells unharmed [5, 6]. It was postulated that the
selectivity of NDV is due to defects in antiviral responses
that favour viral replication such as the production of in-
terferons by cancer cells [7, 8]. While NDV mediates
oncolysis through the activation of intrinsic and extrinsic
apoptosis pathways [9], it can also trigger a long-term
adaptive immune response against infected cancer cells
[10].
However, persistent infection of NDV has been re-

ported in colorectal cancer cells [11]. Interestingly, the
persistently infected colorectal cancer cells were found
to harbour viral progenies that produced smaller plaques
as compared to the uninfected cancer cells [11]. In a
separate study, mutations in the HN and F genes were
found in the viral progenies that were isolated from per-
sistently infected ovarian cancer cells, linking hyperfuso-
genic NDV activity and the development of persistent
infection [12]. Pertinently, the persistently infected can-
cer cells were resistant to NDV-mediated oncolysis [12].
Thus, the successful translation of NDV as an oncolytic
viral therapeutic in clinic is dependent on the ability to
overcome the potential risk of persistent infection.
Interestingly, not all cancer cells develop persistent in-

fection of NDV [11]. Intrinsic cellular factors are
thought to play a crucial role, but they remain poorly
understood. In this study, we aimed to identify genes
that are associated with persistent infection of NDV in
EJ28 bladder cancer cells. By comparing the transcrip-
tomic profiles of persistently infected EJ28 cells and un-
infected EJ28 cells, we identified differentially expressed
genes (DEGs) and pathways that provide novel insights
towards our improved understanding of persistent infec-
tion of NDV in bladder cancer cells.

Methods
Viruses
The method of NDV propagation was previously de-
scribed [11, 13]. Briefly, the velogenic strain AF2240 was
propagated in 9 day-old embryonated eggs and further
purified by using a sucrose gradient of 20% (w/v) to 60%

(w/v). NDV stock was quantified using plaque assays as
previously described [13]. Briefly, 2 × 106 of SW620 colo-
rectal cancer (CRC) cells were seeded into each well of a
6-well plate and incubated in 5% CO2 at 37 °C. Cells
were incubated for 48 h to ensure it reached 100% con-
fluence before a plaque assay was performed. The re-
combinant NDV harbouring the GFP gene, rAF-GFP
was generated using reverse genetics. The GFP gene was
amplified and inserted into the M/F non-coding region
of a full-length cDNA clone of the NDV strain AF2240.
The recombinant virus was recovered in BSR T7/5 baby
hamster kidney cells stably expressing T7 RNA polymer-
ase and subsequently propagated in 10-day old embryo-
nated eggs. Sequencing of the viral genome confirmed
the presence of the GFP gene.

Establishment of persistently infected EJ28 cells model
Persistent infection of NDV in cancer cells was per-
formed as described by Chia et al. [11]. Briefly, EJ28
bladder cancer cells (1 × 106 cells) were seeded into each
well of a 6-well plate. On the following day, the conflu-
ent monolayer of cancer cells was washed with 1 × PBS
followed by infection with NDV at a multiplicity of in-
fection (MOI) of 1. The plate was incubated for an hour
and rocked at every 15 min interval. The cells were then
rinsed with 1 × PBS, replenished with fresh maintenance
media (MM; DMEM supplemented with 2% foetal bo-
vine serum, FBS) and finally incubated for 96 h in 5%
CO2 at 37 °C. Micrographs of the infected cells were
taken regularly to record the progression. The surviving
cancer cells were then rinsed with 1 × PBS and fresh
growth medium (GM; DMEM supplemented with 10%
FBS) was added to allow the surviving cells to grow.
Once the cells grew to confluency, the cells were rein-
fected again with NDV as described above. This process
was repeated for another two times to select for truly
persistently infected cancer cells. These persistently in-
fected cells were then designated as EJ28P.

Annexin V/Propidium iodide assay
Reinfection of the persistently infected EJ28P with rAF-
GFP was carried out as described above. The cells were
passaged continuously. Several passages (1, 15, 20 and
25) were selected to determine the presence of NDV in
the EJ28P-GFP cells. The cells were trypsinised by using
0.25% (w/v) of trypsin-EDTA (Gibco, USA), mixed with
1 × PBS at equal volume and then centrifuged at 1000
rpm (Centrifuge 5424, Eppendoff, Germany). The result-
ing cell pellet was stained with Alexa Fluor® 647 Annexin
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V apoptosis detection kit (BioLegend, USA) according to
the manufacturer’s protocol. The stained cells were then
subjected to flow cytometric analysis (Novocyte, Acea
Biosciences, USA). By using the NovoExpress Software,
10,000 single cells were gated, and a graph plotted with
the FITC channel set as the X-axis and cell count set as
the Y-axis. Uninfected EJ28P cells were used as the
negative control.

RNA extraction and microarray analysis
Total RNA of EJ28 and EJ28P cells were extracted using
RNeasy MinElute™ Kit (Qiagen, The Netherlands) ac-
cording to the manufacturer’s protocol. The RNA quan-
tity and purity were analysed by NanoPhotometer
(Implen, Germany). RNA samples with A260/A280 ratio
of 2.0 and above were subjected to Bioanalyzer (2100 Ex-
pert, Agilent Technologies, USA) analysis to determine
the integrity of the extracted RNA. Only RNA samples
with an RNA integrity number (RIN) of 8 and above
were selected for the subsequent analyses. RNA samples
with RIN values lower than 8 were re-purified with the
RNeasy MinElute™ Kit (Qiagen, The Netherlands) ac-
cording to the manufacturer’s protocol. The RNA sam-
ples were then diluted to 300 ng/μL and subsequently
labelled using TargetAmp™-Nano Labeling Kit for Illu-
mina® Expression BeadChip® (Epicentre, USA). All incu-
bation steps were performed on the Veriti 96-Well
Thermal Cycler (Applied Biosystems, USA). Subse-
quently, the generated biotin-aRNA was purified using
the RNeasy MinElute Cleanup Kit (Qiagen, Germany)
according to the manufacturer’s protocol. The purified
biotin-aRNA was quantified and further diluted to a
concentration of 150 ng/μL in a 15 μL solution, followed
by analysing it on the Bioanalyzer using the RNA Nano
Chip. The RNA samples that passed the QC were run
on the HumanHT-12 v4 Expression BeadChip (Illumina,
USA). The BeadChip was hybridised for 18 h 24 min at
58 °C, and the detection was carried out using Cy3-
Streptavidin (Invitrogen, USA). The hybridised BeadChip
microarray was scanned using the iScan System (Illu-
mina, USA). The microarray data were submitted to the
GEO database and the accession number is GSE163881.

Differentially expressed genes (DEG) and gene set
enrichment analysis (GSEA)
DEGs between EJ28P and EJ28 obtained from the iScan
System was presented as a Volcano plot. The plot was
constructed by plotting the –log10 of the p-values on
the Y-axis and log2 fold change on the X-axis. Subse-
quently, the edgeR program was used to select genes
that had significant changes (Padj < 1e-10) with an abso-
lute log2 fold change of 2 (upregulated genes) and − 2
(downregulated genes). GSEA was performed to identify
relevant biological significances by using the latest

version of GSEA software (4.1.0) downloaded from
Broad Institute Gene Set Enrichment Analysis website
(www.broad.mit.edu/gsea). The enrichment gene sets
used were selected from MSigDB, namely, hallmark (H),
curated (C2), oncogenic (C6) and immunologic (C7)
gene sets. The phenotype label was persistent infection
versus control and the number of permutations was set
to 1000. Significance of enrichment magnitude was set
at a False Discovery Rate (FDR) of 25% for GSEA.

Ingenuity pathway analysis (IPA)
DEGs with log2 fold change of > 2 (upregulated genes)
and < 2 (downregulated genes) were selected and ana-
l y s ed us ing IPA (QIAGEN Inc . , h t tp s : / /www.
qiagenbioinformatics.com/products/ingenuity-pathway-
analysis). The software uses a network generation algo-
rithm to segment the network map between molecules
into multiple networks. In addition, IPA was also used
to compare the relationship among these DEGs to iden-
tify key regulators within the network.

RT-qPCR analysis
The total RNA extracted from EJ28 and EJ28P was con-
verted into cDNA using SensiFAST™ cDNA synthesis kit
according to the manufacturer’s protocol (Bioline,
United Kingdom). Quantitative reverse transcription
PCR (RT-qPCR) analysis was performed in three tech-
nical replicates to measure the relative gene expression
of five randomly selected DEGs from the microarray
dataset. The delta-delta Ct method was used to deter-
mine the expression ratio between EJ28P and EJ28 cells,
where normalisation was performed using three house-
keeping genes, namely, TBP (QT00000721), SDHA
(QT00059486), and GAPDH (QT00079247). The five se-
lected DEGs were BNIP3 (QT00024178), S100A4
(QT00014259), DDIAS (QT02451288), CASP9
(QT00036267), and APOBEC3B (QT00040733). All the
primers used in this study were purchased from Qiagen
(QuantiTect@ Primer Assay).

Results
Establishment of NDV-persistently infected EJ28 (EJ28P)
cells
When the EJ28 bladder cancer cells were first infected
with the NDV strain AF2240 (MOI of 1), majority of the
infected cells died. The surviving subpopulation of cells
persisted in a state of slow growth for about two weeks
(Fig. 1). Once the surviving subpopulation reached con-
fluency on day 17, the cells were reinfected with NDV
(MOI of 1) and subsequently reinfected again on day 21.
No gross cytopathic effects were observed upon NDV
reinfection. The surviving cells from the first NDV infec-
tion appeared to be resistant to NDV-mediated oncoly-
sis. However, these cells could either have been a result
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of the preferential selection of inherently resistant
subpopulation of cells during the first infection or
the acquiring of persistency of infection in culture
post-infection; or a combination of both. These per-
sistently NDV-infected cells were designated as
EJ28P.

EJ28P cells harbour NDV over multiple passages and are
resistant towards NDV-mediated oncolysis
In order to compare the NDV cytotoxicity against EJ28P
and EJ28 cells, both cells were infected with NDV
(MOI = 1) and observed under the microscope at 120
hpi. As previously observed during the establishment of

Fig. 1 Establishment of NDV-persistently infected EJ28P cells. EJ28P cells were established after three NDV infections at MOI of 1. A subpopulation
of cells that survived the first infection were allowed to grow to confluency and were reinfected twice with NDV. (A) Day 1 (first infection), (B)
Day 5, (C) Day 12, (D) Day 17 (second infection), (E) Day 21 (third infection) and (F) Day 27
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EJ28P, the EJ28 cells experienced cytopathic effects with
only a few surviving cells. The EJ28P, on the other hand,
did not display any gross NDV-induced cytopathic ef-
fects (Fig. 2a). The viable cells post-NDV infection was
qualitatively determined by neutral red staining (Fig. 2b).
The wells containing EJ28 cells infected with NDV ap-
peared transparent with only a few adherent cells stained
with neutral red whereas the well containing EJ28P cells
infected with NDV appeared to be completely stained in
red; much like the wells containing the mock-infected
cells. The virus titre in these EJ28P cells were

determined via plaque assay (Fig. 2c). The EJ28P were
found to produce viral progenies up to 2.2 × 107 PFU/
mL comparable to that of the infected EJ28. Interest-
ingly, the plaques produced by NDV in EJ28P cells were
smaller in size as compared to that produced by NDV
during the 1st infection of EJ28 cells. (see Add-
itional file 1: Fig. S1).
The cell viability of mock- and NDV-infected EJ28 and

EJ28P cells from 0 hpi to 120 hpi was also analysed
using trypan blue exclusion test (Fig. 2d). At 24 hpi, the
relative cell viabilities were similar across all four cells.

Fig. 2 Confirmation of NDV persistently infected EJ28P cells. (A) Microscopic image and (B) neutral red staining of mock- and NDV-infected EJ28P
and EJ28 cells (MOI of 1) at 120 hpi. (C) Virus titre of the culture supernatant collected from EJ28P and NDV-infected EJ28 (positive control) cells.
(D) Relative viability of mock- and NDV-infected EJ28P and EJ28 cells (MOI = 1) from 0 hpi to120 hpi. (E) Apoptosis analysis of NDV-infected and
mock-infected EJ28 and EJ28P cells stained with Annexin V and propidium iodide, followed by flow cytometric analysis. Percentage of early and
late apoptotic cells are presented in a bar graph. All data were presented as mean of biological triplicate readings. Value with ****, ***, **, and NS
indicate a P value of < 0.0001, < 0.001, < 0.01, and not significant, respectively
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However, significant differences in relative cell viabil-
ity values were observed in the subsequent time
points. At 120 hpi, there were less than 1% viable
NDV-infected EJ28 cells. In contrast, the mock-
infected EJ28 cells had quadrupled while the mock-
and NDV-infected EJ28P cells had tripled in that
same 5-day period. Although the relative cell viability
was lower than that of the parental cells, EJ28P cells
appear to be resistant towards NDV-mediated oncoly-
sis. To further confirm the presence of NDV in
EJ28P, we reinfected these cells using a recombinant
NDV strain AF2240 that harbours the green fluores-
cent protein (GFP) gene (rAF-GFP) at MOI of 1. Sub-
sequent observation under a fluorescence microscope
showed that GFP was expressed in the EJ28P cells
(see Additional file 1: Fig. S2). The GFP signal was
detectable in the EJ28P cells even after 25 passages.
These findings suggest that persistently infected EJ28P
cells are susceptible to NDV infection and was able
to continuously produce viral proteins through mul-
tiple cell passages.

Annexin V/Propidium Iodide assay was also conducted
on the mock- and NDV-infected EJ28 and EJ28P cells
and analysed by flow cytometry (see Additional file 1:
Fig. S3). At both time points (24 hpi and 48 hpi), there
were no statistically significant differences in the per-
centages of apoptotic cells (late or early) between mock-
and NDV-infected EJ28P cells. This further validates that
NDV reinfection has limited oncolytic effect on persist-
ently infected cells (Fig. 2e). Nevertheless, it is interest-
ing to note that although no gross cytopathic activity
was observed in the earlier assays, there were a relatively
small percentage (~ 5%) of apoptotic cells in both mock-
and NDV-infected EJ28P cells. Similarly, apoptotic cells
were detected in persistently infected Hep2 cells in a
previous study [14].

A panel of 20 gene expression signatures provides
accurate discriminatory power to distinguish NDV-
persistently infected cells from their parental cells
Microarray analysis of the global gene expression identi-
fied a total of 368 genes that were significantly

Fig. 3 Heatmap of differential gene expression between EJ28 and EJ28P cells. The gene expression profiles of 20 genes provided sufficient
discriminatory power to accurately separate EJ28 and EJ28P cells into 2 distinct clusters representing bladder cancer cells and persistently
infected bladder cancer cells. Downregulated genes are represented in purple (expression value < 0) while upregulated genes are represented in
yellow (expression value > 0)
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differentially expressed in EJ28P cells as compared to
EJ28 cells. Of these, 229 genes were upregulated and 139
genes were downregulated in EJ28P cells (see Add-
itional file 2: Table S1). A heatmap (Fig. 3) was gener-
ated using 20 DEGs, which provided sufficient
discriminatory power to separate both EJ28 and EJ28P
cells into two distinct hierarchical clusters, which are the
bladder cancer cells and the persistently infected bladder
cancer cells clusters, respectively. Although GSEA iden-
tified more than 20 genes that were distinctively
expressed between these two clusters of cells (see Add-
itional file 3: Fig. S4), only 20 genes were needed to es-
tablish a panel of genes to distinguish persistently
infected EJ28P cells from non-infected EJ28 cells.
It was found that regulators of cell cycle and cell pro-

liferation such as S100A4 [15, 16], CCND2 [17],
C13ORF15 (RGCC) [18, 19], and SYK [20, 21] and genes
associated with glucose or ion transport such as SLC2A3
[22–24] and TMEM16A (ANO1) [25, 26] were upregu-
lated in the persistently infected bladder cancer cells.
While CNN3, SHISA2, TMED3, SRGN were downregu-
lated in persistently infected bladder cancer cells. It is
worth mentioning that SHISA2 is a negative regulator of
Wnt/β-catenin signalling pathway [27–29] while SRGN
is a mediator of granule-mediated apoptosis [30–32].
The details of these 20 significant DEGs are shown in
Additional file 3: Table S2.

GSEA identifies pathways associated with cell survival,
cell growth and differentiation as upregulated in EJ28P
The microarray data analysis with GSEA based on
MSigDB hallmark gene sets revealed the most enriched
pathways in EJ28P cells Fig. 4 (4A and 4B). Among these
pathways, Wnt/β-catenin signalling pathway (Fig. 4c)
was the most induced gene set in the hallmark with an
NES of 1.31. Figure 4d shows the list of genes associated
with the canonical Wnt/β-catenin signalling pathway
such as CCND2, AXIN2, LEF1, NKD1, and NOTCH1
that were found to be upregulated in EJ28P. Meanwhile,
some downregulated DEGs were found to be enriched in
the TGF-β signalling pathway (Fig. 4e & f). GSEA
showed that KRAS signalling was also enriched in EJ28P
cells (see details in Additional file 3: Table S3). DEGs
that are involved in the inhibition of apoptosis such as
TNFRSF1B, TMEM158, and FGF9 were found to be
enriched in this pathway, [33–37].
IPA was employed to search for potential interactions

between the DEGs that were identified from the micro-
array data. Corresponding to the GSEA findings, one of
the identified networks (Fig. 5) revealed several key
genes associated with the Wnt/β-catenin signalling path-
way such as CDH1, EPAS1, AXIN2, LEF1, NKD1. The
network showed that EPAS1 was an important regulator

gene that controls multiple genes while CDH1 has mul-
tiple interactions with other genes.
Subsequently, GSEA was performed using curated

(Fig. 6a), immunologic (Fig. 6b), and oncogenic (Fig. 6c)
gene sets collection. The curated gene sets revealed that
the top 3 significantly enriched pathways were GPCRs
class B Secretin-like (NES = 1.97; FDR = 0.186), metabol-
ism of amine-derived hormones (NES = 1.92; FDR =
0.155) and benign skin tumour (NES = 1.90; FDR =
0.123). GSEA analysis of 189 oncogenic gene sets identi-
fied the signature characteristics of genes downregulated
in HEK293 cells upon knockdown of ATM (NES = 1.67;
FDR = 0.062), genes upregulated in MCF10A cells
(breast cancer) upon knockdown of BRCA1 (NES = 1.66;
FDR =0.062); and genes downregulated in epithelial cells
expressing the mutated form of KRAS (NES = 1.64;
FDR = 0.062) to be the top 3 significantly enriched in
EJ28P cells. The immunologic gene sets revealed the top
3 significantly enriched immune-related gene sets were
for the signature characteristics of genes upregulated in
response to trivalent inactivated influenza (TIV) vaccin-
ation (NES = 1.73; FDR =0.055); genes downregulated in
HEK293 cells at 2 h after stimulation by muramyl dipep-
tide (NES = 1.71; FDR =0.090); genes upregulated in
regulatory T cells due to altered function of FOXP3
(NES = 1.71; FDR =0.078).

Validation of microarray data by RT-qPCR
In order to validate the microarray results, five DEGs
were randomly selected and subjected to RT-qPCR ana-
lysis. Based on the similar expression patterns, the log2
fold change values derived from the RT-qPCR data vali-
dated the DEGs that were identified from the
microarray-based profiling exercise. (Fig. 7).

Discussion
Despite NDV’s ability to lyse cancer cells, some cancer
cells including colorectal cancer and ovarian cancer are
able to resist viral-mediated oncolysis and eventually be-
come persistently infected with NDV. The intrinsic
mechanism underlying persistent infection of NDV re-
mains elusive. In this study, we established persistently
NDV-infected bladder cancer cells, EJ28P, by challenging
EJ28 bladder cancer cells with NDV infection over a
period of 2 weeks. Eventually, there was a subpopulation
of cells that survived the viral infection and grew un-
interruptedly despite exposure to a second and third in-
fection. These findings are similar to that reported in a
study involving colorectal cancer cells [11].. These cells
were verified to be persistently infected by analysing the
cell viability, plaque assay of spent medium, and
Annexin V/Propidium Iodide assay. The overall charac-
teristics of EJ28P were similar to other NDV persistently
infected cancer cells that have been reported previously
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Fig. 4 GSEA reveals activation of cell proliferation and cell growth signalling pathways in EJ28P. GSEA was performed using the hallmark genes
set from MSigDB with (A) upregulated genes and (B) downregulated genes. Enriched pathways with FDR < 0.25 are shown in black while FDR >
0.25 are shown in grey. GSEA enrichment plots for (C) Hallmark-Wnt/β-catenin Signalling, (D) Hallmark-TGF-β Signalling. (E) Heatmap of enriched
genes in the Wnt/β-catenin signalling pathway. (F) Heatmap of enriched genes in the TGF-β signalling pathway
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[11] such as (i) resistance to NDV superinfection and (ii)
continuously producing viral progenies. Nevertheless, a
small population of early apoptotic cells were observed
in mock-infected EJ28P cells as compared to the mock-
infected EJ28 cells. Similar observation was also reported
by Fox & Parks (2018), who concluded that the persist-
ently infected cells have higher basal levels of cellular
stress that contributes to the relatively small percentage
of cell death [14]. To pinpoint the possible underlying
mechanism(s) associated with persistent NDV infection,
we performed transcriptome analysis to identify

significant genes and pathways that have been altered in
NDV persistently infected EJ28P as compared to EJ28
cells.
GSEA was used to identify the hallmark gene sets that

have been differentially regulated in EJ28P cells. Gene
sets that were upregulated included Wnt/β-catenin sig-
nalling, hedgehog signalling, oestrogen response early
and late, and MYC target V1 and V2. All these gene sets
are involved in the regulation of cell cycle, cell prolifera-
tion and cell growth. Interestingly, a previous study on
the mechanism of NDV infection showed that NDV

Fig. 5 Network of gene interactions identified by IPA. The network is displayed graphically as nodes (genes) and edges (the biological
relationships between nodes). The network shows that EPAS1 is an important regulator gene that controls the expression of multiple genes. Most
of the genes within the network are associated with the Wnt/β-catenin signalling pathway. Nodes coloured in red indicates upregulated
expression while nodes coloured in green indicates downregulated expression. (QIAGEN
Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis)
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mediates oncolysis via the downregulation of Wnt/β-ca-
tenin signalling pathway to promote apoptosis and in-
hibit cell migration [38]. This pathway could be
dysregulated by viral-host interaction in order to estab-
lish and maintain viral latency in host cells [39]. Hence,
we hypothesised that Wnt/β-catenin signalling pathway
could be involved in the persistent infection of NDV in
EJ28 cells.
NDV is well known for its ability to induce both

extrinsic and intrinsic apoptotic signalling in cancer
cells [9]. However, the ability of EJ28P to survive
NDV-mediated oncolysis suggests that the anti-
apoptosis or pro-survival signalling could be

upregulated. The transcriptome analysis revealed sev-
eral genes, which are associated with the regulation
of cell survival such as S100A4 and SYK, both of
which were upregulated in EJ28P. Incidentally,
S100A4 expression is positively regulated by the
Wnt/β-catenin signalling pathway [40] to protect
cells from pro-apoptotic stimuli [41, 42]. It was re-
ported that the knockdown of S100A4 decreased cel-
lular proliferation and promoted apoptosis [42].
Meanwhile, the SYK gene was reported to provide
pro-survival signals [43] whereas the inhibition of its
protein expression resulted in apoptosis and the sup-
pression of cellular proliferation [44].

Fig. 6 Enrichment analysis by GSEA using different gene set collection. (A) GSEA using the Curated Gene Set collection. (B) GSEA using the
Immunologic Gene Sets collection. (C) GSEA using the Oncogenic Gene Sets collection. All the significantly enriched pathways are presented in
black (FDR < 0.25) or grey (FDR < 0.25)

Chan et al. BMC Cancer          (2021) 21:625 Page 10 of 13



TGF-β signalling pathway have been shown to be up-
regulated by many viruses, such as hepatitis B virus, In-
fluenza A virus and lymphocytic choriomeningitis virus,
during infection [45–48]. Nevertheless, GSEA analysis
showed that this pathway was downregulated in EJ28P
cells. The downregulation of this pathway is hypothe-
sised to hamper successful viral replication in the host
cells. However, our study showed that the EJ28P cells
were persistently infected by NDV and the cells contin-
ued to produce viral progenies. This suggests that TGF-
β signalling pathway may not play an important role in
the persistent infection of NDV in EJ28P. Bottler et al.
(2012) also showed that TGF-β blockade failed to con-
trol the establishment of persistent virus infection [45].
GSEA also revealed that DEGs associated with KRAS

signalling were enriched in EJ28P cells. Activation of the
proto-oncogene KRAS mutation pathway is common in
cancer cells and it is responsible for promoting apoptosis
inhibition, migration and proliferation in many cancer
cells [49–51]. In addition, KRAS signalling enhances the
Wnt/β-catenin signalling resulting in tumour multipli-
city and progression [52]. A close-up analysis on these
DEGs showed that several negative regulators of apop-
tosis were upregulated in EJ28P cells, including TNFR
SF1B, TMEM158, and FGF9. Several studies reported
that TNFRSF1B could induce pro-survival pathways and
protect cells from TNF-induced apoptosis [33, 34, 53,
54]. On the other hand, in vitro siRNA knockdown of
TMEM158 have resulted in the inhibition of cell prolif-
eration and increased apoptosis in cancer cells [35, 36].
Increased levels of FGF9 expression via transient trans-
fection has shown to decrease cisplatin-induced cellular
apoptosis while siRNA knockdown of FGF9 increased
cisplatin-induced cellular apoptosis [55].

It was also revealed that cell proliferation and cell
growth associated genes such as CCND2 and
CL13ORF15 (RGCC) were upregulated in EJ28P cells.
CCND2 plays a critical role in cell cycle regulation
where it was reported that overexpression of CCND2 in
cancer cells is associated with enhanced cell proliferation
and aggressiveness [56]. In addition, CL13ORF15
(RGCC) was found to modulate the cell cycle and induce
mitosis [57]. The upregulation of glucose transporter
protein genes such as SLC2A3 and TEMEM16A (ANO1)
also suggest that the cells require large amounts of en-
ergy in order to sustain cellular metabolism that is re-
quired for cellular proliferation and growth due to the
upregulation of the Wnt/β-catenin signalling pathway.
In a nutshell, the transcriptome analysis and GSEA col-
lectively support the postulate that Wnt/β-catenin sig-
nalling pathway is involved in persistent infection of
NDV in bladder cancer cells via the modulation of cellu-
lar survival, proliferation, and anti-apoptosis.

Conclusions
This study established persistent infection of NDV in
bladder cancer cells and identified putative genes and
pathways that are associated with persistent infection. It
provides a snapshot of the cohesive transcriptomic dys-
regulation that occurs during persistent infection of
NDV in bladder cancer cells (i.e. EJ28P). The biological
significance of the Wnt/β-catenin signalling pathway in
conferring and maintaining the persistent infection war-
rant further investigation.
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