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Abstract

Background: Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to
women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer.
Here, we aimed to establish a ferroptosis-related prognostic gene signature for predicting patients’ survival.

Methods: Gene expression profile and corresponding clinical information of patients from The Cancer Genome
Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The Least absolute shrinkage and selection
operator (LASSO)-penalized Cox regression analysis model was utilized to construct a multigene signature. The
Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were plotted to validate the predictive effect
of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway and
single-sample gene set enrichment analysis (ssGSEA) were performed for patients between the high-risk and low-
risk groups divided by the median value of risk score.

Results: We constructed a prognostic signature consisted of nine ferroptosis-related genes (ALOX15, CISD1, CS,
GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2). The Kaplan-Meier curves validated the fine predictive accuracy of
the prognostic signature (p < 0.001). The area under the curve (AUC) of the ROC curves manifested that the
ferroptosis-related signature had moderate predictive power. GO and KEGG functional analysis revealed that
immune-related responses were largely enriched, and immune cells, including activated dendritic cells (aDCs),
dendritic cells (DCs), T-helper 1 (Th1), were higher in high-risk groups (p < 0.001). Oppositely, type I IFN response
and type II IFN response were lower in high-risk groups (p < 0.001).

Conclusion: Our study indicated that the ferroptosis-related prognostic signature gene could serve as a novel
biomarker for predicting breast cancer patients’ prognosis. Furthermore, we found that immunotherapy might play
a vital role in therapeutic schedule based on the level and difference of immune-related cells and pathways in
different risk groups for breast cancer patients.
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Background
Breast cancer (BRCA) is the most common cancer
among women worldwide, with high morbidity and mor-
tality rates [1]. According to breast cancer statistics,
there are expected to be about 276,480 new cases of in-
vasive breast cancer and 42,170 deaths for women in the
United States in 2020 [2]. Despite major advances in
therapies, including surgery, radiation therapy, chemo-
therapy, hormonal therapy, targeted and immunother-
apy, the mortality rate for breast cancer still remains
high [3]. It has been reported that the immune micro-
environment was crucial to the development of breast
cancer, especially the infiltration of immune cells. These
immune cells either expressed different immune anti-
gens for themselves or influenced other immune cells to
help tumor cells escape immunity, but specific mechan-
ism still isn’t very clear [4]. Therefore, to determine the
molecular mechanism of breast cancer occurrence and
development is crucial to advance cancer therapies.
Ferroptosis is a novel form of regulated cell death

characterized by destruction of intracellular redox bal-
ance and non-apoptosis [5]. Ferroptosis has become a
promising therapeutic option for triggering cancer cell
death [6]. It is reported that siramesine and lapatinib are

effective ferroptosis inducers in breast cancer [7, 8]. In
addition, Dihydroisonone I (DT), a pure compound
present in Salvia miltiorrhiza, can inhibit GPX4 protein
expression and induce ferroptosis through lipid peroxi-
dation to improve the prognosis of breast cancer [9]. In
terms of mechanism, elastin induces ferroptosis in breast
cancer via the Glycogen synthase kinase-3β (GSK3β) /
(nuclear factor erythroid 2-related factor 2) Nrf2 signal-
ing pathway [10]. Besides, acyl-CoA synthetase long-
chain family member 4 (ACSL4) can increase the con-
tent of intracellular lipids to promote ferroptosis [11].
Another study shows that the down-regulation of activa-
tor of transcription factor 2 (ATF2) promote ferroptosis
by a negative feedback manner [12]. However, whether
these ferroptosis-related genes are associated with the
prognosis of BRCA patients remains non-statistical. And
immunological therapy is also not ignored for breast
cancer patients.
Immune checkpoint blockade therapy has been used for

a variety of cancers, including breast cancer, most of
which are specific to CTLA-4 and PD-1/ PD-L1 [13]. And
related drugs have been developed for clinical application,
including Tremelimumab, Ipilimumab, Avelumab, Atezo-
lizumab and Pembrolizumab. Meanwhile, now a number

Fig. 1 Overview of the process of this study
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of new immune checkpoint inhibitors have emerged, such
as LAG-3, TIM-3 and TIGIT. And targeted drugs were
also in clinical trials [14]. However, sometimes a single
treatment never met our expectations for the desired ef-
fect. Thus, we have developed a combination of therapies
to combat the onset and progression of tumors, such as
chemotherapy and immunotherapy or radiotherapy and
immune checkpoint blocking therapy [14].
In this study, we first acquired mRNA expression data

and corresponding clinical profiles of BRCA patients from
The Cancer Genome Atlas (TCGA). Then, we constructed
a prognostic multigene signature with ferroptosis-related
differentially expressed genes (DEGs), and validated the
predictive power of prognostic signature. Meanwhile, we
performed GEO database to verify the credibility. Finally,
we further conducted functional enrichment analysis to
explore the potential immune-related mechanisms.

Methods
Data collection
Gene expression data (count) and corresponding clinical
information of 1223 breast cancer patients were ob-
tained from The Cancer Genome Atlas (TCGA) up to
September 08, 2020 (https://portal.gdc.cancer.gov/
repository). This cohort has 1097 breast cancer patients
with the associated gene expression profiles and clinical
characteristics. Then, 21 patients were removed due to
transcriptomic and clinical data was incomplete. Thus,
the remaining data (n = 1076) with complete follow-up
information was included in our training data set for fur-
ther analyses. The testing data set for validation was down-
loaded from the Gene Expression Omnibus database (GEO,
https://www.ncbi.nlm.nih.gov/geo/). GSE42568 was con-
ducted by GPL570 (Affymetrix Human Genome U133 Plus
2.0 Array), including 104 tumor samples with breast cancer
and 17 non-tumor samples as a normal control. The ICGC
database (https://icgc.org/) was also downloaded to verify
the reliability of the model. Furthermore, 60 ferroptosis-
related genes were retrieved from the previous literature
and are provided in Supplementary Table S1 [5].

Construction and validation of a prognostic ferroptosis-
related gene signature
The “limma” R package was performed to ascertain
DEGs related to ferroptosis between tumor tissues and
non-tumor tissues with a false discovery rate (FDR) <
0.05 in the TCGA cohort. Univariate Cox analysis of
overall survival (OS) was used to screen ferroptosis-
related genes with prognostic values and was visualized
by Forest plots. The intersection of ferroptosis-related
DEGs and prognostic genes was demonstrated by Venn
diagram and was visualized by heatmap. An interaction
network of prognostic DEGs was generated by Search
Tool for the Retrieval of Interacting Genes (STRING)

database (https://string-db.org). We performed Human
Protein Atlas (HPA) database (http://www.proteinatlas.
org/) to evaluated the expression of DEGs. The Least ab-
solute shrinkage and selection operator (LASSO)-penal-
ized Cox regression analysis was used to construct a
prognostic model for minimizing the risk of overfitting
by performing the function “glmnet” of R package. Sub-
sequently, the risk score of patients was calculated based
on gene expression and corresponding Cox regression
coefficient as follows: score = esum (each gene’s expression ×

corresponding coefficient) (Table S2). Then, patients were di-
vided into high-risk and low-risk groups according to
the median risk score values. Based on the expression of
genes signature, PCA was performed with the “prcomp”
function of the “stats” R package. Furthermore, t-SNE

Table 1 Clinical pathological parameters of patients with breast
cancer in this study

TCGA cohort

No. of patients 1076

Age (median) 58

Sex (%)

Female 1076 (100%)

Male 0 (0%)

Stage/grade (%)

I/1 183 (17%)

II/2 608 (56.5%)

III/3 242 (22.5%)

IV 20 (1.9%)

Unknown 23 (2.1%)

ER status (%)

Positive 806

Negative 240

Unknown 30

PR status (%)

Positive 698

Negative 345

Unknown 33

Her2 status (%)

Positive 161

Negative 564

Unknown 351

Therapy

Chemotherapy 490

Immunotherapy 4

Hormone Therapy 269

Targeted Molecular therapy 5

Other 308

Survival status OS days (median) 1256
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Fig. 2 (See legend on next page.)
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were applied to explore the distribution of different
groups using the “Rtsne” R package. Survival analysis be-
tween high-risk and low-risk groups was carried out by
the “surv_cutpoint” function of the “survminer” R pack-
age. Time-dependent ROC curve analyze was performed
by “survivalROC” R package to evaluate the predictive
accuracy of the genes signature.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis
were performed for patients between the high-risk and
low-risk groups by using the “clusterProfiler” R package.
GO terms and KEGG pathways with P values < 0.05
were statistically significant. The infiltrating score of 16
immune cells and the activity of 13 immune-related
pathways were determined by the “single-sample gene
set enrichment analysis (ssGSEA) “ function of the
“gsva” R package (Table S3).

Statistical analysis
Statistical analyses were performed by using R (version
4.0.2) software packages. Perl language was used for data
matrix and all data processing. A two-tailed P < 0.05 was
considered statistically significant.

Results
The detailed flowchart is shown in Fig. 1. In this study, a
total of 1076 BRCA patients from the TCGA cohort
were finally enrolled. The general clinical information of
those patients was provided in Table 1.

Identification of prognostic ferroptosis-related DEGs in
TCGA
Most of the ferroptosis-related genes (51/60, 85%) were
differentially expressed between tumor tissues and adja-
cent nontumorous tissues, and all of them were associ-
ated with OS in the univariate Cox regression analysis
(Fig. 2a). Upregulated genes, including 15-lipoxygenase
(ALOX15), CDGSH iron sulfur domain 1 (CISD1), citrate
synthase (CS), glutamate-cysteine ligase catalytic subunit
(GCLC), cystine/glutamate antiporter solute carrier family
7 member11 (SLC7A11), estrogen receptor membrane
complex 2 (EMC2), squalene epoxidase (SQLE) and
glucose-6-phosphate dehydrogenase (G6PD), manifested
an excellent prognosis in heatmap (Fig. 2b) and univariate
Cox analysis (Fig. 2c). The protein-protein interaction

network among these genes illuminates that GPX4 and
G6PD were the hub gene (Fig. 2d).

The expression of six-gene is higher in BRCA tissue
compared with normal tissue in HPA database
According to the immunohistochemical analyses in HPA
database, the high staining intensity of these six genes
(ALOX15, CS, GCLC, EMC2, SQLE, G6PD) in BRCA
tissues contrasted starkly with the low intensity or lack
of staining in normal tissues (Fig. 3a-f), while GPX4 and
ACSF2 (Fig. 3g-h) didn’t show striking difference. Re-
grettably, CISD1 and SLC7A11 didn’t be founded in
HPA database.

Construction and evaluation of nine-gene prognostic
model in TCGA
The LASSO Cox regression analysis was applied to es-
tablish a prognostic model using the expression profile
of the 10 genes mentioned above. Finally, a nine-gene
(15-lipoxygenase (ALOX15), CDGSH iron sulfur domain
1 (CISD1), citrate synthase (CS), glutamate-cysteine lig-
ase catalytic subunit (GCLC), selenoenzyme glutathione
peroxidase (GPX4), cystine/glutamate antiporter solute
carrier family 7 member11 (SLC7A11), estrogen receptor
membrane complex 2 (EMC2), glucose-6-phosphate de-
hydrogenase (G6PD) and acyl-CoA synthetase family
member2 (ACSF2)) prognostic model was constructed
to predict prognosis based on the risk score = e (0.167 *
expression level of ALOX15 + 0.212 * expression level of
CISD1 + 0.228 * expression level of Cs + 0.057 * expres-
sion level of GCLC + (− 0.116) * expression level of
GPX4 + 0.018 * expression level of SLC7A11 + 0.211 *
expression level of EMC2 + 0.134 * expression level of
G6PD + (− 0.098) * expression level of ACSF2). The pa-
tients were divided into a high-risk group (n = 535) or a
low-risk group (n = 535) according to the median value
of risk score in TCGA cohort (Fig. 4a), Principal compo-
nent analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE) analysis suggested the patients
in different risk groups were distributed in two direc-
tions (Fig. 4b-c). The patients in high-risk group had a
higher probability of death earlier than those in low-risk
group (Fig. 4d). Analogously, the Kaplan-Meier curve
showed the prognostic signature clearly distinguished
patients with high and low survival rate (Fig. 4e). The
area under the curve (AUC) confirmed that the identi-
fied prognostic signature had a robust efficiency for

(See figure on previous page.)
Fig. 2 Identification of the candidate ferroptosis-related genes in TCGA. a Venn diagram showed ferroptosis-related differentially expressed genes
between tumor and adjacent normal tissue that were correlated with OS. b Tumor tissue contained eight upregulated genes and two
downregulated genes. c Forest plots to show the results of the univariate Cox regression analysis between gene expression and OS. d The PPI
network revealed the interactions among the candidate genes and excavate the hub genes
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predicting the OS for BRCA patients (AUC = 0.618,
0.653 and 0.663; at 1, 2 and 3 year, respectively, Fig. 4f).

Validation of the nine-gene signature in GEO and ICGC
dataset
The breast cancer patients from the GEO and ICGC co-
hort were categorized into high-risk or low-risk groups
by the median value of risk score (Fig. 5a). The results of
PCA and t-SNE analysis in GEO and ICGC was similar
to TCGA (Fig. 5b-c). The high-risk group had a poor
prognosis compared to the low-risk group (Fig. 5d). the
KM curve showed the prognostic signature clearly dis-
tinguished patients with different survival rate (Fig. 5e).
The AUC of ROC indicated nine-gene signature had a
moderate predictive ability (AUC = 0.621, 0.644 and
0.572; at 1, 2 and 3 year, respectively in GEO. AUC =
0.871, 0.843 and 0.505; at 1, 2 and 3 year, respectively in
ICGC, Fig. 5f).

Independent prognostic value of the nine-gene signature
in TCGA
In order to investigate the independence of prognostic
signature for OS, we performed univariate and multivari-
ate Cox regression tests to determine the relationship
between the risk model and different clinicopathological
parameters (Fig. 6a-b). The risk score was significantly
associated with OS in univariate Cox regression analyses
(HR = 3.584, 95% CI = 2.353–5.457, P < 0.001). Consist-
ently, the risk score still indicated to be an independent
predictor for OS in the multivariate Cox regression ana-
lysis (HR = 3.145, 95% CI = 2.087–4.738, P < 0.001)
(Table 2).

Immune-related functions and pathways were enriched in
GO and KEGG
GO enrichment and KEGG pathway analyses were per-
formed to elucidate the biological functions and path-
ways that were associated with the risk score. GO
analysis results showed that several immune -related
molecular functions were significantly enriched (Fig. 7a-
b). Likewise, KEGG analyses still found that genes were
significantly enriched in IL-17 signaling and cytokine-
cytokine receptor interaction pathway (Fig. 7c-d).

The distribution of immune-associated cells and
processes in high- and low-risk group
To further explore the relevancy between the risk score
and immune status, we quantified the enrichment scores

Fig. 3 The expression of candidate signatures in both BRCA tissue
and normal tissue in HPA database. a-f The expression of six genes
(ALOX15, CS, GCLC, EMC2, SQLE, G6PD) is higher in tumor tissue. g
and h The expression of two genes (GPX4, ACSF2) isn’t
significant difference
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of diverse immune cell subpopulations, associated func-
tions or pathways with ssGSEA. Contents of the antigen
presentation process, including the score of activated
dendritic cells (aDCs), dendritic cells (DCs), antigen pre-
senting cell (APC) co-stimulation, inflammation-
promoting and MHC class-I (Fig. 7a-b), were signifi-
cantly different between the high-risk and low-risk
group. Moreover, the score of macrophages, natural
killer cell (NK), T follicular helper cell (Tfh), T-helper 1
(Th1), T-cell-co − inhibition, type I IFN response, and
type II IFN response were higher in the high-risk group,
while the scores of mast cells was just the opposite
(Fig. 8a-b). It is reported that the occurrence of breast
cancer is closely related to the infiltration of immune
cells. In the early stage, immune cells played a role in
eliminating tumors and gradually were depleted, eventu-
ally leading to the weakening of the immune response
[15, 16]. Our results might explain the occurrence of
early breast cancer, the greater the threat of tumors to
human body, the more serious the immune response.

Discussion
Breast cancer is an extremely common malignancy in
women and has a poor prognosis. In recent years, new
biomarkers have emerged for the prognosis of cancer
patients [17], but this is the first time to discuss the es-
tablishment of a prognostic model related to ferroptosis
in breast cancer patients.
The prognostic model presented in this study consist

of nine ferroptosis-related genes (ALOX15, CISD1, CS,
GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2).
Many studies reported that these genes played an signifi-
cant role in the pathogenesis of breast cancer. ALOX15
mediates lymphatic vessel invasion and lymph node me-
tastasis in human breast cancer xenograft mouse [18].
CISD1 promotes human breast cancer proliferation and
confers autophagy resistance [19, 20]. CS restrains ag-
gressive triple-negative breast cancer cells by targeting
glycolysis and the cancer stem cell phenotype [21]. 15-
deoxy-Δ (12,14)-prostaglandin J2-induced GCLC is me-
diated by Multidrug resistance-associated protein 1 via
Nrf2 signaling in human breast cancer cells [22]. GPX4,
as an oncogene, inhibits the ferroptosis effect of cancer
cells, while GPX4 inhibition can enhance the anticancer
effect of cisplatin [23]. SLC7A11 over-expression pro-
motes lipo-ROS accumulation in MCF-7 breast cancer
cells [24]. The blockade of G6PD by autophagy

Fig. 4 Prognostic analysis of the 9-gene signature model in TCGA. a
The distribution and median value of the risk scores. b The
distributions of OS status, OS and risk scores. c and d PCA and t-SNE
analysis plot. e Kaplan-Meier survival curves of OS of high-risk group
and low-risk group. f AUC of time-dependent ROC curves verified
the predictive power of the risk score
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enhanced the inhibitory effect of tyrosine kinase on
breast cancer cells [25]. Although these genes are closely
related to the pathogenesis of breast cancer, for the first
time we have combined them as a marker of prognosis
for BRCA patients.
In this study, we established nine genetic bio-

markers as a new prognostic model and analyzed
their ability to predict the prognosis of high-risk and
low-risk groups. The prognostic performance of the
model was verified by KM curve and ROC curve, and
the results showed that the model had good predict-
ive performance. Meanwhile, we also drew forest plot
with different clinical parameters, and the results
showed that there were significant correlations be-
tween them. Prognostic indicators were also good in-
dependent indicators of survival after adjustment for
clinical parameters, including age (≤60 years or >60
years), cancer stage (stage I-II or stage II-IV), risk

Fig. 5 Validation of the 9-gene signature model in GEO and ICGC. a
The distribution and median value of the risk scores. b The
distributions of OS status, OS and risk scores. c and d PCA and t-SNE
analysis plot. e Kaplan-Meier survival curves of OS of high-risk group
and low-risk group. f AUC of time-dependent ROC curves verified
the predictive power of the risk score

Fig. 6 The results of the univariate and multivariate Cox regression
analyses regarding significant survival-related clinicopathological
parameters in TCGA
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Table 2 Univariate and multivariate Cox regression analysis between prognostic risk model and clinicopathological parameters

Characteristics Univariate Cox regression analysis Multivariate Cox regression analysis

HR HR.95 L HR.95H p value HR HR.95 L HR.95H p value

Age 2.162465653 1.473275815 3.174054478 < 0.001 1.611064335 0.966106504 2.686586088 0.068

Stage 2.30704471 1.563193243 3.404860733 < 0.001 5.97890086 3.483108014 10.26303386 < 0.001

T 1.518821112 0.972301454 2.372533293 0.066 1.231451 0.58982 2.510992 0.55

N 2.213785821 1.419917467 3.451501778 < 0.001 0.392161053 0.213503048 0.720318953 0.003

M 2.993734856 1.097895745 8.163296402 0.032 2.370712367 0.602318224 9.331076006 0.217

Risk score 3.58086558 2.215190038 5.788486803 < 0.001 2.61272202 1.365950383 4.997484859 0.004

Fig. 7 Representative results of GO and KEGG analyses in TCGA. a and b The results of GO biological process enrichment, GO cellular component
enrichment and GO molecular function enrichment of DEGs. c and d The results of KEGG pathways analysis of DEGs
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Score (high or low). The above confirmed that the
model can predict the prognostic characteristics of
breast cancer patients.

Based on DEGs between different risk groups, we per-
formed GO and KEGG functional analyses, and found
unexpectedly that many immune-related biological

Fig. 8 The results of the ssGSEA scores between different risk groups in TCGA. a The upper boxplots displayed the scores of 16 immune cells. b
The under boxplots displayed the scores of 13 immune-related functions. Adjusted P values were showed as: ns, not significant; *, P < 0.05; **, P <
0.01; ***, P < 0.001
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processes and pathways were enriched [16, 26]. There-
fore, we further explored the function of immune cell
function between the high-risk and low-risk groups and
different subgroups. The results showed that most of
immune-related cells and functions possessed a higher
risk score. This might be related to the overactivation of
the immune system in the early stages of breast cancer,
for specific performance that the level of antigen presen-
tation and Th1 cells were higher in high-risk groups,
which suggested that relative genes were also signifi-
cantly altered. Therefore, these targets might provide a
possibility for immunotherapy of breast cancer patients.

Conclusion
In conclusion, this study established a new prognostic
model associated with nine ferroptosis-related genes and
the good prediction ability of the model was verified by
three databases, including TCGA、GEO、ICGC data-
base. Besides, we found immune-related cells and path-
ways were significant differences in high- and low-risk
group, which might be helpful for illustrating the appli-
cation of immunotherapy for breast cancer patients.
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