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Abstract

Background: Renal cancer is a common malignant tumor with an increasing incidence rate.

Methods: In this study, based on the gene expression profiles, we analyzed the compositions of tumor-infiltrating
immune cells (TIICs) in renal cancer and paracancerous samples using CIBERSORT. The proportions of 22 TIICs
subsets in 122 paired renal carcinoma and paracancerous samples, and 224 Wilms tumor (WT) samples varied
between intragroup and intergroup.

Results: After analyzed the difference of TIICs composition between renal cancer and paired paracancerous
samples, we found that M0 macrophages and CD8 T cells were significantly elevated, while naive B cells were
significantly decreased in renal cancer samples compared with paracancerous samples. Survival analysis showed
that high overall TIICs proportion, the low proportion of resting mast cells and the high proportion of activated
memory CD4 T cells were associated with poor prognosis of renal cancer patients. In addition, 3 clusters were
identified by hierarchical clustering analysis, and they presented a distinct prognosis. Cluster 1 had superior survival
outcomes, while cluster 2 had an inferior survival outcome.

Conclusions: Our study indicated that overall TIICs proportion, certain TIICs subset proportion, including resting
mast cells and activated memory CD4 T cells, and distinct cluster patterns were associated with the prognosis of
renal cancer, which was significant for the clinical surveillance and treatment of renal cancer.
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Background
Renal cancer is a common malignant tumor with an in-
creasing incidence rate over time [1, 2]. Wilms tumor
(WT), also known as nephroblastoma, is the second
most common solid abdominal organ tumor in children
and the most frequent primary malignant renal cancer
[3]. It accounts for 6% of pediatric cancers, and an esti-
mated 95% of renal cancer is WT among children [4].
Clinically, WT or nephroblastoma is a common child-
hood tumor that is intimately linked to early kidney

development and is often associated with persistent em-
bryonic renal tissue and other kidney abnormalities,
which is different from other types of renal cancer [5].
As an embryonic tumor of the kidney, WT arises from
metanephric mesenchyme and presents high a incidence
rate among 2–3-year-old children [6]. The treatment of
WT is determined by several factors, such as genetic,
pathologic, and demographic factors, and current ther-
apies for WT consist of surgery, chemotherapy, and ra-
diation therapy [3, 4]. Although the survival of WT has
improved with the development of treatment strategies,
the prognosis-related factors, including hematogenous
and pulmonary metastasis, relatively high recurrence
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rate, and late effects, make the prospects of treatment
noteworthy [7, 8]. Therefore, further investigation of the
biological processes and underlying molecular mecha-
nisms of WT may facilitate the prognosis improvement
of patients.
Currently, increasing evidence has proved that the oc-

currence and development of tumors are associated with
tumor cells as well as tumor microenvironment [9]. The
tumor microenvironment is composed of complex com-
ponents, such as mesenchymal stem cells, fibroblasts,
and immune cells [10]. Among them, tumor-infiltrating
immune cells (TIICs) are the pivotal components and
are considered the leading players of the tumor micro-
environment [11]. Accumulating studies have shown
that TIICs are closely associated with the development
and survival outcome of cancers. For example, infiltrated
macrophages were found to promote the progression of
prostate cancer, and NK cells showed anti-tumor effects
against tumor development [12]. In colorectal cancer,
TIICs were associated with patients’ clinical outcomes
and considered key signatures for prognosis [13]. The
immunohistologic features and immunotype of TIICs
played a crucial role in metastatic melanoma and were
related to the survival outcome [14]. In addition, dys-
functional infiltrating lymphocytes were observed in
renal cell carcinoma (RCC), immunogenic renal cancer
[15]. It was indicated that tumors might exert an impair-
ment effect on the immune system, and more studies on
the associations between TIICs and tumor occurrence
and prognosis should be helpful for the application of
immunotherapeutic strategies on renal cancer.
Immunohistochemistry is a commonly used method to

evaluate the TIICs in tumors. However, the results are
often inaccurate due to the extensive-expression of
markers in non-immune cells [9]. In our research, the
CIBERSORT algorithm was adopted to assess the TIICs
subsets in renal cancer based on gene expression profiles
retrieved from The Cancer Genome Atlas (TCGA).
Meanwhile, we also analyzed the relationship of TIICs
fraction and immune patterns with the survival outcome
of renal cancer to explore the prognostic values of TIICs
fraction and immune clusters in renal cancer.

Methods
Data source
We downloaded the gene expression profiles of renal
cancer from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/, Affymetrix HG-
U133A platform) and The Cancer Genome Atlas
(TCGA, www.cancergenome.nih.gov, Illumina HiSeq
platform). The TCGA dataset was composed of 889
renal cancer samples and 128 paracancerous samples, in-
cluding chromophobe renal cell carcinoma, kidney renal
clear cell carcinoma, and kidney renal papillary cell

carcinoma samples. The GEO dataset (access no.
GSE31403) included 224 Wilms tumor (WT) samples.

Tumor-infiltrating immune cells calculation
CIBERSORT (http://cibersort.stanford.edu), a deconvo-
lution algorithm based on gene expression profiles [16],
was used to calculate the relative proportions of 22
tumor-infiltrating immune cells (TIICs) subsets. CIBER-
SORT is able to evaluate the composition of TIICs with
547 barcode gene expression values, using P-value as a
parameter for measurement of the confidence in results.
In addition, In the complex cancer immune micro-

environment, cytotoxic T cells (Tc) and NK cells are two
main effector cell types that can attack tumor cells dir-
ectly. Upon exposure to transformed cells, cytotoxic T
cells and NK cells secrete granzymes (a family of serine
proteases) and perforin (a pore-forming protein) that
will ultimately lead to target cell death. Thus, the local
immune cytolytic activity can be quantified based on the
transcript levels of perforin (PRF1) and granzyme A
(GZMA). The first cytotoxin polymerizes and creates a
channel in the membrane of the target cell. Through
these pores, granzymes will then enter the cytoplasm
and trigger a caspase cascade, composed of cysteine pro-
teases that will ultimately lead to apoptosis [17]. GZMA
is a tryptase that induces caspase-independent pro-
grammed cell death, and PRF1 serves as a pore-forming
enzyme that regulates entry of granzymes into target
cells [18]. Accordingly, it has been well-identified that
the mean expression levels of genes GZMA and PRF1
represent the immune cytolytic activity of immune cells,
which also reflect the fraction of TIICs [19–24]. There-
fore, the expression levels of GZMA and PRF1 were de-
termined to comprehensively assess the immune
cytolytic activity and evaluate TIICs composition.

Survival analysis
All 1241 samples were grouped according to results of
CIBERSORT with P-values greater than or equal to 0.05
and less than 0.05, then the proportion of samples in
each group and the average expression levels of genes
GZMA and PRF1 were calculated. Seven samples of
patiens without survival information were excluded, then
based on kaplan-Meier method, survival analyses of the
1010 samples from TCGA, which were also stratified by
P-value of 0.05 were performed by survival package
(https://cran.r-project.org/web/packages/survival/) and
survminer package (https://cran.r-project.org/web/
packages/survminer/). With the relative proportions of
22 TIICs subsets as continuous variables, we calculated
the hazard ratios (HR) using Cox regression analysis.
We performed survival analyses to explore the effects of
significant factors on survival outcomes.
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Clustering analysis
Based on K-mean method, cluster the samples with the
relative content of immune infiltrated cells by R software
v3.5.2.

Statistical analyses
We used R language to calculate the proportions of 22
TIICs subpopulations in the 1241 samples from TCGA
and GEO datasets. The correlation of the results from
different datasets was analyzed by Pearson correlation
analysis. The compositions of TIICs subpopulations in
122 paired cancer and paracancerous samples from
TCGA were computed, and the difference in composi-
tions was further analyzed. Besides, the fraction of TIICs
subsets in WT samples from GEO was also calculated.
Then we stratified the 1241 samples by P-value of

0.05, and calculated the compositions of TIICs subsets
as well as mean expression values of GZMA and PRF1
in the groups with P ≥ 0.05 and P < 0.05 respectively.

Results
Performance of CIBERSORT for TIICs evaluation in renal
cancer
The TIICs composition was analyzed by CIBERSORT.
As shown in Fig. 1a, the samples from GEO and TCGA
presented distinct proportions of 22 TIICs subsets. As
the renal cancer samples in GEO were all WT patients,
we speculated that the TIICs in WT samples were sig-
nificantly different from those in other renal cancer sam-
ples. Then we analyzed the correlation of immune cell
proportions in renal cancer samples from TCGA and
GEO. It was revealed that the renal cancer samples from

the two datasets had highly consistent immune cell pro-
portions (Fig. 1b), illustrating that CIBERSORT could
evaluate the fraction of TIICs independently of data
sources and platforms.

Landscape of TIICs in renal cancer
The compositions of TIICs subsets in 122 paired para-
cancerous and renal cancer samples from the TCGA
and 224 WT samples from GEO were calculated by
CIBERSORT, respectively. As shown in Fig. 2a-c and
Table S1 the intragroup and intergroup differences in
TIICs fractions were manifest. Thus, we inferred that
the proportion of TIICs subsets was an inherent charac-
teristic which varied significantly among different indi-
viduals. In addition, we analyzed the difference in TIICs
composition between renal cancer and paired paracan-
cerous samples. As shown in Fig. 2d, M0 macrophages
and CD8 T cells were significantly elevated, while naive
B cells were significantly decreased in renal cancer sam-
ples compared with those in paired paracancerous sam-
ples, and the results were basically consistent with
previous researches [25, 26]. Moreover, the data in
TCGA was performed by CIBERSORT (Fig. S1), the re-
sults were consistent with previous research [27].

P-value of CIBERSORT represents the overall proportion
of TIICs
It should be noted that instead of determining the actual
values, CIBERSORT only calculates the relative ratios of
TIICs subsets, which contributes to the dependency of
results on each other. Therefore, we further analyzed the
association between the P-value provided by

Fig. 1 Renal cancer samples from GEO and TCGA had highly consistent immune cell proportion. a TIICs compositions of renal cancer and
paracancerous samples from TCGA and GEO analyzed by CIBERSORT. b Proportions of TIICs subsets in renal cancer samples from TCGA and GEO
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CIBERSORT and TIICs composition. CIBERSORT P-
value < 0.05 correlate with higher immune cell infiltrates,
while no significantly different of the P-value ≥0.05 [28,
29]. Figure 3a showed that the proportions of samples
with P-value < 0.05 and P-value ≥0.05 in TCGA and
GEO were obviously different.
It has been well proved that the mean expression

values of GZMA and PRF1 represent the immune

cytolytic activity and are positively associated with TIICs
proportions [19–24]. Accordingly, we futher evaluated
the mean expression values, which represented the im-
mune cytolytic activity in the system. After analyzing their
mean expression values, we found that the samples with
P-value < 0.05 had higher immune cytolytic activity in
both TCGA and GEO cohorts (p < 2.22e-16 and p = 0.043,
respectively, Fig. 3b and c). These results indicated that

Fig. 2 Obvious intragroup and intergroup differences in TIICs fraction were observed among paired renal cancer and paracancerous samples
from TCGA, and WT samples from GEO. a Immune infiltration in paired paracancerous samples. b Immune infiltration in paired renal cancer
samples. c Immune infiltration in WT samples. d Volcano plot of TIICs subsets proportions between paired renal cancer and paracancerous
samples. Compared with paired paracancerous samples, M0 macrophages and CD8 T cells were significantly elevated, while naive B cells were
significantly decreased in renal cancer samples

Fig. 3 P-value of CIBERSORT represented the overall proportion of TIICs. a Proportions of samples with P-value < 0.05 and P-value ≥0.05 in GEO
and TCGA datasets. b Immune cytolytic activity of samples with P-value < 0.05 and P-value ≥0.05 in TCGA and GEO cohort. c Survival curves of
samples stratified by P-value of 0.05. Compared with renal cancer patients with P-value ≥0.05, patients with P-value < 0.05 had poor survival
outcome (p < 0.0001)
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the proportion of TIICs in samples with P-value < 0.05
was higher in comparison to samples with P-value ≥0.05.

Overall TIICs proportion, resting mast cells and activated
memory CD4 T cells are associated with prognosis of
renal cancer
To investigate the effects of overall TIICs proportion or
22 individual TIICs subset on renal cancer prognosis,
the survival analyses of 1010 renal cancer samples with
survival information were performed. The survival curve
of renal cancer samples stratified by P-value of 0.05
showed that samples with P-value < 0.05 presented infer-
ior survival outcome in comparison to samples with P-
value ≥0.05 (p < 0.0001, Fig. 3d). It was suggested that
high TIICs proportions might be associated with poor
prognosis of renal cancer patients.
Subsequently, to further explore the effects of 22 indi-

vidual TIICs subset on renal cancer prognosis, the uni-
variate Cox regression analysis was conducted with 22
TIICs subsets as continuous variables. The relevant 95%
confidence intervals and Hazard Ratios (HRs) were
shown in Fig. 4a. It was found that activated memory
CD4 T cells and resting mast cells were significantly as-
sociated with the prognosis of renal cancer patients
(HR = 9.4e + 05, p = 0.004 and HR = 3.7e – 03, p = 0.034,
respectively). The survival curves showed a low propor-
tion of resting mast cells and a high proportion of acti-
vated memory CD4 T cells were related to poor
prognosis of renal cancer patients (both p < 0.0001).

Different immune clusters are associated with the
prognosis of renal cancer
The above results indicated TIICs alteration might affect
the prognosis of renal cancer patients. Therefore, we
speculated whether different immune clusters could be
identified with the TIICs data. Firstly, the optimal num-
ber of clusters was determined as 3 using the within
cluster sum of square errors (WSS) method (Fig. S1).
Subsequently, the hierarchical clustering of the samples
was conducted by the Euclidean distance model (Fig. 5a).
After analyzed the association of different immune pat-
terns with prognosis, cluster 1 exhibited superior sur-
vival outcomes, while cluster 2 exhibited inferior survival
outcomes (p = 0.0057, Fig. 5b). Moreover, the composi-
tions of 22 TIICs subsets is significantly different among
the cluster 1, cluster 2, and cluster 3 (Fig. 5c). In add-
itional, the immunes cell type abundances differ between
clusters was revealed in violin plot Fig. S2 and clinical
differences of the three clusters was showed in the Fig.
S3. The results suggested that the relative proportion of
20 types of immune cells was significantly different in 3
clusters (P < 0.05, ANOVA). In Cluster1, with the best
prognosis, the relative proportion of these 4 types of im-
mune cells, including T cells CD4 memory resting,

Macrophages M1, Mast cells resting and Monocytes,
and Monocyte, were significantly higher than that of the
other two clusters.

Discussion
The tumor microenvironment is considered as a complex
“society”, and exerts a regulatory effect on tumor progres-
sion with the participation of multiple cell types and extra-
cellular matrix [30]. The various cell types in tumor
microenvironment include mesenchymal stem cells, fibro-
blasts, endothelial cells, and immune cells [31]. It is be-
lieved that the TIICs are indispensable members of the
tumor microenvironment and reflect the host immune re-
action to tumors [11]. Accumulating evidence have proved
that TIICs are associated with tumor invasion, metastasis,
prognosis, and response to therapy [32, 33]. Given their
important role, comprehensive researches on the TIICs in
the tumor microenvironment may provide novel thera-
peutic approaches for tumors.
Numerous efforts have been devoted to exploring the

specific role of TIICs in renal cancer by multiple ap-
proaches. Jensen HK et al. evaluated the TIICs in local-
ized renal cell carcinoma by immunohistochemistry and
found that neutrophils were independent prognostic sig-
natures of survival outcome for localized renal cell car-
cinoma [34]. Donskov F et al. identified the positive
correlation of CD57+ NK cells and negative correlation
of neutrophils with the prognosis of metastatic renal cell
carcinoma by immunohistochemistry [35]. Webster WS
et al. proved that the infiltrated mononuclear cells were
able to predict the survival outcome of renal cell carcin-
oma patients independently through hematoxylin and
eosin staining and flow cytometric analysis [36]. Unlike
the above researches, the TIICs in renal cancer were an-
alyzed using a distinct approach in our study. We
assessed the 22 TIICs subpopulations composition of
renal cancer and paracancerous samples from TCGA
and GEO using CIBERSORT algorithm based on their
gene expression profiles. The TIICs subsets proportions
of renal cancer samples from TCGA and GEO showed
consistent results after correlation analysis. It was sug-
gested that CIBERSORT was able to assess the compos-
ition of the TIICs subset, which was independent of data
platforms and sources. Besides, CIBERSORT could be
performed to characterize cell heterogeneity using RNA
mixtures from nearly any source [37]. Many researchers
used CIBERSORT for estimating the infiltration of im-
mune cells, and there is no differences between using
CIBERSORT on microarray datasets [38–40] and RNA
sequencing datasets [41–43], even on both microarray
datasets and RNA sequencing datasets [44], and chip
platform [45]. Meanwhile, it has been reported that
CIBERSORT has been used in several previous studies
to analyzed the TIICs in the renal cell carcinoma, which
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have identified that CD8+ T cells were associated with
prolonged overall survival and the potential biomarker
relaed to CD8+ T cells, respectively [46, 47]. However,
several researches reported that elevated CD8+ T cells

were negatively related to prognosis in the patients with
glioma [26] and hepatocellular carcinoma [25]. Besides,
a different method of ESTIMATE algorithm has also
been applied to analyze prognostic microenvironment-

Fig. 4 Decreased resting mast cells and elevated activated memory CD4 T cells were associated with poor prognosis of renal cancer patients. a
Association of 22 TIICs subsets with survival outcomes of renal cancer patients. * and ** indicated statistical significance. b Survival curve of
resting mast cells stratified by median proportion. c Survival curve of activated memory CD4 T cells stratified by median proportion
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related genes and stromal and immune scores in Clear
Cell Renal Cell Carcinoma [48]. In this study, our
CIBERSORT analysis identified the landscape of TIICs
in renal cancer and demonstated high TIICs proportions
might be associated with poor prognosis of renal cancer
patients. These data providing new evidence of the ap-
plication of CIBERSORT in renal cancer and provide
valuable information of TIICs in renal cancer patients.
Then we investigated the association of 22 individual

TIICs subpopulation with the survival outcome of renal

cancer patients by Cox regression analysis and survival
analysis. The results showed that elevated proportion of
activated memory CD4 T cells and decreased proportion
of resting mast cells were associated with poor prognosis
of renal cancer. It was known that the activated memory
CD4 T cells could secret interleukin (IL) 17, a proin-
flammatory cytokine that promotes the proliferation and
growth of cervical cancer [49]. It has been reported that
IL-17 is able to promote the development of colorectal
cancer and associate with poor prognosis [50]. In the

Fig. 5 Immune clusters were associated with the prognosis of renal cancer patients. a Euclidean distance model identified three different
immune clusters (cluster 1, cluster 2 and cluster 3). b Survival curves of cluster 1, 2 and 3. Cluster 1 presented superior survival outcomes, while
cluster 2 presented inferior survival outcomes (p = 0.0057). c The 3 clusters exhibited different compositions of 22 TIICs subsets
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present study, a high proportion of activated memory
CD4 T cells were related to poor prognosis of renal can-
cer patients. Hence, we speculated that the increased
proportion of activated memory CD4 T cells contributed
to inferior survival outcomes in renal cancer through en-
hanced secretion of IL-17, which might be one of the
possible mechanisms and needed to be validated further
in the future investigations. Mast cells, which reside in
vascularized tissues, have two states, including resting
condition and activated condition [51]. They are in-
volved in multiple tumor-related processes. In thyroid
cancer, thyroid cancer cells activated the mast cells,
which could secrete extensive proinflammatory, angio-
genic, and growth factors and exert protumorigenic ef-
fects [51]. We inferred that the decreased proportion of
resting mast cells, which reflected the enhancement of
activated mast cells activities, was associated with a poor
prognosis due to the protumorigenic effects of activated
mast cells. In addition, a previous study showed a four
immune-related genes signature based on CXCL2,
SEMA3G, PDGFD, and UCN is closely associated with
the prognosis of renal clear cell carcinoma [52]. In this
study, we identified that TIICs proportion is closely cor-
related with the prognosis of renal cancer, which was
diffent from the previous study.
In addition, a total of 3 immune clusters was identified

by hierarchical clustering analysis. After analyzing their
fractions, we found that the proportions of TIICs sub-
populations presented remarkable difference in the dif-
ferent clusters. The survival analysis revealed that the
survival outcomes were significantly diffenrt among
these 3 clusters, in which cluster 1 exhibited superior
survival outcomes, while cluster 2 exhibited inferior sur-
vival outcomes. These findings indicated that immune
infiltrate is heterogeneously different in the renal cancer
patients and the difference of immune infiltrate is closely
associated with the prognosis of of renal cancer patients.

Conclusions
In summary, the analysis of 22 TIICs proportions in renal
cancer samples showed elevated activated memory CD4 T
cells proportion, and decreased resting mast cells propor-
tion predicted poor prognosis in renal cancer. Different
immune clusters also presented distinct survival out-
comes. The results might unveil novel prognosis predic-
tion and immunotherapeutic strategies on renal cancer.
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