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Abstract

Background: The abundance of immune and stromal cells in the tumor microenvironment (TME) is informative of
levels of inflammation, angiogenesis, and desmoplasia. Radiomics, an approach of extracting quantitative features
from radiological imaging to characterize diseases, have been shown to predict molecular classification, cancer
recurrence risk, and many other disease outcomes. However, the ability of radiomics methods to predict the
abundance of various cell types in the TME remains unclear. In this study, we employed a radio-genomics approach
and machine learning models to predict the infiltration of 10 cell types in breast cancer lesions utilizing radiomic
features extracted from breast Dynamic Contrast Enhanced Magnetic Resonance Imaging.

Methods: We performed a retrospective study utilizing 73 patients from two independent institutions with imaging
and gene expression data provided by The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA),
respectively. A set of 199 radiomic features including shape-based, morphological, texture, and kinetic
characteristics were extracted from the lesion volumes. To capture one-to-one relationships between radiomic
features and cell type abundance, we performed linear regression on each radiomic feature/cell type abundance
combination. Each regression model was tested for statistical significance. In addition, multivariate models were
built for the cell type infiltration status (i.e. “high” vs “low”) prediction. A feature selection process via Recursive
Feature Elimination was applied to the radiomic features on the training set. The classification models took the
form of a binary logistic extreme gradient boosting framework. Two evaluation methods including leave-one-out
cross validation and external independent test, were used for radiomic model learning and testing. The models’
performance was measured via area under the receiver operating characteristic curve (AUC).

Results: Univariate relationships were identified between a set of radiomic features and the abundance of
fibroblasts. Multivariate models yielded leave-one-out cross validation AUCs ranging from 0.5 to 0.83, and
independent test AUCs ranging from 0.5 to 0.68 for the multiple cell type invasion predictions.
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Conclusions: On two independent breast cancer cohorts, breast MRI-derived radiomics are associated with the
tumor’s microenvironment in terms of the abundance of several cell types. Further evaluation with larger cohorts is
needed.
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Background
Studies have shown that prognostic outcomes of tumors
are not only linked with genetic factors within cancerous
cells, but also with the extent of infiltrating immune and
stromal cells in the tumor microenvironment (TME) [1].
For example, CD8 T cell infiltration in breast cancer has
been associated with reduction in the relative risk of
death from the cancer [2]. Additionally, in breast cancer,
macrophage and endothelial cell presence are associated
with reduced disease-free survival [3]. In clinical prac-
tice, biopsies and pathology are the most commonly
used option to measure the presence of immune and
stromal cells.
Radiomics is a field of study that aims to extract quan-

titative imaging features from radiological images for use
in disease characterization. Radiomic features capture
high-dimensional quantitative phenotypes in imaging
data that are beyond what a radiologist can normally
perceive via visual assessment. Radiomics were reported
to predict molecular classification of breast malignancy,
breast cancer recurrence risk, and many other disease
outcomes [4–7]. Quantitative radiomics has shown the
potential to be used as non-invasive imaging biomarkers
to characterize tumor’s diagnosis, progression/prognosis,
and treatment response [8–10]. Yet, the ability of radio-
mics methods to predict the abundance of various cell
types in the TME remains unclear. Compared to the bi-
opsy and pathology methods, the radiomics method is
non-invasive, speedy, and repeatable to predict cell type
invasion.
In this study, we employed a radio-genomics approach

and machine learning models utilizing breast Dynamic
Contrast Enhanced Magnetic Resonance Imaging (DCE-
MRI) radiomic features to predict the presence of cell
type invasion within breast cancer lesions. Radiomics
can identify potential non-invasive predictors that
characterize how immune and stromal cell infiltration
may affect a tumor’s visible phenotype in radiological
images. This would also lead to biological level of inter-
pretability of radiomic features.

Methods
Study cohort
This retrospective study utilized imaging and gene ex-
pression data provided by The Cancer Imaging Archive
(TCIA) [11] and The Cancer Genome Atlas (TCGA)

[12], respectively. The imaging and clinical data were de-
identified by TCIA and approved by the Institutional Re-
view Board of the TCIA hosting institution. The study
cohort was comprised of 73 patients from two independ-
ent institutions (43 and 30 patients from Institution 1
and Institution 2, respectively), and all the patients had
both imaging data and gene expression information de-
scribing the lesion. The level 3 gene expression data for
the 73 breast cancer lesions was downloaded from
TCGA. The expression data took the form of the nor-
malized counts of 20,530 genes obtained with Illumina
Genome Analyzer Sequencing version 2.
Breast DCE-MRI data for the 73 patients were jointly

downloaded from TCIA. All MRI sequences were ac-
quired with a 1.5 Tesla magnetic field strength GE med-
ical systems scanner. All the DCE-MRIs were comprised
of one pre- and three post-contrast image series ob-
tained using a T1-weighted three-dimensional spoiled
gradient echo sequence and a gadolinium-based contrast
agent. The average in-plane image resolution was 0.70
mm (range: 0.53 to 0.86). The 43 and 30 MRI sequences
from Institution 1 and Institution 2 had a slice thickness
of 2 mm and 2.2 mm with an image size of 512 × 512
pixels and 256 × 256 pixels, respectively.
All sequences from Institution 1 used the axial view,

while all sequences from Institution 2 used the sagittal
view (Fig. 1). Due to differences in image collection
protocol between institutions, we used Institution 1 data
for radiomics modeling and Institution 2 data for exter-
nal validation.

Tumor segmentation and radiomic features
Prior to radiomic imaging feature extraction, segmenta-
tion of the tumor area is required for separation of the
tumor region of interest from the normal breast tissue
area in the MR images. Existing tumor segmentations
performed by expert radiologists of these 73 cases were
downloaded from The TCGA Breast Phenotype Re-
search Group [13]. A set of 111 radiomic features were
extracted from the lesion volumes using the PyRadio-
mics open-source Python package [14]. The radiomic
features captured information related to tumor size (e.g.
volume, surface area, maximum 3D diameter, and major
axis length, etc.), morphological (e.g. elongation, flatness,
sphericity, etc.), and texture (e.g., energy, entropy, kur-
tosis, skewness, gray level size zone matrix [GLSZM],
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gray level dependence matrix [GLDM], gray level Co-
occurrence matrix [GLCM], and gray level run length
matrix [GLRLM], etc.) properties. All images were
rescaled to 8 bits/voxel and gray level quantization was
performed using a fixed bin width (binWidth = 25).
More details on the radiomic feature calculation in PyR-
adiomics including input parameters (e.g., distance and
angles) were specified in Additional file 1.
In addition, the pre-contrast and all post-contrast se-

quences were used to calculate three categories of kin-
etic features (88 features in total): aggregate,
heterogeneity, and textural kinetic features, using previ-
ously validated algorithms [15]. Aggregate kinetic fea-
tures were calculated directly from the characteristic
kinetic curve of each voxel over the tumor region. These
features include: wash-in slope (WIS), wash-out slope
(WOS), peak enhancement (PE), time to peak (TTP),
maximum PE (MPE), and hot spot (the highest average
of connected voxels). To calculate heterogeneity kinetic
features, the segmented tumor was first partitioned
into three sub-clusters according to their TTP values.
The three sub-clusters (denoted as TTP characteristic
maps) were formed by categorizing each pixel to rep-
resent quick, intermediate, and slow arrivals to the
peak point [15]. The heterogeneity kinetic features
were calculated on the TTP characteristic maps, using
the mean and standard deviation (SD) of kinetic pa-
rameters (i.e. WIS, WOS, and PE) and the proportion
of pixels in each of the three sub-clusters (e.g. mean
quick WIS, mean intermediate WIS, and mean slow
WIS, etc.). We also computed typical textural features
on the above-created TTP characteristic maps (Tex-
tural kinetic features, e.g. Inverse Difference Moment
[IDM], Absolute Value of Differences [AVD], contrast,
skewness, Kurtosis, and Angular Second Moment
[ASM], etc.)

Cell type abundance quantification
Cell type abundance in the tumor was quantified using
gene expression values and the R package Microenviron-
ment Cell Populations-counter (MCP-counter) v 1.1.0
[16]. From a gene expression matrix, MCP-counter was
able to produce an abundance score for eight immune
cells (i.e. CD3+ T cells, CD8+ T cells, cytotoxic lympho-
cytes, NK cells, B lymphocytes, cells originating from
monocytes, myeloid dendritic cells, neutrophils) and two
stromal cells (i.e. endothelial cells, fibroblasts). DCE-
MRI radiomic features were used to predict the abun-
dance of these 10 cell types within breast cancer.

Modeling and statistical analysis
To capture one-to-one relationships between radiomic
features and cell type abundance, we performed linear
regression on each radiomic feature/cell type abundance
combination. Each regression model was tested for stat-
istical significance. P values for each linear regression
model were corrected for multiple comparisons using
the Benjamini & Hochberg False Discovery Rate method
[17]. To study any larger patterns in the relationships,
we obtained the correlations between every radiomic
feature/cell type abundance combination.
To build multivariate models for the cell type infiltra-

tion status prediction from breast MRI radiomic fea-
tures, cell type abundance was stratified as binary
classification, i.e., high or low, based on the median
abundance of each cell type. Infiltration status for each
cell type was stratified as “high” if the corresponding
abundance score was equal or greater than the median
abundance score of each cell type across the entire data
set; otherwise it was stratified as “low”. A feature selec-
tion process was applied to the 199 radiomic features in
order to pre-select a subset of discriminative features
and to reduce data dimension for modeling. The feature

Fig. 1 Representative images from Institution 1 (a) and Institution 2 (b) [independent evaluation set]
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selection was performed via Recursive Feature Elimin-
ation [18], implemented by the R package Caret v 6.0–
81. The Recursive Feature Elimination model functions
by iteratively removing features and testing the model’s
performance using a random forest algorithm. The algo-
rithm was tasked with finding the best performing set of
features by maximizing the model’s accuracy on the
training set. The radiomic classification models took the
form of a binary logistic extreme gradient boosting
framework. The models were implemented with the R
package xgboost v 0.81.0.1 [19]. Two evaluation methods
were used for radiomic model learning and testing: 1)
using the 43 lesions from Institution 1 for training and
testing under the typical leave-one-out cross validation
strategy, and 2) training the models using 43 lesions
from Institution 1 and testing the model independently
using the 30 lesions from Institution 2. The models’ per-
formance was measured via area under the receiver
(AUC) operating characteristic curve.
We demonstrated the ability of two radiomic fea-

tures to distinguish high and low cell type abun-
dance. The two selected radiomic features are as
follows: the volume of the tumor, a quantitative
phenotype what is normally observed via visual as-
sessment, and the mean peak enhancement of the
tumor, the high-dimensional quantitative phenotype
that is beyond what a radiologist can normally per-
ceive via visual assessment. Ten two-sided t-tests
were performed for the two radiomic features. Ad-
justed p values less than 0.05 were considered
significant.

Results
Study cohort statistics are displayed in Table 1. The
average patient age at diagnosis was 54 ± 11.6 years. All
patients were female, 40 (55%) of whom were pre-
menopausal, 25 (34%) of whom were post-menopausal,
and 8 (11%) of whom are unknown menopausal status.
There are 18, 45, and 10 patients who had stage I, II,
and III breast cancer, respectively. As we mentioned
earlier, all sequences from Institution 1 were in the axial
view (Fig. 1a) while all sequences from Institution 2 were
in the sagittal view (Fig. 1b).
Table 2 shows significant univariate linear associations

between radiomic features and fibroblast cell type abun-
dance. Only the fibroblast cell type showed any signifi-
cant associations with radiomic features. Notably, every
association was with a kinetic or texture-based feature.
A heatmap describing the correlations between each

individual radiomic feature and the ten cell types abun-
dances are shown in Fig. 2. Radiomic features are
grouped by the general phenotypic properties that they
describe. It is observed that some radiomic features cor-
relate uniformly across the cell type abundances, while

most do not. As can be seen in Fig. 2, many of the size
and morphology radiomic features, like diameter and
perimeter, are positively correlated with neutrophil
abundance. In contrast, fibroblasts and endothelial cells
appear to mainly be correlated with kinetic features of
the tumor. As can be seen in Table 2, the highest correl-
ation is 0.43 between mean quick WIS and fibroblast cell
type abundance. The highest negative correlation is −
0.38 between tumor skewness in the second Post-
contrast MR sequence (Tumor skewness in Post-
contrast2) and fibroblast cell type abundance.
Feature selection chose a range of 3 to 16 radiomic

features to include in the multivariate models. The most
commonly selected features were the mean quick and
intermediate PE, each appearing in four of the ten
models. The full results on multivariate model’s AUC
and receiver operating characteristic (ROC) curves are
shown in Table 3 and Fig. 3, respectively. The models
predicting high and low cell type abundance for ten cell
types yielded leave-one-out cross validation AUCs ran-
ging from 0.5 to 0.83. The same models tested on Insti-
tution 2 yielded AUCs ranging from 0.5 to 0.68. The
average decrease from the leave-one-out AUC to the
independent-test AUC is 0.185. Figure 4 shows the po-
tential difference of radiomic features extracted from the
two different MRI datasets, where the principal compo-
nent analysis (PCA) indicates a separation between the
two sets of radiomic features. Models with notably
higher AUCs (i.e., AUC ≥ 0.80) include the models pre-
dicting NK cells and Neutrophils.
Box and whisker plots showing how the two radiomic

features differ between high and low cell type abundance

Table 1 Descriptive statistics describing study cohort

Total: n = 73

Age (Years)

Mean ± Standard Deviation 54 ± 11.6

Molecular Receptor Statuses

Receptor Status Positive Negative Unknown

ERa 61 12 0

PRb 64 9 0

HER2c 8 41 24

Cancer Stages

Stage I 18 –

Stage II 45 –

Stage III 10 –

Menopausal Status

Pre 40 –

Post 25 –

Unknown 8 –
a ER Estrogen receptors, b PR Progesterone receptors, c HER2 Human epidermal
growth factor receptor 2
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are shown in Fig. 5. As can be seen, the volume of the
lesion, a simple feature used by many radiologists, is un-
able to distinguish high and low cell type abundance for
any cell types. There is, however, significant difference
between high and low monocytic lineage (p = 0.004) and
endothelial cell abundance (p = 0.05) when stratified by
Mean PE, which is a more abstract radiomic feature de-
scribing how rapidly a contrast agent is absorbed into
the lesion over time.

Discussion
In this study, our analyses show that breast DCE-MRI-
derived radiomics (from macroscopic imaging) are asso-
ciated with invasion of several immune and stromal cells
in breast cancer lesions. This study contributes to under-
standing the relationships between a breast tumor
microenvironment and its radiological phenotypes.

Although the analyses are preliminary due to the con-
straints of sample size, the findings, if validated on larger
cohorts, have important clinical implications. It indicates
that quantitative radiomics features extracted from
standard-of-care radiological images may provide a non-
invasive, cost-effective, and speedy way to characterize
breast tumor’s microenvironment (i.e. abundance of dif-
ferent cell types). This may contribute to augmenting
the clinical prognostication of breast cancer patients.
The correlations between cell type abundance and

radiomic features shown in Fig. 2 suggest that in general,
radiomic features describing size are not as informative
of cell type abundance in tumors as morphological, kin-
etic, or texture-based radiomic features. These are the
features that are not effectively or possibly assessed by
human visual observations. The boxplots in Fig. 5 fur-
ther support this point by showing how mean PE, a

Table 2 Statistically significant univariate associations between radiomic features and Fibroblast cell type abundance

Radiomic Feature Feature Type Correlation Coefficient Adjusted p Value1

Tumor mean pixel intensity in Pre-contrast Texture 0.42 0.011

Tumor mean pixel intensity in Post-contrast1 Texture/Kinetic 0.38 0.013

Tumor mean pixel intensity in Post-contrast2 Texture/Kinetic 0.39 0.011

Tumor mean pixel intensity in Post-contrast3 Texture/Kinetic 0.39 0.011

Mean intermediate WOS Kinetic 0.39 0.011

Mean quick WIS Kinetic 0.43 0.011

Mean intermediate WIS Kinetic 0.41 0.011

Mean slow WIS Kinetic 0.39 0.011

Mean quick PE Kinetic 0.41 0.011

Mean intermediate PE Kinetic 0.41 0.011

Mean slow PE Kinetic 0.39 0.011

Tumor contrast Texture 0.24 0.023

Tumor skewness in Post-contrast2 Texture/Kinetic −0.38 0.013

Tumor kurtosis in Post-contrast3 Texture/Kinetic −0.34 0.045
1 P values were adjusted for multiple comparisons using the Benjamini & Hochberg false discovery rate (FDR) method

Fig. 2 Relationships between immune and stromal cell abundance and radiomic features. Radiomic features are grouped into size, morphology,
kinetic, and texture features
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kinetic feature, can differentiate high and low abundance
of two cell types, while volume of tumor displays no
differences.
As shown in Table 2, Fibroblasts showed encouraging

significant univariate relationships. A possible explan-
ation for Fibroblasts showing the strongest associations
may be due to that Fibroblast cells are critical in the de-
velopment of connective tissue [20]. Following this line
of thinking, connective tissue might be a more visible as-
pect of the tumor as compared to individual cells. While

many correlations do appear to exist between cell type
abundance and radiomic features, the number of statisti-
cally significant univariate relationships are fewer. This
could likely be due to our relatively small sample size
that does not have adequate statistical power.
The multivariate models predicting endothelial cell,

CD8+ T cell, and neutrophils are the most promising
(Table 3). In a recently published article [21], a multi-
variate model was built to predict the abundance of
CD8+ T cell using radiomic features extracted from

Table 3 Area under the ROC curve (AUC) values of the models

Cell type LOOCVa

(43 patients from Institution 1)
Independent Test
(30 patients from Institution 2)

T Cell 0.61 0.58

CD8 T Cell 0.74 0.62

Cytotoxic Lymphocyte 0.63 0.46

NK Cell 0.83 0.47

B Lineage 0.5 0.52

Monocytic Lineage 0.65 0.67

Myeloid Dendritic Cells 0.5 0.5

Neutrophils 0.82 0.61

Endothelial 0.77 0.68

Fibroblast 0.71 0.59
a Leave one out cross validation

Fig. 3 a) Leave-one-out cross validation (LOOCV) receiver operating characteristic (ROC) curves of 10 models predicting high/low cell type
abundance for their corresponding 10 cell types on the data from Institution 1. b) ROC curves of the same 10 models predicting cell type
abundance, tested on the independent data from Institution 2
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tumor in contrast-enhanced CT images. The reported
AUC value was 0.67, which is in line with our multivari-
ate analysis for CD8+ T cell abundance prediction
(AUC = 0.74 and 0.62 for leave-one-out cross validation
and external independent test, respectively). These find-
ings indicate the robustness of radiomic features,

regardless extracted from MRI or CT images, in reflect-
ing the association with the cell type of CD8 + .
While moderate loss in the AUC between leave-one-

out testing and independent testing is observed, these
can be interpreted as expected results. One of the poten-
tial reasons can relate to the fact that the MRI images

Fig. 4 Principal component analysis to examine the separation of the radiomic features extracted from the two MRI datasets collected from
different institutions

Fig. 5 Differentiating high and low cell type infiltration with changes in a) Mean Peak Enhancement b) Volume of Lesion
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used for the training and testing sets come from two
separate institutions and undergo different image acqui-
sition protocols. In addition to the difference that all im-
ages acquired from Institution 1 are in axial view and all
images from Institution 2 are in sagittal view (Fig. 1), the
difference in image resolution, MRI contrast agent, and
other imaging parameters can lead to large impact on
radiomic feature calculation and thus model’s perform-
ance. The PCA analysis results shown in Fig. 4 have in-
dicated the separation of the two sets of radiomic
features extracted from the two institutions’ MRIs.
Our study has a few limitations and points to import-

ant follow-up studies. Firstly, since gene expression data
are not routinely available for most of the breast cancer
patients, our study was limited to a relatively small num-
ber of patients who had both imaging and gene expres-
sion data available for such analysis; yet, we were able to
include two independent datasets from different institu-
tions. Also, while we have used the MCP-counter
method to quantify the abundance of the cell popula-
tions, it would be better to use the more robust immu-
nohistochemistry (IHC) staining techniques on tumor
sections to further validate our findings. The IHC data
of the study cohorts were not available to perform such
analyses. Secondly, the radiomics features used in our
study may not be comprehensive but we intended to
keep the feature set compact, considering our sample
size of study cohort. In addition, more sophisticated
methods to reduce inconsistency of the imaging charac-
teristics across data from different institutions are in
need and a goal of our future research. Finally, because
of the preliminary nature of this study, we have been
cautious in interpreting the biological rationales of the
identified relationships, but our findings show evidences
that the quantitative phenotypes in radiological images
may potentially serve as surrogate markers of the cells’
abundance to inform patient prognostication. Paired
with prognostic outcomes, like recurrence or response
to immunotherapy, it merits further investigation on
how radiomics and pathology may augment each other
in functionally characterizing lesions, and ultimately lead
to improved patient care using the validated imaging
phenotype biomarkers.

Conclusions
In this study of using two small but independent breast
cancer cohorts, we show that breast MRI-derived radio-
mics are associated with the tumor’s microenvironment
in terms of the abundance of several cell types. While
the reported findings warrant further evaluation on lar-
ger cohorts, this study points to the potential value of
quantitative radiomics as a non-invasive imaging bio-
marker to augment clinical prognostication of breast
cancer patients.
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