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Abstract

Background: Immunotherapy is a vital component in cancer treatment. However, due to the complex genetic
bases of cancer, a clear prediction index for efficacy has not been established. Tumor mutation burden (TMB) is one
of the essential factors that affect immunotherapeutic efficacies, but it has not been determined whether the
mutation is associated with the survival of Skin Cutaneous Melanoma (SKCM) patients. This study aimed at
evaluating the correlation between TMB and immune infiltration.

Methods: Somatic mutation profiles (n =467), transcriptome data (n =471), and their clinical information (n =447)
of all SKCM samples were downloaded from The Cancer Genome Atlas (TCGA) database. For each sample, TMB was
calculated as the number of variants per megabase. Based on K-M survival analysis, they were allocated into the
high-TMB and low-TMB groups (the optimal cutoff was determined by the ‘surv_cutpoint’ algorithm of survival R
package). Then, Gene ontology (GO) and Gene Set Enrichment Analyses (GSEA) were performed, with immune-
associated biological pathways found to be significantly enriched in the low-TMB group. Therefore, immune genes
that were differentially expressed between the two groups were evaluated in Cox regression to determine their
prognostic values, and a four-gene TMB immune prognostic model (TMB-IP) was constructed.

Results: Elevated TMB levels were associated with better survival outcomes in SKCM patients. Based on the cutoff
value in OS analysis, they were divided into high-TMB and low-TMB groups. GSEA revealed that the low-TMB group
was associated with immunity while intersection analysis revealed that there were 38 differentially expressed
immune-related genes between the two groups. Four TMB-associated immune genes were used to construct a
TMB-IP model. The AUC of the ROC curve of this model reached a maximum of 0.75 (95%Cl, 0.66-0.85) for OS
outcomes. Validation in each clinical subgroup confirmed the efficacy of the model to distinguish between high
and low TMB-IP score patients.

Conclusions: In SKCM patients, low TMB was associated with worse survival outcomes and enriched immune-
associated pathways. The four TMB-associated immune genes model can effectively distinguish between high and
low-risk patients.
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Background

Skin Cutaneous Melanoma is a fatal malignant tumor of
the skin. Currently, the specific etiology of primary cuta-
neous melanoma is postulated to be long-term ultravio-
let overexposure [1, 2]. Ultraviolet short waves induce
DNA damage in skin cells, which leads to inflammation,
immunosuppression, and melanoma [3]. Even though
SKCM accounts for less than 5% of skin cancers, it has a
high mortality rate that is correlated with its high malig-
nancy and invasiveness [4]. Over the past 30 years, the
global prevalence of SKCM has been on the rise, and it
has been reported that in 2018, global incidences were
about 280 thousand new morbidites and over 60 thou-
sand mortalities [5]. In 2019, there were more than 96
thousand new cases of SKCM in the USA alone [6]. In
China, the annual number of new SKCM cases is more
than 8 thousand [7]. Even though SKCM incidences are
increasing, advances in medical technology, especially in
targeted therapy, immunotherapy, and chemotherapy to
a certain extent, have led to positive survival outcomes
for patients and reduced mortality rates. For example,
before 2011, the median survival time for metastatic
melanoma patients was 9 months, but has now been
reported to exceed 2 years [8]. These improvements are
mainly attributed to small molecule inhibitors (e.g.,
BRAF inhibitors, MEK inhibitors) [9, 10] and immune
checkpoint blockade (ICB) [11-13]. Identification of
CTLA-4 and PD-L1/PD-1 antibodies has enhanced ad-
vances in tumor immunotherapy [14, 15].

The tumor microenvironment is mainly composed of
tumor cells, fibroblasts, immune cells and the extracellu-
lar matrix, which significantly affect treatment and
survival outcomes. Immunotherapy is closely correlated
with immune cells. Elucidating on immune infiltration
in the tumor microenvironment is key to improving
response rates, and could inform the development of
new immunotherapeutic strategies. Melanoma is a
tumor with strong immunogenicity. Pathological studies
have reported that there is a high number of immune
cell infiltration in melanoma tissues and, immunother-
apy can directly inhibit tumor progression or even cure
tumors [16, 17].

Tumor mutation burden refers to the frequency of
mutations in the coding regions of somatic cells
(variants per megabase) [18—20]. An increase in TMB is
correlated with an increase in tumor antigenicity, which
is the premise of the effectiveness of the PD-1/PD-L1
antibody. In several clinical trials, TMB has been shown
to be a good predictor of immunotherapeutic efficacy
[21-25]. The CheckMate-026 clinical trial, a retrospect-
ive analysis, reported that: among NSCLC patients ad-
ministered with immunotherapy, the remission rate and
progression-free survival outcomes of the high-TMB
group were significantly better than those of the low-
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TMB group. Patients exhibiting elevated PD-L1 protein
expression with high TMB had the most significant
benefits, however, patients with elevated PD-L1 protein
expression levels but with low TMB had no significant
benefits. CM012 post-test analysis revealed correspond-
ing results [21].

Various public databases, such as TCGA, GEO, cBio-
Portal, and ICGC among others, are available for
researchers. However, few studies have evaluated TMB
associated immune infiltration in SKCM. Therefore, this
study aimed at evaluating the prognostic value of TMB,
and to elucidate on how it is associated with immune
infiltration.

Methods

Data acquisition

Somatic mutation profiles for 467 SKCM patients were
retrieved from the TCGA database (https://portal.gdc.
cancer.gov/). The “Maftools” R package [26] was used to
represent the mutation situation. Moreover, we down-
loaded the level 3 transcriptome data for all available
SKCM samples (tumor samples, 7 = 471). Corresponding
clinical information including sex, age, TNM stages,
pathological stage, as well as survival outcomes were also
obtained (1 =447, Table 1, Supplementary Table S1).
Samples with follow-up time of less than 60 days were
deleted after which the remaining samples were merged
with TMB for survival analysis (Supplementary Table S2).
The workflow of this study was illustrated in Supplemen-
tary Fig. S1. These data were retrieved from free public
databases, and as such, ethical approval was waived.

TMB calculation and Kaplan-Meier analysis

TMB refers to the total number of substitutions, inser-
tions, deletions, and mutant genes per megabase in the
coding region (exon) of the gene assessed in the tumor
tissue. In this study, we determined TMB by dividing the
number of variants by the length of exons (38 million)
for each sample. TMB and the corresponding survival
time of the same sample were merged. Subsequently,
Kaplan-Meier (KM) analysis was performed to compare
survival outcomes in low- versus high-TMB groups and
determined the p of the log-rank test. Moreover, Wilcoxon
rank test was performed to assess the difference between
two groups of different clinical characteristics while the
Kruskal-Wallis test was performed to compare differences
among multiple groups.

Differentially expressed genes and functional pathway
analysis

RNA-seq data of SKCM patients were divided into low-
and high-TMB groups. The “limma” R package [27] was
used to identify DEGs between the two groups (Fold
Change [FC] =1 and False Discovery Rate [FDR] < 0.05).,
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Table 1 Clinical baseline of 447 SKCM patients

Variables Number (%)
Vital Status
Alive 239 (53.5%)
Dead 208B (46.5%)
Age 578+ 156
Sex
Male 279 (62.4%)
Female 168 (37.6%)
Pathological Stage
I/l NOS 10 (2.3%)
Stage 0 6 (1.3%)
Stage | 77 (17.2%)
Stage Il 131 (29.3%)
Stage Il 170 (38.0%)
Stage IV 20 (4.5%)
Unknown 33 (7.4%)
AJCC-T Stage
TO/Tis 30 (6.7%)
T 42 (9.4%)
T2 76 (17.0%)
T3 88 (19.7%)
T4 144 (32.2%)
X 42 (9.4%)
Unknown 25 (5.6%)
AJCC-N Stage
NO 222 (49.7%)
N1 73 (16.3%)
N2 49 (11.0%)
N3 55 (12.3%)
NX 31 (6.9%)
Unknown 17 (3.8%)
AJCC-M Stage
MO 402 (89.9%)
M1 21 (4.7%)
Unknown 24 (5.4%)
Sample Type
Primary tumor 95 (21.2%)
Metastatic 352 (78.8%)

and the Heatmap plot was drawn using “pheatmap” R
package (https://CRAN.R-project.org/package=
pheatmap) to indicate the difference. Next, the Entrez
ID for every DEG was obtained using the “org. Hs.eg.db”
package, after which GO analysis was performed using
“clusterProfiler” [28], “enrichplot” and “ggplot2” pack-
ages. In addition, GSEA [29] was performed using the
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TMB level as the phenotype. The “c2.cp.kegg.v7.1.sym-
bols.gmt” was retrieved from the MSigDB database [30],
and was set as a baseline gene set. Pathways with FDR <
0.25 were considered enriched. Due to differences in im-
mune pathway enrichment in high versus low TMB
groups, we used the “estimate” R package (https://R-
Forge.R-project.org/projects/estimate) to calculate im-
mune cell scores for the transcriptome data. From the
Immunoscore survival analysis, it was shown that low
immune infiltration is associated with poor survival
outcomes. Therefore, interactions between DEGs and
immune-related genes (ImmPort Private Database) were
evaluated. Venn analysis showed that there were 38
intersection genes for 1812 immune genes [31] and 504
DEGs.

Construction of a TMB-immune prognostic model for hub
immune genes

Univariate-lasso-multivariate Cox regression analysis
was performed on the 38 intersection genes, from which
four hub immune genes were obtained and used to
construct the TMB-IP model. Then, we calculated the
TMB-IP score for all patients by the coefficients of each
gene and divided the SKCM patients into high and low
TMB-IP group. ROC curve and K-M analysis were used
to assess the predictive value of the TMB-IP score in
SKCM. The prognostic efficiency of this model was also
tested in each clinical subgroup through K-M survival
analysis.

TIMER database and CIBERSORT algorithm

Mutation types of the hub immune genes with different
immune infiltrates in SKCM were assessed according to
the “SCNA” module of Tumor Immune Estimation
Resource (TIMER) database [32]. Furthermore, “CIBER-
SORT” algorithm [33] was used to estimate the immune
infiltration degree of 22 types of cells in a mixed popula-
tion of cells based on certain features of gene expression
in 22 leukocyte subtypes-LM22. The “pheatmap” package
revealed immune cell distributions in the two groups.
Then, we used the Wilcoxon rank test to assess disparities
in the amounts of immune infiltrates in the low-versus
high-TMB groups. The “vioplot” R package was used to
determine the p-values.

Determination of prognostic value of immune cells in the
TIMER database

Data from the TIMER database were used to perform
multivariate Cox analysis of the cells that were involved
in immune infiltration, as well as to calculate the hazard
ratio (HR; 95%CI). Survival outcomes were evaluated by
survival analysis.
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Statistical analysis

R software (Version 3.5.2) was used to conduct all the
data analysis in the present study. The optimal cutoff for
samples classified into better and worse survival groups
was determined by the ‘surv_cutpoint’ algorithm of sur-
vival R package.

Results

Mutation profiles in SKCM

Somatic mutation profiles for 467 SKCM patients
were retrieved from the TCGA database. According to
the mutation data, “Maftools” R package was used to
examine the findings. The waterfall plot was used to
present the mutation data for every gene in every
sample (Fig. la). Further, mutations were grouped
based on various categories. In the grouping, missense
mutations were the most common (Fig. 1b), while de-
letion/insertion mutaions were common than single

Page 4 of 12

nucleotide polymorphisms (SNP) (Fig. 1c). Regarding
single nucleotide variants in SKCM, C>T occurred
more often (Fig. 1d). In addition, we constructed an
SKCM box plot (different colors denote different mu-
tations) to reveal mutation types based on the number
of changed bases in every sample (Fig. le, f). Figure 1g
shows the top ten mutated genes in SKCM, which
were TTN (72%), MUC16 (67%), BRAF (51%), DNAH5
(49%), PCLO (44%), LRP1B (38%), ADGRV1 (35%),
RP1 (33%), ANK3 (32%) and DNAH?7 (32%). Supplemen-
tary Fig. S2 shows coincidences, as well as exclusive
relationships among the mutated genes (green denotes co-
occurrence, whereas red denotes relationships that are
mutually exclusive). It is shown that genes with higher
mutations in SKCM appear at the same time, and that
there are no obvious repulsive genes. The genecloud plot
was established to show the frequency of mutations in
other genes (Supplementary Fig. S2).
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TMB is correlated with survival outcomes, pathological
stage and tumor grade

Based on the above mutation data profile, we computed
the number of mutation events/million bases as TMB for
the 467 samples. The optimal cutoff for samples classified
into better and worse survival groups was established by
the ‘surv_cutpoint’ algorithm of survival R package, con-
sistent with the recognition that higher TMB enhances im-
mune recognition and leads to better disease outcomes.
High-TMB group patients exhibited better OS outcomes
(p<0.001, HR =0.54, 95%CI =0.39-0.75; Supplementary
Table S2, Fig. 2a), better DSS (p<0.001, HR =049,
95%CI = 0.35—0.7; Supplementary Table S2, Fig. 2b) and
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better PFI (p = 0.003, HR = 0.68, 95%CI = 0.52—0.9; Supple-
mentary Table S2, Fig. 2c) than the low-TMB group.
Moreover, elevated TMB levels were correlated with ad-
vanced age (p=0.0045; Fig. 2d), male (p = 8.5e- 05; Fig.
2e), lower tumor pathological stages (stage I+ 1II vs. stage
I + IV, p=0.022; Fig. 2f) and lower AJCC-N stages (NO
vs. N3, p =0.002; N2 vs. N3, p = 0.034; Fig. 2h). However,
there were no significant differences between the associa-
tions of TMB and AJCC-T (Fig. 2g) and AJCC-M (Fig. 2i).

Differential expression analysis between two groups
Among the 471 RNA-seq samples, a total of 467 samples
were selected from the same source as mutation data.
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Based on the TMB cutoff value of the OS analysis (cut-
off = 6.37, Fig. 2a), we divided the RNA-seq data for 467
tumor samples into low (n =148) and high-TMB (n =
319) groups (Fig. 3a). Using the “limma” R package, a
total of 504 DEGs were identified between these two
transcriptomic data sets with FC = 1 and FDR < 0.05. GO
enrichment analysis revealed that the DEGs were mainly
involved in epidermis development, skin development,
and other biological processes (Fig. 3b). Further, we ana-
lyzed the GSEA data of the top TMB-associated items.
Figure 3c shows that the low-TMB group was associated
with immunity, and was mainly concentrated in auto-
immune thyroid disease, B and T cell receptor signaling
pathways, as well as intestinal immune network for the
production of IGA, while the high-TMB group lacked
this function (Supplementary Table S3-4). Given that
TMB was associated with immune signature/pathways in
SKCM, various analyses were performed on the tumor
microenvironment. Using the transcriptome data, the
“estimate” R package was used to calculate immune-
scores for all samples (Non-tumor samples were deleted,
OS time over 60 days were merged, n = 442, Supplemen-
tary Table S5). The score represents the infiltration de-
gree of immune cells in each sample. The higher the
score, the more immune cells infiltrated the sample.
Immunoscore survival analysis revealed that lower
immune infiltration is associated with poor prognosis
(p<0.001, HR = 0.47, 95%CI = 0.36—0.63; Fig. 3d). These
findings imply that the lower TMB led to immune-
associated pathway enrichment while the lower immune
infiltrate group was correlated with poor prognosis.
Therefore, we evaluated the predictive accuracy of the
TMB-associated immune genes. Venn analysis showed
that, from 1812 immune genes and 504 DEGs, there
were 38 intersecting genes (Supplementary Fig. S3).

Construction and assessment of TMB-IP in SKCM

Prognostic values of the 38 immune-related DEGs were
further evaluated. Data for the 442 SKCM patients were
used in univariate-lasso-multivariate Cox regression analysis.
A total of 11 genes obtained from the univariate Cox ana-
lysis (p <0.001; Fig. 3e) while 7 genes were obtained from
lasso regression analysis (PGLYRP3, GAL, ADCYAPIR],
SLPI, CNTER, LIF, and CRABP2; Fig. 3f). Finally, PGLYRP3,
GAL, ADCYAPIRI and LIF (Fig. 3g) were selected to con-
struct the Tumor Mutation Burden Immune Prognostic
model (TMB-IP) using the following formula: TMB-IP
score = (PGLYRP3*0.0988045135949462 + GAL*0.04837104
71635067 + ADCYAP1R1%0.123387518699318 — LIF*0.1217
87959868336). We calculated the TMB-IP score for each
SKCM patient (Supplementary Table S6). The K-M plot
revealed that high TMB-IP score patients exhibited worse
survival outcomes (Fig. 3h). Using a cutoff of 0.97080003,
patients were divided into high (n =231) and low (n =211)
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TMB-IP groups. We drew the ROC curves to evaluate the
predictive accuracyof the model. The OS outcomes
were: AUC = 0.69 (95%CI = 0.60-0.77) for 1-year, 0.68
(95%CI = 0.63-0.73) for 5-years, 0.69 (95%CI=0.63—
0.75) for 10-years, 0.73 (95%CI =0.64-0.82) for 15-
years, 0.75 (95%CI =0.66-0.85) for 17-years and 0.72
(95%CI = 0.58-0.85) for 20-years (Fig. 3i). Batch sur-
vival analysis indicated that these four prognostic hub
immune genes were closely correlated with survival
outcomes. Suppressed expression levels of ADCY
APIR1 (p<0.001, HR = 1.75, 95%CI = 1.32-2.3; Fig. 3j),
GAL (p<0.001, HR = 1.94, 95%CI = 1.48-2.55; Fig. 3k)
and PGLYRP3 (p < 0.001, HR = 1.67, 95%CI = 1.24-2.25;
Fig. 3m) were positively correlated with better progno-
sis, while suppressed expression levels of LIF (p < 0.001,
HR =0.55, 95%CI = 0.42-0.73; Fig. 3l) were negatively
correlated with better survival outcomes. Importantly,
we further assessed the prognostic efficiency in differ-
ent clinical subgroups. It was found that high and low
TMB-IP score classification criteria can perfectly distin-
guish the prognostic outcomes for: female (p<0.001,
HR =0.32, 95%CI = 0.19-0.54; Fig. 3n), male (p <0.001,
HR =0.5, 95%CI = 0.35-0.7; Fig. 30), stage I+1I (p<
0.001, HR = 0.37, 95%CI = 0.24—0.56; Fig. 3p), stage III +
IV (p<0.001, HR =0.43, 95%CI = 0.28-0.68; Fig. 3q),
>60Y (p <0.001, HR = 0.51, 95%CI = 0.34-0.77; Fig. 3r)
and < 60Y (p<0.001, HR=0.35 95%CI=0.24—-0.52;
Fig. 3s) patient groups.

Relationships between mutants and immune infiltrates
The link between the mutants of the 4 hub genes and
immune infiltrates in the SKCM microenvironment was
assesssed. Based on the findings, immune infiltrate inhi-
bitions, such as CD8+ T cells, dendritic cells, CD4+ T
cells, neutrophils, B-cells, and macrophages depended
on the type of mutation exhibited by the genes, relative
to the levels of immune infiltration in the wild type sam-
ples (Fig. 4).

Variations in the abundance of immune cell infiltration in
the low- versus high-TMB groups

We have shown that the DEGs negatively impacted on
immune pathways and that mutants of the four hub
genes were inversely correlated with immune infiltrates.
We further compared the various immune fraction pro-
files in the high- versus low-TMB groups. We used the
Voom algorithm in “limma” R package to normalize the
transcriptome data for SKCM samples. Samples were
filtered at p >0.05 using the “CIBERSORT” R package,
and 201 samples (125 low-TMB samples and 76 high-
TMB samples) were identified, which were then used to
analyze the immune cells (Supplementary Table S7). A
box plot was constructed to show specific fractions of 22
immune cells based on “CIBERSORT” algorithm in every
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SKCM sample (Fig. 5a). These 22 types of immune cells
are subclasses of the 6 immune cells in Fig. 4. Wilcoxon
rank test revealed that infiltration levels of CD8+ T cells,
CD4+ memory activated T cells, follicular helper T cells,
monocytes and macrophage M1 cells were reduced in
the high-TMB group, relative to those in the low-TMB
group (Fig. 5b). Correlation and distribution analysis of
the infiltration degree of 22 immune cells in the two
groups are shown in Supplementary Fig. S4.

Association between immune cell infiltration and survival

The Cox regression model was used to determine the as-
sociation between immune cells and prognosis in SKCM
samples (Table 2). In the model, Survival (SKCM) = B cell
+ CD8 T cell + CD4 T cell + Macrophage + Neutrophil
cell + Dendritic cell + ADCYAPI1R1 + LIF + GAL + PGLY
RP3. Elevated B cell, CD4+ T cell, Macrophage cell infil-
trates eas well as elevated expression levels of ADCY
APIR1, GAL, PGLYRP3 were found to be risk factors for
SKCM (HR > 1). Additionally, we performed the K-M ana-
lysis (Supplementary Fig. S5), where elevated infiltration
levels of B cells (P =0), CD8+ T cells (P = 0), Neutrophils
(P=0) and Dendritic cells (P =0) were positively corre-
lated with better SKCM prognosis, consistent with the
result of the survival analysis of the overall infiltration
of immune cells in the microenvironment (Fig. 3).

Discussion

We analyzed the SKCM-cohort in TCGA. It was found
that higher TMB is associated with better survival out-
comes and that transcriptomic data for low-TMB patients
was enriched in immune-related pathways. Prognostic

model construction confirmed that the four immune-
related genes can effectively distinguish patients with dif-
ferent prognostic outcomes.

Melanoma, a highly proliferating tumor, originates from
melanocytes in the neural crest. It occurs in the skin, in-
testinal tract, and genital mucosa. Combinations of im-
munotherapy and targeted therapy has completely
changed the treatment of SKCM. In 2013, Science ranked
tumor immunotherapy at the top of ten scientific break-
throughs [34]. Immunotherapeutic agents targeting CD8+
T-cell surface receptors (CTLA-4 and PD1) have greatly
improved patient prognosis [8]. Snyder et al. found that
TMB is correlated with clinical benefits of immunother-
apy, that is, the greater the number of somatic mutations,
the more likely the tumor is to respond to ICB [35-37].

Through integration and unified processing of high-
throughput sequencing data for multiple samples from
the TCGA database, we established significant mutation
genes that may be involved in immune responses of
SKCM. It is important to establish molecular markers of
immunotherapy to inform individualized treatment of
melanoma patients using immunotherapy.

Survival analysis revealed that the high-TMB group
patients exhibited better survival outcomes than
those in the low-TMB group. Median survival out-
comes for the high-TMB group and low-TMB group
were 1438 days and 698 days, respectively. Melanoma
is a tumor type with a high number of immune cells.
Some mutations produce new antigens that are rec-
ognized by T cells, which may be one of the reasons
for the better survival outcomes of the high-TMB
group. Besides, higher TMB correlated with advanced
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Fig. 5 Twenty-two immune fractions in low vs. high-TMB groups. a Barplot of the 22 immune fractions denoted by different colors: b Wilcoxon

age, male, lower tumor pathological stages, and lower
AJCC-N stages. These findings are consistent with
those of other studies. Rizvi et al. reported that
NSCLC patients with elevated non-synonymous
mutation burdens can achieve long-term remission
by immunotherapy, which is of paramount importance
for PFS [38]. The CheckMate-227 trial, comparing nivolu-
mab-+ipilimumab, nivolumab, and chemotherapy, revealed
that patients with high TMBs (> 10 mutations/Mb) have
the best OS outcomes [39], supporting the validity of
TMB-based treatment stratification.

Differential expression analysis and GSEA showed that
the low-TMB group was correlated with autoimmune
thyroid disease, B-and T-cell receptor signaling pathways,
and intestinal immune networks for IGA production. This
finding is unexpected and surprising because there is no
enrichment of any immune-related pathway in the high-
TMB group. GSEA is a method for enriching biological
pathways based on hundreds of gene sets. The close rela-
tionships between low-TMB and multiple immune-related
pathways have been reported, but the specific mechanisms
should be further evaluated. Moreover, survival analysis
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Table 2 Multivariate Cox regression analysis of six immune
infiltration cells and four immune-related genes

covariates coef HR 95%Cl_lower 95%Cl_uper p.value
B_cell 1132 3101 0.095 100.923 0524
CD8_Tcell -1421 0242 002 2.869 0.261
CD4_Tcell 0089  1.093 0.047 25.157 0.956
Macrophage 1938 6.944 0.728 66.19 0.092
Neutrophil -053 0589 0.001 478.663 0877
Dendritic -1378 0252 0.045 1428 0.119
ADCYAPIR1  0.244 1277 0.848 1923 0.242
LIF -0.134 0875 0.805 0.951 0.002
GAL 0058 106 0978 1.148 0.156
PGLYRP3 0.163 1177 1.001 1.384 0.049

Rsquare =0.111 (max possible = 9.93e-01); Likelihood ratio test p = 2.94e-07;
Wald test p = 5.64e-07; Score (logrank) test p = 1.82e-07

based on immune score of microenvironments indicated
that higher levels of immune infiltration are associated
with better survival outcomes. Infiltration levels of a var-
iety of immune cells, mainly T cells, can react with tumor
or non-tumor antigens, which affects survival outcomes
for patients. We also analyzed the effect of each type of
immune cell infiltration on survival.

Finally, a four-immune gene prognostic model was
developed based on 38 intersecting genes from 1812 im-
mune genes and 504 DEGs, which are greatly useful for
survival prediction. Four hub genes were either positively
correlated (LIF) or negatively correlated (PGLYRPS3,
GAL, and DCYAPIR1) with prognosis. The median sur-
vival outcomes for high TMB-IP score and low TMB-IP
score groups were 804 days and 1490 days, respectively.
TMB-IP score is a risk score of the prognostic model.
High TMB-IP score means high risk, and it has a
relatively shorter median survival outcomes than the low
TMB-IP score (low risk) group. Similar findings were
obtained in the survival analysis of the six subgroups.

Furthermore, mutants of these hub immune genes
were associated with immune infiltrates, such as CD8+
T cells, CD4+ T cells, dendritic cells, macrophages, and
B-cells in the SKCM microenvironment, implying that
these immune infiltrate cells might be suppressed by
mutations. To some extent, this is consistent with the
finding of Rosenthal: the absence of new antigens in high
immune infiltrated lung cancer suggests that these
tumors may evade immune attacks by inhibiting the
expression of new antigens [40]. Differences in immune
infiltration may affect tumor immune editing and the
appearance of neoantigens in tumors. During tumor
evolution, tumors with low immune infiltrations exhibit
reduced tumor antigen editing, indicating that the his-
torical immune editing or the original clone neoantigen
copy is lost. It has been found that immune cell activa-
tion in the tumor microenvironment is not the same in
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different tumor types, even in the same mutation fea-
ture, therefore, a specific analysis is needed [41, 42]. We
have shown that in SKCM patients, infiltration levels of
CD4+ memory activated T cells, CD8+ T cells, follicular
helper T cells, Monocytes, and Macrophage M1 cells in
the high-TMB group were significantly suppressed. Even
though there were no significant differences in other cat-
egories of immune cells, the degree of infiltration was
not an absolute trend as described above. There were
immune cells with higher infiltration levels in the high-
TMB group, and specific reasons for this outcome are
worthy of further investigations.

In the tumor microenvironment, different immune cells
confer different tumor responses. T-helper-1 cells, natural
killer cells, M1 phenotype macrophages, and DC1 pheno-
type dendritic cells are involved in the suppression of
tumorigenesis and development, while T-helper-2 cells, M2
macrophages, DC2 dendritic cells, and regulatory T cells
(Treg) suppress immune responses [43—45]. Analysis of the
unique properties of immune cells in the tumor micro-
environment may inform the design of cancer immuno-
therapy targets. The correlation between lymphocyte
infiltration in the tumor microenvironment and immuno-
therapeutic benefits have been confirmed [46—49]. Higher
infiltration levels of B cells, CD8+ T cells, Neutrophils, and
Dendritic cells are positively correlated with better SKCM
prognosis. Changes in tumor immune microenvironment,
tumor gene mutation, and gene regulation may affect
tumor evolution and survival outcomes.

However, there are some imperfections. First, we did
not carry out experiments (vivo/vitro) to verify the
relationship between four immune genes and immune
infiltration. Second, the sample size was not adequate to
confirm the potential relationship between TMB and
prognosis and immune infiltration. It will increase the
persuasiveness of the above results if we can further im-
prove these aspects in the future.

Conclusions

In summary, lower TMB is correlated with worse
survival outcomes and immune-related pathways, while
higher TMB inhibits immune infiltration in SKCM pa-
tients. The four TMB-related immune gene model can ef-
fectively differentiate between high and low-risk patients,
moreover, mutants of the four hub genes confer lower im-
mune cell infiltration, which should be further validated.

Abbreviations

AUC: Area under the curve; Cl: Confidence interval; DEGs: Differentially
expressed genes; DSS: Disease Specific Survival; GO: Gene ontology;
GSEA: Gene Set Enrichment Analysis; HR: Hazard ratio; ICB: Immunocheck
point blockade; OS: Overall Survival; PFl: Progression Free Interval; ROC
curve: Receiver operating characteristic curve; SKCM: Skin Cutaneous
Melanoma; SNP: Single nucleotide polymorphism; SNV: Single nucleotide
variant; TCGA: The Cancer Genome Atlas; TMB: Tumor mutation burden



Wang et al. BMC Cancer (2021) 21:379

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512885-021-08083-1.

Additional file 1: Figure S1. Workflow of this study.

Additional file 2: Figure S2. The genecloud plot and the
coincidences&exclusive relationship plot among the mutated genes.

Additional file 3: Figure S3. Venn analysis of 1812 immune genes and
504 DEGs.

Additional file 4: Figure S4. Correlation and distribution analysis of the
infiltration degree of 22 immune cells in the high-TMB and low-TMB groups.

Additional file 5: Figure S5. K-M analysis based on the infiltration levels.
Additional file 6: Table S1-S7.

Acknowledgements
Not applicable.

Authors’ contributions

() Conception and design: LWW and ZJY; (l) Performed data analysis and
created the figures/tables: FC and RL; (Ill) Data analysis and interpretation:
LWW, LS, and GSZ; (IV) Manuscript drafting and editing: All authors; (V) Final
approval of manuscript: All authors.

Funding

This study has supported by Health Commission Scientific Research Program
of Chongging (NO:2012-2-056). The funding agency had no role in the
study design, collection, analysis, or interpretation of data, in the writing of
this manuscript, or in the decision to submit for publication.

Availability of data and materials

The TCGA-SKCM datasets: https://portal.gdc.cancergov/;
ImmPort Private Database: https://immport.niaid.nih.gov/home;
TIMER Database: https:/cistrome.shinyapps.io/timer/

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Cancer Center, The Second Affiliated Hospital of Chongging Medical
University, Chongaing 400010, China. “Unit 32357 of People’s Liberation
Army, Pujiang, Sichuan 611630, China. *Department of Orthopedics, The
Second Affiliated Hospital of Chongging Medical University, No.76 Linjiang
Road, Yuzhong District, Chongging 400010, China.

Received: 24 August 2020 Accepted: 22 March 2021
Published online: 09 April 2021

References

1. De La Cruz MM, Abdul Z, Shariff Z. The impact of a skin cancer diagnosis on
travel insurance: a sun worshipper's dilemma. Clin Exp Dermatol. 2020.

2. Siegel JA, Yudkin JS, Craker K, Hwang A, Libby T. Uncapping the bottle: a
proposal to allow full-sized sunscreens in carry-on luggage to promote sun
protection and prevent skin cancer. J Am Acad Dermatol. 2020.

3. Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage
responses in melanoma pathogenesis. Environ Mol Mutagen. 2018;59(5):
438-60. https://doi.org/10.1002/em.22176.

4. Gupta R, Janostiak R, Wajapeyee N. Transcriptional regulators and alterations
that drive melanoma initiation and progression. ONCOGENE. 2020;39(48):
7093-105.

20.

21.

22.

23.

24,

25.

Page 11 of 12

Bray F, Ferlay J, Soerjomataram |, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018,68(6):394-424.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;
69(1):7-34.

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics
in China, 2015. CA Cancer J Clin. 2016;66(2):115-32.

Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and
immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol.
2017;14(8):463-82. https://doi.org/10.1038/nrclinonc.2017.43.

Schreuer M, Jansen Y, Planken S, Chevolet |, Seremet T, Kruse V, et al.
Combination of dabrafenib plus trametinib for BRAF and MEK inhibitor
pretreated patients with advanced BRAFV600-mutant melanoma: an open-
label, single arm, dual-Centre, phase 2 clinical trial. Lancet Oncol. 2017;18(4):
464-72. https://doi.org/10.1016/S1470-2045(17)30171-7.

Long GV, Hauschild A, Santinami M, Atkinson V, Mandala M, Chiarion-Sileni
V, et al. Adjuvant Dabrafenib plus Trametinib in stage Il BRAF-mutated
melanoma. New Engl J Med. 2017,377(19):1813-23. https://doi.org/10.1056/
NEJMoa1708539.

Sanlorenzo M, Vujic |, Floris A, Novelli M, Gammaitoni L, Giraudo L, et al.
BRAF and MEK inhibitors increase PD-1-positive melanoma cells leading to
a potential lymphocyte-independent synergism with anti-PD-1 antibody.
Clin Cancer Res. 2018;24(14):3377-85. https://doi.org/10.1158/1078-0432.
CCR-17-1914.

Kunz M, Holzel M. The impact of melanoma genetics on treatment
response and resistance in clinical and experimental studies. Cancer Metast
Rev. 2017;36(1):53-75. https://doi.org/10.1007/510555-017-9657-1.
Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al.
Improved antitumor activity of immunotherapy with BRAF and MEK
inhibitors inBRAFV600E melanoma. Sci Transl Med. 2015;7(279):241r-79r.
Valpione S, Campana LG. Immunotherapy for advanced melanoma: future
directions. Immunotherapy-UK. 2016;8(2):199-209. https://doi.org/10.2217/
imt.15.111.

Axelrod ML, Johnson DB, Balko JM. Emerging biomarkers for cancer
immunotherapy in melanoma. Semin Cancer Biol. 2018;52:207-15. https.//
doi.org/10.1016/j.semcancer.2017.09.004.

Dummer R, Ascierto PA, Nathan P, Robert C, Schadendorf D. Rationale for
immune checkpoint inhibitors plus targeted therapy in metastatic
melanoma: a review. Jama Oncol. 2020,6(12):1957. https://doi.org/10.1001/ja
maoncol.2020.4401.

Effern M, Glodde N, Braun M, Liebing J, Boll HN, Yong M, et al. Adoptive T
cell therapy targeting different gene products reveals diverse and context-
dependent immune evasion in melanoma. Immunity. 2020;53(3):564-80.
https://doi.org/10.1016/j.immuni.2020.07.007.

Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor
Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov.
2020;10(12):1808-25.

Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of
tumor mutational burden as an immunotherapy biomarker. Cancer cell.
2021;39(2):154-73.

Heydt C, Rehker J, Pappesch R, Buhl T, Ball M, Siebolts U, Haak A, Lohneis P,
Buttner R, Hillmer AM et al. Analysis of tumor mutational burden: correlation
of five large gene panels with whole exome sequencing. Sci Rep-UK. 2020;
10(1). doi: https://doi.org/10.1038/541598-020-68394-4.

Ajona D, Ortiz-Espinosa S, Moreno H, Lozano T, Pajares MJ, Agorreta J, et al.
A combined PD-1/C5a blockade synergistically protects against lung Cancer
growth and metastasis. Cancer Discov. 2017;7(7):694-703. https.//doi.org/1
0.1158/2159-8290.CD-16-1184.

Razzak M. Anti-PD-1 approaches—important steps forward in metastatic
melanoma. Nat Rev Clin Oncol. 2013;10(7):365. https://doi.org/10.1038/
nrclinonc.2013.98.

A Set of Transcriptomic Changes Is Associated with Anti—PD-1 Resistance.
Cancer Discov. 2016; 6(5):471-472.doi: https://doi.org/10.1158/2159-8290.
CD-RW2016-057.

Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-
tumor genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science. 2018;362(6411):r3593.

Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and Transcriptomic features of response to anti-PD-1 therapy in
metastatic melanoma. Cell. 2016;165(1):35-44. https://doi.org/10.1016/j.cell.2
016.02.065.


https://portal.gdc.cancer.gov/
https://immport.niaid.nih.gov/home
https://cistrome.shinyapps.io/timer/
https://doi.org/10.1002/em.22176
https://doi.org/10.1038/nrclinonc.2017.43
https://doi.org/10.1016/S1470-2045(17)30171-7
https://doi.org/10.1056/NEJMoa1708539
https://doi.org/10.1056/NEJMoa1708539
https://doi.org/10.1158/1078-0432.CCR-17-1914
https://doi.org/10.1158/1078-0432.CCR-17-1914
https://doi.org/10.1007/s10555-017-9657-1
https://doi.org/10.2217/imt.15.111
https://doi.org/10.2217/imt.15.111
https://doi.org/10.1016/j.semcancer.2017.09.004
https://doi.org/10.1016/j.semcancer.2017.09.004
https://doi.org/10.1001/jamaoncol.2020.4401
https://doi.org/10.1001/jamaoncol.2020.4401
https://doi.org/10.1016/j.immuni.2020.07.007
https://doi.org/10.1038/s41598-020-68394-4
https://doi.org/10.1158/2159-8290.CD-16-1184
https://doi.org/10.1158/2159-8290.CD-16-1184
https://doi.org/10.1038/nrclinonc.2013.98
https://doi.org/10.1038/nrclinonc.2013.98
https://doi.org/10.1158/2159-8290.CD-RW2016-057
https://doi.org/10.1158/2159-8290.CD-RW2016-057
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1016/j.cell.2016.02.065

Wang et al. BMC Cancer

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

(2021) 21:379

Mayakonda A, Lin D, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. 2018;
28(11):1747-56. https://doi.org/10.1101/gr.239244.118.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015:43(7):e47.

Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS. 2012;16(5):284-7. https://
doi.org/10.1089/0mi.2011.0118.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;
102(43):15545-50. https://doi.org/10.1073/pnas.0506580102.

Liberzon A, Birger C, Thorvaldsdattir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database Hallmark gene set collection. Cell Syst.
2015;1(6):417-25. https://doi.org/10.1016/j.cels.2015.12.004.

Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al.
ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. SCI DATA. 2018;5(1):180015. https://doi.
0rg/10.1038/sdata.2018.15.

Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;
77(21):2108-10. https://doi.org/10.1158/0008-5472.CAN-17-0307.

Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat Biotechnol. 2019;37(7):773-82. https.//doi.org/10.1038/
s41587-019-0114-2.

Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342(6165):1432-3.
https.//doi.org/10.1126/science.342.6165.1432.

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic
melanoma. Science. 2015,350(6257):207-11. https://doi.org/10.1126/
science.aad0095.

Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, Stover E,
Strickland KC, D Andrea AD, Wu CJ et al. Association of Polymerase e-mutated
and microsatellite-instable endometrial cancers with Neoantigen load, number
of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. Jama
Oncol 2015; 1(9):1319, DOI: https://doi.org/10.1001/jamaoncol.2015.2151.
Chan TA, Wolchok JD, Snyder A. Genetic basis for clinical response to CTLA-
4 blockade in melanoma. New Engl J Med. 2015;373(20):1984. https://doi.
0rg/10.1056/NEJMc1508163.

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Mutational landscape determines sensitivity to PD-1 blockade in non-small
cell lung cancer. Science. 2015;348(6230):124-8. https://doi.org/10.1126/
science.aaal348.

Hellmann MD, Ciuleanu T, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette
G, et al. Nivolumab plus Ipilimumab in lung Cancer with a high tumor
mutational burden. New Engl J Med. 2018;378(22):2093-104. https://doi.
0rg/10.1056/NEJMoa1801946.

Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al.
Neoantigen-directed immune escape in lung cancer evolution. Nature.
2019;567(7749):479-85. https;//doi.org/10.1038/541586-019-1032-7.
Desrichard A, Kuo F, Chowell D, Lee K, Riaz N, Wong RJ, et al. Tobacco
smoking-associated alterations in the immune microenvironment of
squamous cell carcinomas. J Natl Cancer Institute. 2018;110(12):1386-92.
https://doi.org/10.1093/jnci/djy060.

Fredriksson NJ, Elliott K, Filges S, Van den Eynden J, Stéhlberg A, Larsson E.
Recurrent promoter mutations in melanoma are defined by an extended
context-specific mutational signature. PLoS Genet. 2017;13(5):e1006773.
https://doi.org/10.1371/journal.pgen.1006773.

Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: integrating
Immunity's roles in Cancer suppression and promotion. SCIENCE. 2011;
331(6024):1565-70. https://doi.org/10.1126/science.1203486.

Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, et al.
Social network architecture of human immune cells unveiled by
quantitative proteomics. Nat Immunol. 2017;18(5):583-93. https://doi.org/1
0.1038/ni.3693.

Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, et al. Immune checkpoint
molecules in natural killer cells as potential targets for cancer
immunotherapy. Signal Transduction Targeted Therapy. 2020;5(1):250.
https://doi.org/10.1038/541392-020-00348-8.

46.

47.

48.

49.

Page 12 of 12

Coleman E, Ko C, Dai F, Tomayko MM, Kluger H, Leventhal JS. Inflammatory
eruptions associated with immune checkpoint inhibitor therapy: a single-
institution retrospective analysis with stratification of reactions by toxicity
and implications for management. J Am Acad Dermatol. 2019;80(4):990-7.
https://doi.org/10.1016/jjaad.2018.10.062.

Lynes J, Jackson S, Sanchez V, Dominah G, Wang X, Kuek A, et al. Cytokine
microdialysis for real-time immune monitoring in glioblastoma patients
undergoing checkpoint blockade. Neurosurgery. 2019;84(4):945-53. https://
doi.org/10.1093/neuros/nyy392.

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut
microbiome influences efficacy of PD-1-based immunotherapy against
epithelial tumors. Science. 2018;359(6371):91-7. https://doi.org/10.1126/
science.aan3706.

Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.
Science. 2015;348(6230):69-74. https://doi.org/10.1126/science.aaa4971.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1126/science.342.6165.1432
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1001/jamaoncol.2015.2151
https://doi.org/10.1056/NEJMc1508163
https://doi.org/10.1056/NEJMc1508163
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1038/s41586-019-1032-7
https://doi.org/10.1093/jnci/djy060
https://doi.org/10.1371/journal.pgen.1006773
https://doi.org/10.1126/science.1203486
https://doi.org/10.1038/ni.3693
https://doi.org/10.1038/ni.3693
https://doi.org/10.1038/s41392-020-00348-8
https://doi.org/10.1016/j.jaad.2018.10.062
https://doi.org/10.1093/neuros/nyy392
https://doi.org/10.1093/neuros/nyy392
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aaa4971

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data acquisition
	TMB calculation and Kaplan-Meier analysis
	Differentially expressed genes and functional pathway analysis
	Construction of a TMB-immune prognostic model for hub immune genes
	TIMER database and CIBERSORT algorithm
	Determination of prognostic value of immune cells in the TIMER database
	Statistical analysis

	Results
	Mutation profiles in SKCM
	TMB is correlated with survival outcomes, pathological stage and tumor grade
	Differential expression analysis between two groups
	Construction and assessment of TMB-IP in SKCM
	Relationships between mutants and immune infiltrates
	Variations in the abundance of immune cell infiltration in the low- versus high-TMB groups
	Association between immune cell infiltration and survival

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

