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Abstract

Background: Gene mutations play critical roles in tumorigenesis and cancer development. Our study aimed to
screen survival-related mutations and explore a novel gene signature to predict the overall survival in pancreatic
cancer.

Methods: Somatic mutation data from three cohorts were used to identify the common survival-related gene
mutation with Kaplan-Meier curves. RNA-sequencing data were used to explore the signature for survival prediction.
First, Weighted Gene Co-expression Network Analysis was conducted to identify candidate genes. Then, the ICGC-
PACA-CA cohort was applied as the training set and the TCGA-PAAD cohort was used as the external validation set.
A TP53-associated signature calculating the risk score of every patient was developed with univariate Cox, least
absolute shrinkage and selection operator, and stepwise regression analysis. Kaplan-Meier and receiver operating
characteristic curves were plotted to verify the accuracy. The independence of the signature was confirmed by the
multivariate Cox regression analysis. Finally, a prognostic nomogram including 359 patients was constructed based
on the combined expression data and the risk scores.

Results: TP53 mutation was screened to be the robust and survival-related mutation type, and was associated with
immune cell infiltration. Two thousand, four hundred fifty-five genes included in the six modules generated in the
WGCNA were screened as candidate survival related TP53-associated genes. A seven-gene signature was
constructed: Risk score = (0.1254 x ERRFIT) - (0.1365 X IL6R) - (04400 x PPP1R10) - (0.3397 x PTOV1-AS2) + (0.1544 x
SCEL) - (04412 x SSX2IP) — (0.2231 x TXNL4A). Area Under Curves of 1-, 3-, and 5-year ROC curves were 0.731, 0.808,
and 0.873 in the training set and 0.703, 0.677, and 0.737 in the validation set. A prognostic nomogram including
359 patients was constructed and well-calibrated, with the Area Under Curves of 1-, 3-, and 5-year ROC curves as
0.713, 0.753, and 0.823.

Conclusions: The TP53-associated signature exhibited good prognostic efficacy in predicting the overall survival of
PC patients.
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Introduction

Pancreatic cancer (PC) has been the 11th most common
cancer in 2012. Both the incidence and mortality rates of
PC have been increasing in developed countries. PC was
the 3rd leading cause of cancer-related mortality in the
United States in 2017, and will grow to be the 2nd lead-
ing cause of cancer-related mortality in 2030 [1, 2]. As
the malignancy with the highest mortality, the survival
rate of PC has not been increased despite years of inves-
tigation [3]. The primary treatment approach is still sur-
gery, though only 20% of patients will survive over 5
years after pancreatectomy [4]. The main reasons in-
clude delayed diagnosis at an advanced stage, ineffective
treatment, and poor prognosis. The diagnosis of pancre-
atic cancer has been generally difficult because it
depended on the clinical symptoms, which were not in-
dicative during onset and gradual progression over years.
There may be only midepigastric pain, weight loss, mal-
aise, nausea, and fatigue. Most patients diagnosed with
PC have developed metastases, leading to poor prognos-
tic outcomes [5]. The detection of pancreatic cancer at
early and resectable stage has been proved to have bene-
ficial effects on long-term survival.

Numerous studies have tried to explore the risk factors
for PC. Smoking, Alcohol consumption, Obesity and
Dietary factors have been proved to increase the risk of
PC [2]. Except for the clinical symptoms, biomarkers in
blood or biospy have been also developed for PC screen
and monitor. Serum cancer antigen 19-9 (CA 19-9) is
the only approved marker for clinical management of
PC patients [6]. With the advances of proteome and ge-
nomes, some specific expression profiles have been re-
vealed in PC patients [7]. These expression profiles may
assist in interpreting the hereditary incidence, unpredict-
able efficacy of clinical treatment, as well as the poor
outcomes. A recent study has summarized the selected
protein biomarkers in tissue, serum, plasma, and pancre-
atic juice. The combination of CA 19-9 and other emer-
ging biomarkers improved clinical management of PC
[7]. The genetic alterations have also been investigated
in PC patients. The study proposed several known fre-
quently mutated genes (including KRAS and TP53) and
revealed mutations in critical signaling pathways [4].
Further, a recent meta-analysis involving 9040 patients
and 12,496 controls reported five new susceptibility loci
for PC [8]. The emerging genetic alterations assisted in
the better characterization of the complex diseases.

PC is a heterogeneous disease with various subtypes
[9]. More understanding may help in improving the dis-
ease management [10]. Here, from another point of
view, we explored the gene alterations in tumorigenesis
and cancer development of PC based on comprehensive
bioinformatic analysis. Overall survival-related mutations
were screened and a novel gene signature was developed
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to predict the overall survival for patients with PC. It
may be beneficial to improve the prognosis prediction
and post-surgery management.

Materials and methods

Data sources

A total of three cohorts were included in this study.
Somatic mutation data (nz=124) and RNA-sequencing
data (n=178) with corresponding clinical data of the
TCGA-PAAD cohort were downloaded from the Cancer
Genome Atlas (https://cancergenome.nih.gov/). Somatic
mutation data of the ICGC-PACA-CA cohort (1 =263)
and the ICGC-PACA-AU cohort (7 =373) with corre-
sponding clinical data were downloaded from the Inter-
national Cancer Genome Consortium (ICGC) database
(https://www.icgc.org). RNA-sequencing data of the
ICGC-PACA-CA cohort (n=182) with corresponding
clinical data were also downloaded from the Inter-
national Cancer Genome Consortium (ICGC) database
(https://www.icgc.org).

Data processing and normalization

Somatic mutation data of the TCGA-PAAD cohort were
based on VarScan2 [11]. Somatic mutation data of the
ICGC-PACA-AU cohort were based on gsnp [12]. Som-
atic mutation data of the ICGC-PACA-CA cohort were
based on MuTect [13]. Synonymous variant data which
could not cause the change of amino acid sequence were
filtered out. The RNA-sequencing data of the ICGC-
PACA-CA and the TCGA-PAAD cohorts were normal-
ized data (FPKM). All expression values were log2-
transformed. The batch effect was eliminated with the
SVA R package in R 3.6.1. The somatic mutation data of
the three cohorts were used to identify the common
survival-related gene mutation. The RNA-sequencing
data of the ICGC-PACA-CA and the TCGA-PAAD co-
horts were used to explore and validate the multi-gene
signature to predict the overall survival in patients with
pancreatic cancer.

Identification of survival-related mutations

Somatic mutation data of the three cohorts were ex-
tracted and sorted with Perl 5.32.0 (https://www.perl.
org/). Mutational frequencies were calculated by the
counting method. The top 30 genes with the highest
mutation frequency were acquired from the three co-
horts separately. Waterfall plots of the mutational land-
scape were generated with the GenVisR R package [14].
The common mutations were selected and drawn by the
Venn diagram. In order to identify robust mutations
which were associated with the overall survival, Kaplan-
Meier (KM) curves comparing the mutated group with
the wild group were plotted by the Survival R package in
three cohorts separately. P < 0.05 were considered to be
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indicative of significance. Finally, only TP53 mutation
was indicated to be significantly related to the overall
survival in all the three cohorts.

Association between TP53 mutation and tumor mutation
burden (TMB)

TMB is an important genetic factor in mediating antitu-
mor immunity. In this study, number of non-
synonymous single nucleotide polymorphism (SNP) of
each sample was calculated with Perl 5.32.0. TMB scores
were estimated as number of variants/the length of
exons (38 million). Wilcoxon tests were conducted to
compare the differences of TMB between the TP53 mu-
tated and wild groups in the three cohorts.

Gene set enrichment analysis (GSEA)

To reveal functional differences between PC patients
with and without TP53 mutations, GSEA was done in
GSEA 4.0.1 software with the gene set c2 (cp.kegg.v.6.2.-
symbols.gmt). A total of 65 patients without TP53 muta-
tions and 77 patients with TP53 mutations in the
TCGA-PAAD cohort were included. The normalized
RNA-sequencing data (FPKM) were used in the GSEA.
The threshold was set at FDR (false discovery rate) <
0.05 and NES (normalized enrichment score) > 1.5. The
results were drawn with the ggplot2 R package.

Analysis of total leucocyte infiltration and 22 immune cell
types’ infiltration pattens

To explore the differences in tumor immune infiltrating
cells between TP53-mutated and TP53-wild patients, the
estimations of total leucocyte infiltration were performed
by the ESTIMATE R package [15], and the fractions of
22 immune cell types (B cells naive, B cells memory,
Plasma cells, T cells CD8, T cells CD4 naive, T cells
CD4 memory resting, T cells CD4 memory activated, T
cells follicular helper, T cells regulatory (Tregs), T cells
gamma delta, NK cells resting, NK cells activated,
Monocytes, Macrophages M0, Macrophages M1, Macro-
phages M2, Dendritic cells resting, Dendritic cells acti-
vated, Mast cells resting, Mast cells activated,
Eosinophils and Neutrophils) were calculated with
CIBERSORT R script v1.03 [16]. Sixty-five patients with-
out TP53 mutations and 77 patients with TP53 muta-
tions in the TCGA-PAAD cohort were included.
Immune scores generated from the ESTIMATE algo-
rithm were used to reflect and compare the total leuco-
cyte infiltrations. The CIBERSORT analysis was
conducted by using the default signature matrix at 1000
permutations. Results with P>0.05 were excluded. 35
wild and 60 mutated patients were included for the fur-
ther analysis. Differentially analysis was performed with
the Wilcoxon test and plotted by the vioplot R package.
P <0.05 were considered to be statistically significant.
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Pearson’ correlations among the infiltrations of the 22
immune cell types and the immune scores were plotted
with the corrplot R package in the wild and mutated
groups separately.

Screening of survival related TP53-associated genes

To screen candidate genes which were both associated
with TP53 mutations and overall survival, WGCNA was
applied with the WGCNA R package [17]. There were
67 wild and 82 mutated patients in the TCGA-PAAD
cohort with complete overall survival data included.
First, outlier samples were excluded by sample cluster-
ing. The sample dendrogram and the clinical-traits heat-
map were plotted. Then, the scale-free network was
constructed with the appropriate soft-threshold power
(B) value. The scale-free topology was plotted to show
the constructed scale-free network.

The co-expression modules generated from the scale-
free network were further plotted with dynamic tree cut-
ting. Modules were merged if their similarity was greater
than 0.75 according to dendrogram height. The Pear-
son’s correlation coefficients between each module and
clinical traits were further calculated and plotted. Mod-
ules with correlations with TP53 mutation greater than
0.2 (P<0.05) and significantly associated with overall
survival (P <0.05) were considered as survival-related
TP53-associated modules. The genes included in the
modules were screened as candidate survival related
TP53-associated genes.

Developing and validation of TP53-associated prognostic

signature

In this study, the gene expression data of the ICGC-
PACA-AU cohort were mainly based on microarray
platform. While, the gene expression data of the ICGC-
PACA-CA and the TCGA-PAAD cohorts were all based
on RNA- sequencing platforms. The sample size of the
ICGC-PACA-CA cohort was larger than the TCGA-
PAAD cohort. So, the ICGC-PACA-CA cohort was ap-
plied as the training set and the TCGA-PAAD cohort
was used as the external validation set. First, the univari-
ate Cox regression analysis was done to further identify
the survival related TP53-associated genes in the train-
ing set with the cutoff of P <0.05. The LASSO and step-
wise regression analyses were applied to construct the
best-fit TP53-related prognostic signature, which could
estimate the risk score of every patient. Based on the
median risk score of the training set, all patients were di-
vided into high- and low-risk groups in both sets.
Kaplan-Meier (KM) curves were used to perform the
survival analysis which could compare the overall sur-
vival of different groups. The predictive performances at
different endpoints (1, 2, 3, 4, and 5 years) were assessed
with the receiver operating characteristic (ROC) curves
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in both cohorts. The alteration trends of risk score, sur-
vival time, survival status, and expression levels of the
genes included in the signature were further plotted with
the pheatmap R package in both cohorts separately.

Independent prognostic prediction analysis

To explore the independence of the TP53-related signa-
ture, univariate and multivariate Cox regression analyses
were conducted with the Survival R package. One hun-
dred forty-three patients with complete clinical informa-
tion of the age, gender, stage, and risk score were
included in the ICGC-PACA-CA cohort. One hundred
and seventy-five patients with complete clinical informa-
tion of the age, gender, grade, stage, alcohol, family his-
tory, and risk score were included in the TCGA-PAAD
cohort. The hazard ratio (HR) and P values were plotted.
P <0.05 were considered statistically significant. 5-year
Receiver Operating characteristic Curves (ROC) of the
risk score and other clinical features were plotted with
the survivalROC R package. Area Under Curves (AUCs)
were applied to compare the accuracies of different fac-
tors’ prediction abilities.

Construction of the prognostic Nomogram

Based on the multivariate Cox regression analysis in the
independent prognostic prediction analysis, the risk
score was the only robust factor significantly (P < 0.05)
associated with overall survival in both cohorts. The ex-
pression data and the risk scores of the two cohorts were
combined. A total of 359 patients were included and the
prognostic nomogram was constructed with the rms R
package. The survival analysis was carried out by KM
plotter. The calibration curve was further plotted using
the calibrate function. ROC curves of 1, 3, and 5 years
were plotted with the survivalROC R package. Then, we
conducted the performance comparison of the signature
in our study (referred to as TP53Sig) with eight recently
published signatures: 6-mRNA signature from Hou’s
study (referred to as HouSig) [18], 4-mRNA signature
from Meng’s study (referred to as MengSig) [19], 8-
mRNA signature from Meng's study (referred to as
MengSig) [20], 5-mRNA signature from Wu’s study (re-
ferred to as WuSig) [21], 7-mRNA signature from Wu’s
study (referred to as WuSig) [22], 10-mRNA signature
from Yue’s study (referred to as YueSig) [23], 2-mRNA
signature from Zhou’s study (referred to as ZhouSig)
[24] and 6-LncRNA signature from Deng’s study (re-
ferred to as DengSig) [25]. ROC curves of 3 years were
plotted and AUC values were calculated using the survi-
valROC R package.

Survival analysis in subgroups
To evaluate the predictive level of TP53-related prog-
nostic score in different subgroups (Age>65, Age <65,
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Male, Female, Stage I, Stage II, Stage III-IV, Grade 1,
Grade 2 and Grade 3-4), Kaplan-Meier (KM) curves
were plotted with the Survival R package.

Relevance with clinical features

The relationships between the risk score and the other
clinical features (Age, Gender, Stage and Grade) were
explored by using the ggpubr R package in the combined
cohort with Kruskal-Wallis test. P < 0.05 indicated statis-
tically significant.

Immune cell infiltration analysis and GSEA

To explore the differences in tumor immune infiltrating
cells between the high-risk patients (n=183) and the
low-risk patients (n=176), the estimations of total
leucocyte infiltration were performed by the ESTIMATE
R package and the fractions of 22 immune cell types
were estimated with CIBERSORT in R 3.6.1. Immune
scores generated from the ESTIMATE algorithm were
used to reflect and compare the total leucocyte infiltra-
tions with Wilcoxon test. The CIBERSORT analysis was
conducted by using the default signature matrix at 1000
permutations. Results with P> 0.05 were excluded. Then,
according to the previous Charoentong’s study [26], we
further explored the differential expression analysis of 96
immunotherapy-related genes between the 183 high-risk
and 176 low-risk patients with Wilcoxon Test. Finally,
the functional differences between the high-risk and
low-risk groups were explored with gene set enrichment
analysis in GSEA 4.0.1 software.

Statistical analysis

The Kaplan—Meier method was used to perform survival
analysis, and the log-rank test was used to assess the dif-
ference. Differentially analysis of TMB values, immune
scores and 22 immune cell types’ infiltrations were con-
ducted with the Wilcoxon test. Univariate and multivari-
ate Cox regression analysis were used to assess the
independence of the risk score. The performances of the
signatures were evaluated by the ROC curves. The rela-
tionships between the risk score and the other clinical
features were explored with Kruskal-Wallis test. P < 0.05
indicated statistically significant.

Results

Screening TP53 mutation to be robust and survival-
related mutation type

Mutational landscapes of the top 30 genes with the high-
est mutation frequency in the three cohorts were plotted
separately (Fig. 1a-c). As shown in the results, KRAS and
TP53 mutations were the top two mutation types. The
mutation frequencies of SMAD4, CDKN2A, and TTN
mutations ranked the third to the fifth in the three co-
horts. The common ten (KRAS, TP53, SMMAD4,
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CDKN2A, TTN, RNF43, MUC16, ARID1A, KMT2C,
and RYR1) mutations were drawn by the Venn diagram
(Fig. 1d). In order to explore whether these mutations
were associated with the overall survival robustly,
Kaplan-Meier (KM) curves comparing the mutated
group with the wild group were performed in the three
cohorts separately. Finally, TP53 mutation was indicated
to be the only robust and survival-related mutation type.
Kaplan-Meier (KM) curves were shown (Fig. 2a-c).
TP53-mutated patients had significantly worse overall
survival in the three cohorts (P < 0.05).

Association between TP53 mutation and tumor mutation
burden (TMB)

TMB values of TP53-mutated group were significantly
higher in TCGA-PAAD cohort (P =0.001) and ICGC-
PACA-AU cohort (P <0.001). However, no significant
difference was found in the ICGC-PACA-CA cohort
(P =0.93) (Fig. 2d). Whether TP53 mutation affects
TMB needs to be further explored.

TP53 mutation was associated with immune cell
infiltration

GSEA results indicated that the B cell receptor signaling
pathway and leukocyte transendothelial migration were
significantly enriched in the TP53-mutated patients
(Fig. 2e). Immune scores reflecting the total leucocyte
infiltrations by ESTIMATE showed no significant

difference between the two groups (Fig. 3a). However,
fraction pattens of the 22 immune cell types by CIBER-
SORT were different. In details, the fractions of plasma
cells (P=0.023), T cells CD8 (P=0.049), Monocytes
(P=0.047) and Mast cells resting (P=0.03) in TP53-
mutated patients were significantly lower than those in
TP53-wild patients (Fig. 3b). Moreover, the immune
score had the most positive correlation with the fraction
of Neutrophils (R =0.33) and the most negative correl-
ation with the fraction of Macrophages MO (R = - 0.41)
in the wild group (Fig. 3c). And the immune score had
the most positive correlation with the fraction of T cells
CD4 memory activated (R =0.31) and the most negative
correlation with the fraction of B cells naive (R = - 0.27)
in the mutated group (Fig. 3d).

Screening of candidate TP53-associated genes by WGCNA
To screen candidate TP53-associated genes, WGCNA
was performed in the TCGA-PAAD cohort. First, six
outlier samples were excluded by sample clustering. The
sample dendrogram and the clinical-traits heatmap was
plotted (Fig. 4a). Then, the scale-free network was con-
structed with the soft-threshold power (B) value as 8
(Fig. 4b). The constructed scale-free network was shown
by the scale-free topology, with R*=0.99 and slope = —
1.4 (Fig. 4c). The co-expression modules generated from
the scale-free network were further plotted with dynamic
tree cutting (Fig. 4d). The Pearson’s correlation
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coefficients between each module and clinical traits
(Additional file 1) were plotted (Fig. 4e). Six Modules
(magenta, darkgreen, black, darkorange, steelblue, tan)
with correlations with TP53 mutation greater than 0.2
(P<0.05) and significantly related with the overall sur-
vival (P < 0.05) were considered as survival related TP53-
associated modules. A total of 2455 genes included in
the six modules were screened as candidate survival re-
lated TP53-associated genes.

Developing and validation of TP53-related prognostic
signature

The ICGC-PACA-CA cohort (n=182) was applied as
the training set and the TCGA-PAAD cohort (n=177)
was used as the external validation set. Patient character-
istics in the training and the testing cohorts were shown
(Table 1). First, univariate cox regression analysis was
done in the training set and a total of 316 genes were
identified with P <0.05. LASSO regression analysis was
further applied and 10 genes were screened (Fig. 5a, b).
Then, the stepwise regression analysis was used and con-
structed the best-fit TP53-related prognostic signature
calculating the risk score of each patient. Seven genes
were included in the signature calculating the risk score

with the formula: risk score=(0.1254 x ERRFI1) -
(0.1365 x IL6R) - (0.4400 x PPP1R10) - (0.3397 x
PTOV1-AS2) + (0.1544 x SCEL) - (0.4412 x SSX2IP) —
(0.2231 x TXNL4A). The hazard ratios (HRs) were plot-
ted (Fig. 5¢). Based on the median risk score 1.005987 of
the training set, all patients were divided into high- and
low-risk groups in both training and external validation
sets. Kaplan-Meier (KM) curves showed the overall sur-
vival of the high-risk patients was worse than that of the
low-risk patients (P < 0.001) (Fig. 5d-e). The ROC curves
of 1-, 2-, 3-, 4-, and 5-year were plotted, with the AUC
of 0.731, 0.765, 0.808, 0.774, and 0.873 in the training
set (Fig. 5f) and the AUC of 0.703, 0.648, 0.677, 0.714,
and 0.737 in the external validation set (Fig. 5g). Alter-
ation trends of risk score, survival time, survival status
and the included genes’ expression levels were further
plotted separately (Fig. 6a-f).

Independence of the TP53-related prognostic signature

Univariate and multivariate Cox regression analyses were
performed to explore the independence of the TP53-
related prognostic signature from other clinical features.
The hazard ratio (HR) and P values were plotted. The 5-
year Receiver Operating Characteristic Curves (ROC) of
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the risk score and other clinical features were plotted.
The risk score was proved to be the only variable signifi-
cantly associated with overall survival in the univariate
(P<0.001) and multivariate (P<0.001) Cox regression
results in the ICGC-PACA-CA cohort (Fig. 7a, b). The
5-year ROC curve was plotted with the highest value of
0.844. than that of the other clinical features included
(Fig. 7c). The risk score (P <0.001), age (P=0.012), and
grade (P=0.007) were the three variables significantly
associated with overall survival in the univariate analysis
of the TCGA-PAAD cohort (Fig. 7d). The risk score
(P<0.001) and age (P=0.038) were the two significant
variables in the multivariate analysis of the TCGA-
PAAD cohort (Fig. 7e). The 5-year ROC curve was also
plotted with the highest value of 0.717 than that of the
other clinical features included (Fig. 7f). These results in-
dicated that the risk score based on the TP53-related

prognostic signature was independent from other clinical
features.

Construction of the prognostic Nomogram
The risk score was the only robust factor significantly
(P<0.05) associated with overall survival in both co-
horts. The expression data and the risk scores of the two
cohorts were combined. Three hundred and fifty-nine
patients were included and the prognostic nomogram
was conducted (Fig. 8a). The survival analysis was car-
ried out by KM plotter (Fig. 8b). The calibration curve
of 3 years was well calibrated (Fig. 8c). The ROC curves
of 1-, 3-, and 5-year were plotted, with the AUC of
0.713, 0.753, and 0.823 (Fig. 8d).

ROC curves of 3years indicated that the signature in
our study had the highest AUC value (Fig. 8e).
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Kaplan-Meier (KM) curves in subgroups also showed
good performance except in Stage III-IV and G3-4
groups (Fig. 8f).

Relevance with clinical features

There were no significant relationships between the risk
score and Age or Gender in the combined cohort
(Fig. 9a, b). Patients in Stage I had significantly lower
risk scores than patients in Stage II (P <0.001) (Fig. 9c).
Patients in G1 had significantly lower risk scores than
patients in G2 and G3-4 (P <0.01) (Fig. 9d). No signifi-
cant differences were revealed between Stage I and Stage

HI-IV, Stage II and Stage II-IV and G2 and G3-4
groups (Fig. 9¢c, d). The sample size of Stage III-IV (n =
15) was small, which might affect the statistical accuracy.
In general, the higher the Stage or Grade is, the higher
the risk score will be.

Immune cell infiltration analysis and GSEA

Immune scores by ESTIMATE showed no significant
difference between the high-risk and low-risk groups
(Fig. 10a). However, fractions of T cells CD8 (P =0.011),
T cells CD4 memory resting (P =0.012), and T cells
regulatory (Tregs) (P =0.007) in high-risk group were
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Table 1 Patient characteristics in the training and the testing cohorts

ICGC-PACA-CA cohort (Training) TCGA-PAAD cohort (Testing)
Characteristics Number of cases % (percentage) Characteristics Number of cases % (percentage)
Age Age
<=65 78 42.86 <=65 93 52.54
> 65 86 47.25 > 65 84 4746
Unknown 18 9.89 Unknown 0 0
Gender Gender
Male ) 5440 Male 97 54.80
Female 82 45.05 Female 80 4520
Unknown 1 0.55 Unknown 0 0
Stage Stage
Stage | 51 2802 Stage | 22 1243
Stage Il 85 46.70 Stage Il 148 83.62
Stage IlI-IV 8 440 Stage IV 7 395
Unknown 38 20.88 Unknown 0 0
Grade Grade
G1 NA NA G1 31 17.51
G2 NA NA G2 94 53.11
G3-4 NA NA G3-4 50 28.25
Unknown NA NA Unknown 2 1.13

Note: NA Not Available
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Fig. 8 Construction of the prognostic nomogram and the prediction accuracy. a The prognostic nomogram including 359 patients. b KM curve
of the nomogram in the combined cohort. ¢ The calibration curve of 3 years. d The 1-, 3-, and 5-year ROC curves. e The ROC analysis at 3 years of
overall survival for the signature in our study (referred to as TP53Sig) and other published signatures. f Kaplan-Meier (KM) curves in subgroups.

significantly lower (Fig. 10b). The fraction of Macro- Discussion
phages MO in high-risk group was significantly higher = Gene alterations have been determined in 97% of pa-
(Fig. 10b). We further explored the differential expres- tients with PDAC, including point mutations, amplifica-
sion analysis of 96 immunotherapy-related genes (Add- tions, deletions, translocations, and inversions [27]. TP53
itional file 2). A total of 31 genes were identified, of encoded tumor suppressor TP53, which transcriptionally
which 26 genes’ expression levels were lower in the activated target genes for resisting cellular stresses, then
high-risk group. This might indicate that the immune inducing growth arrest or apoptosis [28]. TP53 mutation
activity in the high-risk group was weaker than that in  has been observed in 50-75% of PDAC cases, which
the low-risk group (Fig. 10c). GSEA results indicated would initiate activating mutation of the KRAS gene.
that Epithelial-Mesenchymal Transition and Hypoxia  Mutant TP53 promoted lymph node metastasis and es-
were the most significantly enriched functions in the caped from KrasG12D-induced growth arrest/senes-

high-risk patients (Fig. 10d).

cence in PDAC [29]. In clinical practices, the detection
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of mutant and expression profile of TP53 and associated
genes may improve the diagnosis and screen for PC [30,
31]. The sample can be the pancreatic Juice, less-invasive
serum exosomes or even non-invasive stool [32, 33]. How-
ever, until now, although TP53 have been closely associated
with PC, the roles of TP53 have not been elucidated. More
information on its upstream and downstream genes would
be required [27]. Our bioinformatic analysis has also proved
the roles of TP53 in PDAC. Firstly, KRAS and TP53 muta-
tions were observed as the top two genes with the highest
mutation frequency. Secondly, TP53 mutation was indi-
cated to be the only robust and survival-related mutation
type. Thirdly, TP53-mutated patients showed significantly
worse overall survival than TP53-wild patients in included
cohorts.

Based on above results, more genes associated with
TP53 mutations were further identified. Key modules in-
cluding 2455 genes were preliminarily screened with
WGCNA and Pearson’s correlation. The key 316 genes
were secondly screened with univariate Cox regression
analysis. Then, 10 most critical genes were identified
with LASSO. Finally, the best-fit TP53-related prognos-
tic signature involved 7 genes were constructed with
stepwise regression analysis, as well as corresponding co-
efficients. In the formula for calculating risk score, the

high levels of ERRFI1, SCEL increased risk of poor prog-
nosis, while the high levels of IL6R, PPP1R10, PTOV1-
AS2, SSX2IP, TXNL4A suggested decreasing risk. The
identified 7 genes were potential candidates of bio-
markers for prognosis prediction of PDAC [34].

In previous studies, ERBB receptor feedback inhibitor 1
(ERRFII) was reported as an important regulatory gene.
It regulated AKT/EGER signaling in an EGFR-dependent
manner. In EGFR-low cells, ERRFI1 activated AKT and
promoted proliferation and chemotherapy resistance. In
EGFR-high cells, reduced ERRFI1 led to active EGFR
and increased cell proliferation [35]. As a key gene tar-
geted AKT/EGFR signaling, ERRFI1 may be a binding
target for some miRNAs and IncRNAs in various can-
cers, such as cholangiocarcinoma [36, 37]. Until now,
the effects of ERRFI1 on PDAC have not been revealed,
and its effects in other cancers suggested that it may be
promising therapeutic target and biomarker. Interleukin-
6 receptor (IL-6R) was the receptor of IL-6. The block-
ing agents that combined with IL-6 and IL-6R may be
potential anti-inflammatory drugs, and some of them
may be anti-cancer agents [38]. As an important effector
in several signaling pathways, IL6R was also proposed as
a new therapeutic target for some cancers [39, 40]. For
example, IL-6R participated IL-6R /STAT3/miR-204
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immunotherapy-related genes. d Differences in biological functions by GSEA. Note: *** P < 0.001, ** P<0.01, * P < 0.05

feedback loop contributed to chemo-resistance of epi-
thelial ovarian cancer cells [41]. IL-6R participated sev-
eral important pathways in tumor development and
chemo-resistance. The suppression of IL-6R may func-
tion in these pathways thus affecting the prognosis. The
same to ERRFI1, the roles of IL-6R in PDAC have not
been revealed, which worth further investigation. SCEL
encoded Sciellin (SCEL), which was a precursor of the
cornified envelope firstly identified in mammalian kera-
tinizing tissue [42]. SCEL was a mesenchymal-to-
epithelial transition inducer dynamically regulated dur-
ing the metastasis. Thus it may be a site for regulating
the colorectal cancer hepatic metastasis [43]. SSX2IP
encoded Synovial Sarcoma X breakpoint 2 Interacting
Protein (SSX2IP) has been revealed to play various roles
in human cancers. SSX2IP was known as leukaemia as-
sociated antigen [44, 45]. SSX2IP promoted the tumor-
genesis and progression of hepatocellular carcinoma and
contributed to the drug resistance, enabling it a new bio-
marker and specific target in hepatocellular carcinoma
[46]. High levels of SSX2IP were associated with aggres-
sive pathological features and poor outcomes in naso-
pharyngeal carcinoma [47]. Few studies have been

performed on PPP1R10, PTOV1 antisense 2 (PTOV1-
AS2) and Thioredoxin-like protein 4A(TXNL4A). Con-
sidering the malignancy of PDAC, relatively less studies
could be retrieved, both on the biomarkers or thera-
peutic targets. The bioinformatic analysis has been a
useful tool for exploring promising candidates for fur-
ther investigation.

Conclusions

With the screened gene candidates, the TP53-associated
signature exhibited good prognostic efficacy in predict-
ing the overall survival of PC patients. In the training
and validation cohorts, the 1-, 3-, and 5-year ROC
curves were plotted according to the risk score, present-
ing relatively high AUC. The prognostic nomogram in-
cluding 359 patients was also constructed to calculate
the risk score, which would facilitate the further clinical
applications. There are also some limitations in our
study. Firstly, the gene expression and somatic cell mu-
tations data were obtained from cancerous tissues. How-
ever, the results should be further verified in other types
of samples, such as serum and stool. As the less-invasive
and non-invasive specimens will tend to promote the
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early screen and detection of PDAC. Secondly, the as-
sociation between TP53 mutation and tumor muta-
tion burden should be verified in larger cohort.
Thirdly, whether the nomogram could predict im-
munotherapy or chemotherapy needs further explora-
tions in the future.
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