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Abstract

Background: Breast cancer is one of the main malignant tumors that threaten the lives of women, which has
received more and more clinical attention worldwide. There are increasing evidences showing that the immune
micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role
of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index.

Methods: The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data
and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic
correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed
to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune
genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA)
was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be
statistically significant.

Results: In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05).
According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for
survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores
model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high
immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores
model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed
splendid AUC value in the validation dataset (3-year over survival (OS) AUC=0.685, 5-year OS AUC=0.717, P=
0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients.
Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in
a variety of carcinogenic pathways.
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(Continued from previous page)

Conclusion: In conclusion, our study provides a new perspective for the expression of immune genes in BC. The
constructed model has potential value for the prognostic prediction of BC patients and may provide some
references for the clinical precision immunotherapy of patients.
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Background

Breast cancer is one of the main malignant tumors that
threaten the lives of women, which has received more
and more clinical attention worldwide. It is regarded as
the second common malignant tumors in the world. It
occupied 25% of all malignant tumors [1]. Triple-
negative breast cancer (TNBC) was supposed to be the
foremost malignant sub-type, accounting for approxi-
mately 20% [2, 3]. It is manifested as a large tumor, a
high level of differentiation, a high risk of metastasis,
and lymph node invasion [4—6]. TNBC is characterized

Table 1 Baseline clinical characteristics of samples

by negative human epidermal growth factor receptor 2
(HER-2), progesterone receptor (PR) and estrogen recep-
tor (ER), thus resistant to endocrine therapy and trastu-
zumab [7]. Due to the lack of targeted treatment
strategies, chemotherapy remained the unique treatment
option [8]. Therefore, it is significant and urgent to con-
duct a comprehensive bioinformatics study on gene ex-
pression of breast cancer to identify potential genes that
can be used as therapeutic targets in BC.

Previous evidence has shown that the immune sys-
tem has a contradictory influence on the occurrence

Variables Total (n=857) Training cohort (n=577) Validation cohort (n =280)
Age (year)
<60 484 325 159
260 373 252 121
Sex
Female 846 570 276
Male 11 7 4
Stage
I 151 99 52
Il 501 336 165
Il 188 134 54
% 17 8 9
T stage
T 227 162 65
T2 510 332 178
T3 92 64 28
T4 28 19 9
N stage
NO 411 285 126
N1 292 186 106
N2 102 73 29
N3 52 33 19
M stage
MO 840 569 271
M1 17 8 9
Survival
Dead 118 83 35
Alive 739 494 245
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and development of cancer, contributing to both can-
cer progression and inhibition [9-12]. The immune
system has a practical impact on the progress of BC.
What's more, the response of BC patients to im-
munotherapy and traditional treatment is interfered
by immune system [13, 14]. However, immune eva-
sion remains a tough problem in the immunotherapy
of BC, which brings a big challenge for the treatment
for BC and improvement of prognosis of patients.
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Since there are significant diversities in the expression
profiles of immune genes between BC and other can-
cer types [15, 16], further research is needed to deter-
mine which immune genes can play a role as
therapeutic targets.

In this study, we explored the lineage and expression
profiles of immune genes in BC and its impacts on the
prognosis of BC patients. Besides, the functional features
as well as mutated features of these immune-related

TCGA breast cancer samples

2498 immune genes

LogFC |> 1 and P < 0.05 Functional
Unicox (66 genes) analysis
TCGA TCGA GSE7390 GSE21653
Training Testing Validation Validation
set(577) set(280) set(198) set(265)
Lasso regression
nalysis(15 gene:
Y
Clinical and prognostic CIQJ;L;Z\ZC;H;S GESA of Nor'na%%ram Overall survival
correlation . RiskScore . ROC
correlation Calibrate

Fig. 1 Flow chart of research design
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genes were described. Furthermore, 15 immune-related
genes closely associated with overall survival were se-
lected and an independent risk score model was con-
structed for the prognosis of BC. Moreover, a
nomogram was also constructed to further explore the
model’s ability to predict.

Methods

Acquisition of data

First of all, a list of 2498 immune genes were down-
loaded from ImmPort database. Additionally, the gene
expression profiles of BC patients was obtained from the
TCGA database (https://portal.gdc.cancer.gov/), includ-
ing 112 normal cases and 857 tumor cases. Meanwhile,
corresponding clinical data were also obtained (Table 1).
|LogFC | >1 and P <0.05 were used as the criteria for
screening differential genes. Because TCGA is an open
and publicly available database, ethical approval is not
required.
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Gene function enrichment analysis

Gene Ontology(GO) enrichment analysis is conducted
to comprehend the biological process and molecular
function of the differential genes, while Kyoto
Encyclopedia of Genes and Genomes(KEGG) enrich-
ment analysis is applied to identify potential related bio-
logical pathways. Gene enrichment analysis (GSEA) is
performed between normal tissues and BC tissues in
order to probe the biological pathways associated with
immune genes risk scores.

Construction and validation of the immune genes risk
scores

Cox regression tool was used for survival analysis. On
the basis of differential expression, single factor cox sig-
nificant and survival-related prognostic immune genes
were screened out. Further, the least absolute shrinkage
and selection operator (LASSO) regression analysis is
execute to reduce the dimensionality, so as to screen out
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Fig. 2 Identification of DEIGs. a volcano plots of 556 DEIGs in breast cancer and normal tissues from TCGA database. b Heatmap plots of top 10
up-regulated and top 10 down-regulated DEIGs. The colors in the heatmaps from green to red represent expression level from low to high. The
red dots in the volcano plots represent up-regulation, the green dots represent down-regulation and black dots represent genes without
differential expression
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the optimal variables. Based on the variables obtained by
LASSO and the corresponding regression coefficients,
the risk scores were calculated. The median value was
utilized to divide patients into a high- and a low-risk
scores group. The prognostic correlation of immune
gene risk score was obtained by Kaplan-Meier curve.
The credibility and predictive value of the risk scoring
model was evaluated through time-related ROC curve.

Analysis of copy number variation data and gene
mutation analysis

Based on TCGA breast cancer data, the copy number
variation (CNV) was analyzed using R-Circos package
and R-ggplot2 package. Furthermore, the online tool
website-cbioportal was used to analyze the genetic vari-
ation of hub genes. The threshold used was P < 0.05.

Statistical analysis

R3.6.1 was used for statistical analysis. The independent
t test was used for continuous variables with normal dis-
tribution, and the Mann-Whitney U test was used for
continuous variables with skewed distribution. A two-
sided test was used, and a P value of < 0.05 was consid-
ered statistically significant.
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Results

Differentially expressed immune genes (DEIGs) screening

of BC

We designed a protocol for the analysis and construc-
tion of the prognostic model (Fig. 1). The analysis
process was carried out in strict accordance with the
protocol. A list of 2498 immune genes was obtained
from ImmPort database. What’s more, the mRNA ex-
pression data of 857 cases of breast cancer and 122 cases
of normal tissues were also obtained from the TCGA
database for further bioinformatics analysis. The clinical
features of samples were provided in Table 1. A total of
556 immune genes were determined as DEIGs between
BC tissues and normal tissues, including 402 up-
regulated and 154 down regulated (p<0.05, Fig. 2a,
Table 2). The heatmap spread out the top 10 up-
regulated and top 10 down-regulated DEIGs (Fig. 2b).

Functional annotation of these 556DEIGs

To study the potential mechanisms and molecular func-
tions of the identified 556 DEIGs, we conducted the GO
and KEGG analysis. The top three enriched GO terms
for up-regulated DEIGs and down-regulated DEIGs
were: T cell activation, lymphocyte differentiation and
response to virus; cell chemotaxis, positive regulation of
response to external stimulus and leukocyte migration,

Table 2 Analysis of differentially expressed immune genes in TCGA breast cancer

Up regulated

RAC2, ITK, ADAR, RFXANK, GDF11, IRF1, CMTM1, UCN2, MX2, TGFB1, KRAS, IFNA17, PLXNCT, IFNA2, DHX58, ADRM1, PIK3R3, PRDXT,

SOCST, ST00A11, HLA-DQAT, VEGFA, F2R, OGFR, PSMC4, SEMA4A, IL1RN, HLA-DQBT, IL32, CALR, CD48, INHBC, DEFB104B, TNFRSF12A,
CD3E, CCR6, SERPINA3, HSPA2, IL31RA, NR113, NFKBIB, INHBE, ISG20L2, IFIH1, LEAP2, CACYBP, ZAP70, CXCR4, GIPR, TNFRSF13C, TGFB3,
DEFB103A, DDX58, GNRH2, CCL25, RFX5, OPRL1, SRC, NCR2, LAT, PSMD14, S100A16, IGF1R, NCR3, BCL3, HLA-DQA2, CARD11, RELB,
CD79A, MCHRT, CD86, RBPS, IFITM1, UNC93B1, IL2RA, PTPNG, RLN1, FASLG, STAT1, PGC, MAPT, PSME2, AQP9, IRF5, IL2RG, HDGF,
CCL19, BMP10, NFATC4, LYZ, RBP1, DEFB105A, PTGERT, LCK, TFRC, SH2D1A, CD3D, IL12RB1, RARRES3, IFNAS5, MSR1, KIR3DL2, AMBN,
PDF, HNF4G, KLRC2, SEMA3F, IFNA14, CCR5, CD1E, HAMP, IL23A, FCGR3A, BST2, CD22, SPAG118B, TMSB15B, GREM1, VAV2, PPP4C, ITGA
L, RARA, NR2F6, PAKT, CXCL13, HLA-G, PRLR, TNFSF13B, PLAU, CD72, BLNK, MDK, PAK4, PSMD3, SLC29A3, FGF22, SEMASB, IL2RB,
NFKBIE, APOBEC3H, CSHL1, MC1R, SLC10A2, PAEP, MC4R, RLN3, CSF3R, IRF9, BMP15, GNRHR, ISG20, IFNA21, DEFB136, DEFA5, PLXNAS3,
INSL5, VAV3, CCR3, GUCA2A, PNOC, TOR2A, TAP1, BMP8B, RAC3, CLECT1A, CSPG5, IL18, IKBKE, RABEP2, IFNA13, CTLA4, TNFRSF4,
NOX3, FAM19A5, IFI30, MIF, CBLC, NOX5, GPR33, RNASE2, EPGN, GPHBS, IFNW1, OAS1, CD1B, FLT3, INS-IGF2, NOX1, TG, NR2E3, MICB,
SECTM1, GZMB, SEMA7A, CD19, IL24, C8G, MBL2, HSPA6, OSM, AGT, MX1, IL17F, HNF4A, SDC1, RSAD2, APOBEC3A, TYMP, HTR3E,
ESRTVRETNVSLCT1AT1, PPY, CCL15, NOD2, DEFB121, UCN, PIK3R2, ANGPTL6, IFNA6, CGB2, AGRP, CCR7, CXCR3, PLAUR, CRABP2, IFNA?7,
DEFB129, RASGRP1, GDF2, IL3, LECT2, IFNG, FGFR4, LEFTY1, ST00A7, ULBP2, WFIKKN1, RXFP1, MCHR2, IRF7, CCR4, COLEC10, AVPR1B,
AZU1, PDCD1, TMSB15A, THPO, GALP, IDOT1, CCL17, LTA, GALR3, MLN, IL11, TNFSF4, HTR3B, FSHB, RLN2, OBP2A, PRKCG, KIR2DL4,
ICOS, SPP1, CGBS, IL1F10, INSL4, LTB, CELAT, FABP12, DEFB134, IL27, GALR2, SSTR2, PGLYRP2, RBP2, CXCRS, IFNA16, ST00A14, ADM2,
UTS2, IL12B, LCN12, OLRT, MMP9, CCL1, SCG2, IFNA4, MMP12, OASL, DEFB108B, IL9, AMELX, GDF15, IL9R, KCNH2, CTSE, DEFB110,
FGFR3, CSH1, CCL20, MC2R, GPHA2, EDN2, TMPRSS6, GAL, SEMGT1, BMP8A, PTH, ROBO2, RETNLB, HTR1A, DEFB128, PMCH, RXFP3, HRG,
GH2, DEFB113, PTH2, IL21R, TNFRSF9, PROC, HTR3A, AMH, TNFRSF18, ESM1, MTNR1B, CXCL9, PYY, GCGR, INHA, CGBS, LCN9, DEFB112,
ISG15, OPRD1, SLURP1, IFNA10, GDF9, CD1A, UMODLI1, FGF23, ULBP1, IL17C, KIR3DL3, IL21, CXCL10, ARTN, INHBA, CCRS, BIRCS, SCT,
VGF, TFR2, HTN3, SSTR5, IL20, PRLH, FGF21, GIP, R3HDML, CXCL11, KNG1, TUBB3, CCL7, STOOA7A, LCN1, ORM2, APOH, EPO, PGLYRP4,
FGF3, FGF5, IFNB1, PGLYRP3, BMPR1B, CCL11, FABP6, SEMG2, CAMP, S100P, MUC5AC, DEFB126, GHSR, DEFB123, DEFB115, ORMT,
GCG, DEFB116, TRH, CSH2, FGF4, TCHHLT, IL19, HTN1, REG1A, PCSK1, IAPP, INS, CST4, CGA, UCN3

Down
regulated

LEP, ADIPOQ, ACVR1C, FABP4, RBP4, DEFB132, OXTR, ANGPTL7, SAA1, ANGPTLS5, CSF3, LALBA, CXCL2, BMP3, MASP1, NPR1, GLP2R,
PENK, NOST, PPARG, GDF10, ANGPT4, CCL14, TSLP, PLXNA4, SAA2, GHR, DES, ANGPTL1, CMAT, S100B, LHCGR, IL6, IL33, LEPR, FOS,

SEMA3G, SCTR, FABP9, CX3CL1, PTN, CCL28, FGF2, ADCYAP1RI1, STAB2, ADRB2, ANGPTT, EDN3, RXRG, CD209, LIFR, TGFBR3, RNASE7,
CNTFR, AVPR2, OSTN, CCL21, TACRT, GNAI1, PF4, OGN, IGF1, PAK3, NTF4, GFAP, TGFBR2, IFNA8, NRG2, RBP7, APOD, CCL24, LCNG, KL,
PTH1R, FGF1, BMP2, NGFR, EDNRB, GPR17, PTGFR, NR4A3, ELANE, S1PR1, CCL13, CCL16, CAT, CXCL12, IL17B, ANGPTL4, SOCS3, ACO1,
NRG1, NR4A1, CYR61, LTBP4, NR3C2, PDGFD, CCL23, PPBP, SEMA3D, NPR3, NMB, SCGB3A1, ANGPTL2, TINAGLT1, ESR2, CRIM1, CXCL3,
NR3C1, MET, TEK, IL17D, BMP6, EGFR, VIP, CTSG, VIM, LRP1, GREM2, FGF7, PTGS2, JUN, PIK3R1, ROBO3, LCN10, IL17RD, TSHB, CSRP1,
AHNAK, SEMASA, PLA2G2A, MARCO, ADM, PMP2, FAM3D, TNFRSF10D, SEMA3A, SEMA6D, EDNT, NOV, PLTP, LGR6, PDGFRA, TLR4,
SSTR1, AVPRTA, PDGFA, TPM2, PTGER4, THRB, EGF, ILT1RA, CRHR2, CER1, ICAM2, A2M, PTGDS, TAC1, SLIT2, LGR4, BACH2, PDGFRL, C3,

FGF16
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median value). (*P < 0.05)

Table 3 Multivariate cox regression analysis to establish RNA
binding proteins risk prediction model

Gene Coef

TSLP —0.703829357640691
IL178 —0.0870608394604504
NR3C2 —0.0255482484720901
RAC2 —0.130057137304801
SERPINA3 —0.0898937544948299
HSPA2 —0.120788735486787
CD79A —0.0431127011058176
UNC93B1 0.513946621757904
NFKBIE —0.329152003213528
SDC1 0.0854293362952585
IFNG —0.220305753667004
IRF7 —0.171479153154717
GALP 2.91458293196349
TNFRSF18 —0.129391946165935
ULBP1 0.174787641983627

respectively (Fig. S1A). KEGG analysis revealed the top
three enriched pathway for up-regulated DEIGs and
down-regulated DEIGs were: Cytokine-cytokine recep-
tor interaction, JAK — STAT signaling pathway and Che-
mokine signaling pathway; Cytokine-cytokine receptor
interaction, JAK - STAT signaling pathway and EGFR
tyrosine kinase inhibitor resistance pathway, respectively
(Fig. S1B).

Establishment of immune prognosis model

Among the identified 556 DEIGs, 66 prognostic DEIGs
were identified by utilizing univariate cox regression
analyses (Fig. 3a). KM survival analysis showed that 30
of them were significantly correlated with OS. TCGA
BC samples were randomly separated into two sets
(training set: validation set, 2:1). Then, lasso regression
analysis was applied to increase the robustness and se-
lect the optimal variables based on training set. Finally,
15DEIGs were got for the construction of immune prog-
nostic index based on the optimal value (Fig. 3b, c,
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Fig. 4 a Kaplan-Meier curve analysis of high-risk and low-risk patients in the training cohort. b Kaplan-Meier curve analysis of high-risk and low-

the entire TCGA cohort

risk patients in the testing cohort. ¢ Kaplan-Meier curve analysis of high-risk and low-risk patients in the entire TCGA cohort. d Time-dependent
ROC curve analysis of the training cohort. e Time-dependent ROC curve analysis of the testing cohort. f Time-dependent ROC curve analysis of

Table 3). After the establishment of the immune prog-
nostic model, BC patients were stratified into high-risk
and low-risk subgroups based on the cut-off risk score
(Fig. 3d, e). Heatmap was utilized to visualize the differ-
ence of gene expression profile in low- and high- risk
patients in BC training set (Fig. 3f). The results from
KM analysis revealed that high risk patients possessed
lower overall survival in both training group and valid-
ation group (P < 0.001) (Fig. 4a, b, ). R software was uti-
lized to draw the time-dependent ROC curvesand the
AUC was calculated at different time points to estimate
the predictive performance of our prognostic model in
training cohort, testing cohort and the entire TCGA co-
hort. The ROC curve prompted that the risk scores
model had dominant credibility and predictive value
(AUC=0.752, AUC = 0.704 for 5 years overall survival in
training and validation group, respectively) (Fig. 4d, e, f).

Validation in external cohort and TCGA independent
cohort

To evaluate the operability and accuracy of the prognos-
tic model in clinical practice, we further conducted the
external validation analysis. As was shown in Fig. 5a and

b, the AUC value was 0.624 for the 5-year OS in
GSE7390 validation set and 0.635, 0.606, 0.622 for the
1-, 3-, 5-year OS, respectively, in GSE21653 validation
set. What’s more, according to the KM curves, high risk
scores were significantly associated with poor prognoses
both in GSE7390 and GSE21653 validation set. (P=
0.002 and 0.012, respectively) (Fig. 5¢, d) The results
were consistent with those of the training set. In further
univariate cox analysis, age, pathological stage, patho-
logical T, N, M stage and high risk scores were associ-
ated with poor survival (Fig. 6a). In multivariate Cox
model, only age and risk score worked as independent
predicted factors (P < 0.001) (Fig. 6b). To establish a quan-
titative visualization model of breast cancer prognosis,
multiple clinical factors were combined to establish a
nomogram (Fig. 6c). The calibration of nomogram sug-
gested that there was strong coherence between the pre-
dicted and actual 3- and 5-year overall survival (Fig. 6d, e).

Recognition of gene sets for genome variation

Based on TCGA breast cancer data, we analyzed the copy
number variation (CNV) of 15 model genes and showed
the frequency of copy number variation through R-Circos
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package and R-ggplot2 package (Fig. S2A, Fig. S4). The re-
sults showed that the top three genes with the highest
CNV frequency were RAC2, ULBP1, and SERPINA3. (Fig.
S2B) Furthermore, we analyzed the single nucleotide poly-
morphism composition (SNPs) of 15 model genes (Fig.
S2C). The results showed that NR3C2 had the most SNPs,
including missense mutation and silent. Finally, the online
tool website-cbioportal was utilized to analyze the genetic
variation of 15 immune genes (Fig. S2D).

Clinical and prognostic correlation of 15 model genes and
the risk score

The proportion of 15 model genes in different clinical
and pathological stages was investigated. Correlation
analysis between tumor, node, metastasis stage, patho-
logic stage and 15 model genes expression in breast can-
cer cases were explored (Fig. S3A-D). Based on the
results, it seemed that IL17B, NFKBIE and SERPINA3
mainly prompted the development of breast cancer. In

addition, survival analysis showed that all model genes
were significantly associated with survival (Fig. S4).
Meanwhile, we found that the expression of RAC2,
CD79A and IFNG were significantly associated with the
infiltration of Macrophage MO and Macrophage M2
(Fig. S5). Regard to the immune genes risk score, a
strong correlation with age, sex, pathological stage and
clinical T stage was identified (Fig. 7).

Gene set enrichment analysis of risk scores

To explore the biological correlation of risk scores in-
volved in progression of breast cancer, a GSEA analysis
of risk scores was performed based on the TCGA breast
cancer cohort. GSEA analysis indicated high risk scores
were associated with E2F TARGETS, G2M_CHECK-
POINT, GLYCOLYSIS, MTORCI1_SIGNALING and
PROTEIN_SECRETION pathway (Fig. 8a). In addition,
low risk scores were associated with APOPTOSIS,
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COMPLEMENT, IL2_STAT5_SIGNALING, INFLAM
MATORY_RESPONSE and P53 pathway (Fig. 8b).

Discussion

BC is regarded as the most common malignant tumor in
women. Although great efforts have been made to im-
prove diagnosis and treatment strategies, it still poses a
fatal threat to patients. Accumulation of evidence have
shown that Cancer immunotherapy, especially the treat-
ment of immune checkpoint inhibitors, has become an
important part of the treatment of certain types of can-
cer, and has provided a continuous therapeutic effect for
specific groups of patients [17]. Immune genes, such as
cytokines, not only act locally, but rapidly spread within
the tumor and affect the activation and dissemination of
tumor immune cells [18, 19]. Obviously, different types
of cancer have different immune gene subgroups. There-
fore, the examination of immune gene subgroups is es-
sential for judging the risk of tumors and exploring
immunotherapy.

In our research, we performed a detailed and compre-
hensive evaluation of immune genes in BC. All gene ex-
pression data and patients clinical characteristics
information were downloaded from TCGA dataset. Two
thousand four hundred ninety-eight immune genes from
ImmPort database were analyzed between breast cancer
and normal tissues. Eventually, 556 DEIGs were verified.
Moreover, we identified and constructed a 15 immune
genes risk scores model for breast cancer through uni-
variate and lasso regression analysis, including TSLP,
IL17B, NR3C2, RAC2, SERPINA3, HSPA2, CD79A,
UNC93B1, NFKBIE, SDC1, IENG, IRF7, GALP, TNER
SF18 and ULBPI. Furthermore, to study the clinical and
biological relevance of risk scores, the KM, ROC and
GSEA analysis were conducted. Indeed, the high risk
group received a lower survival, and possessed a higher
histological grade.

Several DEIGs in the immune genes risk scores model
have been investigated in human cancers. Thymic inter-
stitial lymphopoietin (TSLP), a key inflammatory
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cytokine that induces type 2 inflammation, predicts a
poor prognosis in oropharyngeal squamous cell carcin-
oma (OPSCC) [20]. With regard to breast cancer, Emma
et al. has demonstrated that TSLP, which induced by IL-
1 produced by breast tumors, act as a critical survival
factor for the tumor [21]. This may indicate that TSLP
can be a potential therapeutic intervention for breast
cancer. Interleukin-17 (IL-17), a member of the interleu-
kin family, is a cytokine that plays a role in inflammation
and cancer, and can enhance lung cancer invasion/mi-
gration ability [22]. Seth et al. has found that the mam-
mary tumor can induce IL17-producing yd T cells,
which can drive systemic expansion and polarization of
neutrophils towards a CD8+ T cell-suppressive pheno-
type and subsequent metastasis formation in distant or-
gans [23]. It seems that IL-17 plays a negative role in the
prognosis of BC patients. In addition, studies have found
that knocking down RAC2 can inhibit the progression of
osteosarcoma by inhibiting the wnt signaling pathway
[24]. Besides, the up regulation of hnRNP-K transcrip-
tional activity mediated by SERPINA3 promotes the sur-
vival and proliferation of HCC cells, which may be an
indicator of poor prognosis in HCC patients [25]. So far,
overexpression of SERPINA3 has been observed in sev-
eral cancer types including breast cancer and the high
expression level has been demonstrated to positively cor-
relate with poor prognosis in patients with breast cancer,

which means SERPINA3 can be associated with a
shorter OS [26]. AS a putative oncoprotein, Heat shock
protein family a member 2 (HSPA2) is often up-
regulated in human malignancies and promotes aggres-
sive phenotype of tumors [27]. It seemed that overex-
pression of HSPA2 may be associated with worse clinical
outcome. A recent study indicated that HSPA2 might
play an important role in breast cancer development and
progression by promoting cell growth, migration and in-
vasion in xenografted mice [28]. However, it remains a
controversy whether HSPA2 is a positive or negative
regulator of carcinogenesis. NFKBIE aberrations are
common genetic events in trans-b-cell malignancies, and
NFKBIE deletion is a new marker of poor prognosis in
primary mediastinal B-cell lymphoma (PMBL) [29]. The
remaining genes have also been confirmed to be interre-
lated to malignant origin, aggressive behavior of tumors.

Similarly, Lai et al. [30] established a panel of 4
autophagy-related genes (ARG) signatures consisting of
SERPINA1, ATG4A, NRG1 and IFNG to predict the
prognosis of breast cancer, which can help clinicians
make judgments and decisions on determining effective
treatment strategies. Wang et al. [31] identified a six
differentially-expressed genes (DEGs) model consisting
of IGHA2, SERPINA1l, GFALS, SPDYC, PAX7, and
ADRBI1 by using Cox regression survival modeling for
breast cancer. In another study [32], the authors
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constructed a prognostic risk scoring system containing
6 genes (SCUBE3, RDH16, SPC24, SPC25, CCDC69 and
DGAT?2), suggesting that these mRNAs may serve a
driving role in the progression of Her2-positive BC. The
construction of this risk scoring system is conducive to
identifying high-risk HER2-positive BC patients, and it
subserve to help achieve personalized targeted therapy.
Different from previous studies, our study provides novel

insights into the role of Immune-related genes in the
genesis and progression of BC. We first focused on
DEIGs, and established and verified a novel DEIGs risk
scores prediction model. And our prognostic model
showed good predictive performance with regard to sur-
vival, which may contribute to the development of new
prognostic indicators for BC. Besides, the Immune-
related gene marker showed strongly association with
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immunoinfiltrating cells, which demonstrates that these
Immune-related genes could be used in clinical adjuvant
treatments.

Nevertheless, there still remain some weak points in
our research. Firstly, our results are based on bulk RNA
sequencing of single omics. The heterogeneity and diver-
sity between cells in the tumor microenvironment is ig-
nored. Secondly, only gene expression and gene
mutation levels are concerned, while tumor burden,
methylation levels and other equally important events in
tumor progression are ignored.

Conclusion

In conclusion, our study reveals the biological effects of
immune genes in the origin and development of BC.
The immune gene risk score model has advantages in
predicting the prognosis of BC, which is an independent
factor affecting the prognosis of BC. In addition, our
findings may be of great guiding value in make a thor-
ough inquiry of novel strategies for cancer immuno-
logical diagnosis and treatment. With the rapid
development of high-throughput sequencing technology,
it is reasonable to believe that this scoring system can
provide recommendations for patients’ immune status as
well as clinical risk assessment and treatment strategies.
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