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Abstract

Background: Wilms tumor (WT) is the most common malignant renal tumor in children. The aim of this study was
to identify potential susceptibility gene of WT for better prognosis.

Methods: Weighted gene coexpression network analysis is used for the detection of clinically important biomarkers
associated with WT.

Results: In the study, 59 tissue samples from National Cancer Institute were pretreated for constructing gene co-
expression network, while 224 samples also downloaded from National Cancer Institute were used for hub gene
validation and module preservation analysis. Three modules were found to be highly correlated with WT, and 44
top hub genes were identified in these key modules eventually. In addition, both the module preservation analysis
and gene validation showed ideal results based on other dataset with 224 samples. Meanwhile, Functional
enrichment analysis showed that genes in module were enriched to sister chromatid cohesion, cell cycle, oocyte
meiosis.

Conclusion: In summary, we established a gene co-expression network to identify 44 hub genes are closely to
recurrence and staging of WT, and 6 of these hub genes was closely related to the poor prognosis of patients. Our
findings revealed that those hub genes may be used as potential susceptibility gene for clinical diagnosis and
prognosis of this tumor.
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Background
Wilms tumor (WT) is common abdominal malignancy
in children and accounts for up to 95% of renal tumors
in children [1]. This tumor is an embryonal childhood
tumor of metanephric origin, as it is histologically simi-
lar to the early stages of nephrogenesis, and many of the
genetic changes that support the disease occur in genes
associated with fetal kidney genes [2]. With the develop-
ment of modern multimodality therapy, favorable

histology WT survival has been achieved in more than
90% [3–5]. Of course, the described above does not in-
clude patients with advanced disease, bilateral WT pa-
tients and patients with recurrence. For approximately
10% of patients with high-risk subtypes of WT, the treat-
ment outcome is not optimistic. Meanwhile, a challenge
for all WT patients is recurrence. Approximately 15% of
favorable histology WT patients will experience recur-
rence, and the overall survival of patients with recur-
rence can drop to 40 to 80% [6, 7]. However, although
short-term survival is high in patients with WT, long-
term survival is reduced in patients with WT due to ad-
verse therapeutic effects of cancer treatment, such as
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renal insufficiency, secondary malignancies, and heart
failure. In addition to technical improvements, it is also
important to clarify the stage of WT and avoid over-
treatment. And, the high recurrence rate of WT with fa-
vorable histology indicates that new therapies are
needed to improve the prognosis. Therefore, it’s urgent
to detect potential susceptibility gene associated with
WT. The samples data for this study came from the Na-
tional Cancer Institute (NCI) with large, global database
of cancer-related genetic variations. Samples were con-
structed co-expression network according to weighted
gene co-expression network analysis (WGCNA), which
was performed using the WGCNA package for R [8].
WGCNA, which is a systems biology method for the
analysis of microarray data, is widely used for the detec-
tion of potential biomarkers. The application of
WGCNA is based on a scale-free network distribution,
and its advantage over other research methods may be
that it can maximize the use of effective data informa-
tion. When transforming the correlation matrix into the
adjacency matrix, we choose β to weight the correlation
coefficient, “polarize” the correlation coefficient and
make the correlation and noncorrelation more signifi-
cant. WGCNA is widely used as a powerful data-driven
tool to study the expression of cancer genes and to help
understand the development mechanisms of various
cancers, such as clear cell renal cell carcinoma (ccRCC),
hepatocellular carcinoma (HCC), lung cancer.
In the study, a weighted gene co-expression network

was performed to identify modules that are significantly
related to WT. Then the top hub genes are screened out
in the module. These genes might as potential suscepti-
bility gene to reduce recurrence for patients with WT,
avoid overtreatment by scientific pathological staging,
and thus minimize toxicity treatment with other condi-
tions unchanged, leading to better prognosis and better
long-term survival. This study may have important refer-
ence value for potential susceptibility gene of this
disease.

Method
Data collection and data preprocessing
Raw gene expression profiles were downloaded from
NCI (https://ocg.cancer.gov/programs/target/data-
matrix). All tissue samples were from the platform
named GPL96 [HG-U133A] Affymetrix Human Genome
U133A Array. After the raw expression data were cor-
rected by the robust multi-array averaging (RMA) algo-
rithm [9], the nsFilter algorithm was used to filter the
data for the next analysis. There were 6201 probes and
59 primary tumor tissue samples through filtering. The
samples were named by the provider that indicated gen-
der, age at diagnosis, overall survival time, event (recur-
rent) free survival time and disease stage.

Weighted genes co-expression network analysis
WGCNA was carried out to screen for significantly
stable modules that are related to WT. The key to con-
structing the gene co-expression network by the
WGCNA method [10] is “weighted”; specifically, the se-
lection of soft threshold β is the key link for subsequent
analysis. By using the scale-free topological criterion to
select a soft threshold [11], the co-expression network
has a high biological signal and is closer to the scale-free
network distribution. Generally, when R2 > 0.8, the net-
work was considered approximately to the scale-free
network distribution. In short, the correlation matrix
was converted into the adjacency matrix based on the
soft threshold β, and the specific calculation is aij=|cor
(xi, xj)|

β, Xi and xj are the nodes i and j of the network.
Then, the adjacency matrix was transformed into a topo-
logical overlap matrix (TOM) after a series of complex
calculations. TOM provides a simplified diagram of the
network, allowing the visualization of the network and
facilitating the identification of network modules. Then
the TOM graph is analyzed by average linkage hierarch-
ical clustering based on the phase dissimilarity (1-TOM).
Modules, clusters of highly interconnected genes in co-
expression network, were identified after performing
cluster analysis and dynamic tree shearing. The height
cut-off value of dynamic tree shearing was guided by
TOM. In general, the number of genes in each module
is 30 and above. Meanwhile, each module was marked
with a different color, and all non-characteristic genes
were assigned to gray module, and the grey module was
not involved in subsequent analysis [11].

Module preservation analysis and identification of
clinically significant modules
Module preservation analysis was carried out to measure
the stability of each module defined. The stability of the
module is measured by the Z summary score (Z-score)
and medianRank [12]. The higher the Z-score is, the bet-
ter the module is preserved, and the more reliable the
subsequent analysis will be. In general, if the Z-score is
greater than 10, it is considered that the module is well-
preserved. Moreover, the medianRank of the modules
close to zero indicates the high degree of module
preservation.
The gene modules most relevant to clinical features

were selected for subsequent analysis. In addition to
qualitative analysis, quantitative calculations involving
modules eigengene (ME), gene significance (GS) and
module significance (MS) were performed. ME is the
first principal component in the gene module and may
represent the gene expression profile of the whole mod-
ule. GS can be understood as the correlation between
genes and traits. The higher the GS of a given gene is,
the more closely the gene is related to clinical
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characteristics, and the more significant the biological
significance is [8]. MS represents the average value of
GS in the module.

Identification and validation of hub genes and functional
annotation
Select hub genes in two ways: those that have been
shown in previous studies to be strongly associated with
disease and those that are highly connected in the gene
co-expression network [13]. The study focused on the
latter approach. Hub genes or key genes are those that
are significantly related to clinical characteristics and are
highly connected with other genes in a gene module [8].
The former can be measured by geneTraitSignificance
(geneTraitSignificance> 0.20), and the latter can be mea-
sured by geneModuleMembership (geneModuleMem-
bership> 0.80). In addition, protein-protein interaction
(PPI) network was visualized by Cytoscape (http://www.
cytoscape.org/) package. Proteins that are highly con-
nected in the PPI network are more important than
those that are not, and the same is true for the corre-
sponding genes [14]. After the co-expression network,
the analysis of PPI network is equivalent to the scor-
ing of genes from the perspective of proteins, which
is conducive to the further identification and verifica-
tion of hub genes. In PPI networks, we associate the
first two values to identify some more biologically sig-
nificant genes as hub genes for subsequent analysis.
At the same time, to better understand the mechan-
ism of gene action and to facilitate subsequent ana-
lysis, pathway enrichment analysis of hub genes in
selected modules needed to be conducted. We
uploaded genes to Enrichr for enrichment analysis
and functional annotation [15].
Furthermore, 224 samples from NCI to test whether

the hub genes were significantly expressed in the sample
based on One-way analysis of variance (one-way
ANOVA) To verify the hub genes, specifically, is to ver-
ify the differential expression of the hub gene in other
independent data sets is statistically significant.

Hub gene evaluation
To assess the relationship between hub genes and WT
patients, the “survival” package of R 3.5.2 software was
used for the log-rank test and Kaplan-Meier survival
analysis. The Kaplan-Meier method is a nonparametric
survival analysis method, which is widely used in survival
analysis of cancer research as a smart statistical treat-
ment method of survival time [16]. In the section, pa-
tients are usually divided into two groups according to
each gene expression (high vs. low). The corresponding
Kaplan-Meier estimation value was calculated, and the
Kaplan-Meier survival curve was determined. Further-
more, log-rank was used to test whether the difference

in survival time between the two groups was statistically
significant. Furthermore, time-dependent receiver oper-
ating characteristic (ROC) analysis was used to evaluate
diagnosis value of hub genes.

Results
Weighted co-expression network construction
After a series of data preprocessing including filtering,
6201 probes and 59 samples were obtained. When the
correlation matrix was transformed into an adjacency
matrix, as shown in Additional file 1, β = 11 (scale free
R2 = 0.88) was selected as the weighted coefficient value.
The scale free is closest and higher than 0.85 for the first
time. Two samples with Z. K value <− 2.5 (TARGET.50.
PAJMJK and TARGET.50. PAJNAV) were filtered out
(Fig. 1). Finally, 13 modules were identified
(Additional file 2).

Module preservation analysis and identification of
clinically significant modules
The study conducted module preservation analysis use
“modulePreservation” and determined whether the mod-
ules are preserved according to two main parameters:
the Z-score and medianRank. As shown in Fig. 2, the Z-
scores of the green, pink, red, brown, black, blue module
and turquoise module are all above 20, and the tur-
quoise module is highest. The high Z-scores of these
modules indicate that these modules are well preserved,
but since Z-scores are highly dependent on the size of
modules, we also need to analyze the medianRank. Al-
though the Z-score of turquoise module indicates that it
is well preserved, the medianRank of turquoise module
is not optimistic, indicating that the module may be un-
stable. However, the two values of green, pink and blue
modules indicate that these modules have good stability.
Three modules were prominent in the module-trait re-

lationship (Fig. 3): the green module with (r = 0.46, P =
3e-04) highly correlated with the disease stage, the blue
module (r = − 0.56, P = 6e-06) and pink module (r = 0.73,
P = 2e-10) with highly correlated with event-free survival
time. But beyond all that, green modules (cor = 0.65, P =
1.7e-19, Additional file 3), blue modules (cor = 0.5, P =
3e-15, Additional file 4) and pink modules (cor = 0.62,
P = 6.5e-13, Additional file 5) were displayed with high
genetic significance and module membership.

Identification and validation of hub genes and functional
annotation
The genes with geneTraitSignificance> 0.20 and gene-
ModulesMemership> 0.80 were defined as candidate
genes, and the hub gene was not only the candidate gene
but also the gene ranked in the top 10% of the module.
Candidate genes in blue and pink modules were con-
structed a PPI network (Fig. 4) for they associated with
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the same clinical characteristics. Due to the superior PPI
network connectivity of the blue module gene, the PPI
network was also used in the selection of the hub genes
in the blue module gene. Therefore, the study selected
15 genes from the green module, 18 genes from the blue
module, and 11 genes from the pink module as the hub

genes in Table 1. Finally, one-way ANOVA was used to
verify the hub genes that finally defined. The verification
results of the green module, blue module and pink mod-
ule are shown in Figs. 5, 6 and 7, respectively. The differ-
ential expressions of 44 genes were statistically
significant (P < 0.05).

Fig. 1 Clustering dendrogram of 59 tumor samples and the clinical traits. Note: The color intensity was proportional to gender, age at diagnoses,
event free survial time, survial, sverall survial time and stage

Fig. 2 The medianRank and Zsummary statistics of the module preservation. Note: The medianRank of the modules close to zero indicates the
high degree of module preservation, and the Zsummary of the modules close to zero indicates the low degree of module preservation
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The candidate genes in each module were uploaded
into the Enrichr database for Gene Ontology (GO) ana-
lysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. The candidate
genes in the blue and pink modules were functionally
annotated and enriched together. The GO functional

annotation indicated that the blue and pink modules
were enriched in sister chromatid cohesion, condensed
chromosome kinetochore and spindle midzone, etc.
(Table 2), and KEGG enrichment analysis showed that
the blue and pink modules were enriched in the cell
cycle, oocyte meiosis, etc. (Table 3). GO and KEGG

Fig. 3 Module-trait relationships. Note: Heatmap of the correlation between module eigengenes and clinical traits of WT. Each module based on
pattern of their co-expression

Fig. 4 The protein-protein network of the candidate genes in blue module and pink module. Note: Each graph represents a gene, and the size of
the graph is proportional to the degree of connectivity, and the higher the degree of connectivity between the orange and red genes. The arrow
represents the candidate genes in the network
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Table 1 Hub genes from the green module, blue module, and pink module

ProbeID Gene Symbol ENTREZ_GENE_ID GeneModuleMembership GeneTraitSignificance

Green Module

215454_x_at SFTPC 6440 0.9655947 0.4884202

221013_s_at APOL2 23,780 0.945633 0.4684544

206278_at PTAFR 5724 0.9403485 0.4480241

216611_s_at SLC6A2 6530 0.9302162 0.4672082

206338_at ELAVL3 1995 0.928487 0.4336345

210684_s_at DLG4 1742 0.924651 0.4306517

207641_at TNFRSF13B 23,495 0.9209938 0.4174775

208102_s_at PSD 5662 0.9137638 0.4527653

206824_at CES1P1 51,716 0.9117621 0.4020609

204876_at ZNF646 9726 0.9109073 0.4119248

205212_s_at ACAP1 9744 0.9108941 0.4238431

210782_x_at GRIN1 2902 0.9107197 0.3644859

221660_at MYL10 93,408 0.910379 0.4163593

207106_s_at LTK 4058 0.9083481 0.4073561

208299_at CACNA1I 8911 0.9071691 0.4603597

Blue Module

202705_at CCNB2 9133 0.904211166 0.502529831

203755_at BUB1B 701 0.903761976 0.495338274

203764_at DLGAP5 9787 0.896766419 0.520656849

219306_at KIF15 56,992 0.88904352 0.484441899

220651_s_at MCM10 55,388 0.882505533 0.420275022

214710_s_at CCNB1 891 0.881525705 0.431836838

209642_at BUB1 699 0.879762805 0.477439744

210052_s_at TPX2 22,974 0.879693077 0.429308935

204444_at KIF11 3832 0.876414663 0.562528262

209464_at AURKB 9212 0.874473304 0.502557848

221591_s_at FAM64A 54,478 0.865953299 0.505103365

202483_s_at RANBP1 5902 0.86173565 0.474844941

218350_s_at GMNN 51,053 0.861309011 0.482432439

203145_at SPAG5 10,615 0.859158231 0.548259451

202095_s_at BIRC5 332 0.854527142 0.405922833

221520_s_at CDCA8 55,143 0.826403939 0.394343433

203214_x_at CDK1 983 0.824308643 0.344276904

205167_s_at CDC25C 995 0.808726515 0.519843377

Pink Module

202948_at IL1R1 3554 0.92457227 0.668226501

204072_s_at FRY 10,129 0.900906947 0.620170176

203886_s_at FBLN2 2199 0.885002611 0.704071608

201798_s_at MYOF 26,509 0.875628221 0.541947295

201348_at GPX3 2878 0.869676376 0.693172897

217995_at SQRDL 58,472 0.869355878 0.66088755

200990_at TRIM28 10,155 0.866953096 0.75816668

213075_at OLFML2A 169,611 0.855803663 0.654017954
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indicated that the expression mechanism of the green
module was related to the excitatory postsynaptic poten-
tial, excitatory synapse (Table 4) and the ras signaling
pathway (Table 5).

Hub gene evaluation
All patients were divided into two groups according to
the median expression value of each hub genes in the
three modules. The corresponding Kaplan-Meier esti-
mate value was calculated, and the Kaplan-Meier sur-
vival curve was plotted. A log-rank test showed that the
difference in survival time between the two groups cor-
responding to 6 hub genes (P < 0.05) in the green mod-
ule was statistically significant (Fig. 8). The reason for
this result may be that among three modules, the green
module is most relevant to the overall survival time (Fig.
3). The image of the high-expression group of 6 hub
genes was steeper than that of the low-expression group,
indicating that the high expression of these hub genes
was closely related to the poor prognosis of patients. In
addition, we drew ROC curves for the six hub genes, as
shown in Fig. 9 and Table 6, and the six hub genes had
moderate diagnostic value.

Discussion
WT is one of the most common tumors in children, and
although modern multimodality therapy can improve
the survival rate of WT patients, not all patients are
spared. At present, the stage of WT can refer to the de-
gree of resection, perioperative rupture of the tumor
capsule, lymphatic diffusion and distant metastasis [1].
The chromosome 11p contains two biomarkers of con-
cern: 11p13 (WT1) and 11p15.5 (WT2). WT1 mutation
occurs in 15% of sporadic patients, loss of heterozygosity
(LOH) at chromosome 11p15.5 accounts for 70% of WT
patients [17]. Loss of the entire longarm of chromosome
11 was associated with higher rates of relapse and death
[18]. Chromosomes 1p and 16q are also regions of con-
cern for genetic changes. Multiple studies have sug-
gested that LOH at 1p and/or 16q associates with
relapse and over all poor prognosis [19, 20]. So far, com-
bined LOH at 1p/16q is the only molecular marker used
for risk stratification. Although LOH at 1p and 16q was
sensitive in predicting recurrence, this combination was
present in only 9.4% of recurrent tumors [1]. Therefore,
there is still some room to learn about WT.
In this study, a dataset including 59 WT samples were

used to construct the co-expression network, and 13

Table 1 Hub genes from the green module, blue module, and pink module (Continued)

ProbeID Gene Symbol ENTREZ_GENE_ID GeneModuleMembership GeneTraitSignificance

222108_at AMIGO2 347,902 0.853035178 0.659563469

212993_at NACC2 138,151 0.850368287 0.571281438

209283_at CRYAB 1410 0.846869574 0.668086039

Fig. 5 Boxplot for identification of hub genes in the green module
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modules were identified, among which the green module
was most related to stage, while the blue module and
pink module were tightly related to event-free (recur-
rence) survival time. After further analysis, we identified
11 hub genes in the pink module, 15 hub genes in the
green module, and 18 hub genes in the blue module for
a total of 44 hub genes. It is worth mentioning that dif-
ferential expression of 44 hub gene in other independent

data sets is statistically significant. Gene enrichment
pathways in the blue and pink modules were mainly fo-
cused on those related to sister chromatid cohesion, cell
division and proliferation. Sister chromatid cohesion is
an important pathway mediated by cohesive proteins to
ensure normal chromosome segregation in cells [21].
We have not retrieved studies on the mechanism of sis-
ter chromatid cohesion and WT, but sister chromatid

Fig. 6 Boxplot for identification of hub genes in the blue module

Fig. 7 Boxplot for identification of hub genes in the pink module
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Table 2 GO functional annotation for genes in pink and blue modules

Series Name P-value Adjusted
p-value

Z-
score

Combined
score

Genes

GO Celluar
Component

spindle midzone (GO:0051233) 2.19E-14 3.41E-12 −2.19 68.75 TPX2;PRC1;BUB1B;CDCA8;TTK;CDC6;
KIF20A;KIF11;AURKB;AURKA

GO Celluar
Component

condensed chromosome kinetochore (GO:
0000777)

3.43E-14 3.41E-12 −1.89 58.71 BUB1B;BIRC5;NCAPD2;BUB1;AURKB;
NDC80;SPC25

GO Celluar
Component

condensed nuclear chromosome kinetochore
(GO:0000778)

3.43E-14 3.41E-12 −1.71 53.02 BUB1B;BIRC5;BUB1;AURKB;NDC80;
SPC25;AURKA

GO Celluar
Component

polar microtubule (GO:0005827) 4.38E-13 3.26E-11 −2.13 60.63 TPX2;CCNB1;SPAG5;PRC1;KIF4A;CDK1;
CDC6;KIF11;AURKB;AURKA

GO Celluar
Component

mitotic spindle (GO:0072686) 5.47E-13 3.26E-11 −2.24 63.12 TPX2;SPAG5;PRC1;CDK1;TTK;KIF20A;
KIF11;AURKB;AURKA;MAD2L1

GO Celluar
Component

mitotic spindle midzone (GO:1990023) 8.40E-13 4.17E-11 −1.99 55.37 TPX2;SPAG5;CDK1;BUB1B;CDCA8;
CDC6;AURKB;AURKA;MAD2L1

GO Celluar
Component

mitotic spindle microtubule (GO:1990498) 2.46E-12 1.05E-10 −2.07 55.43 TPX2;SPAG5;PRC1;KIF4A;CDK1;KIF11;
AURKB;AURKA;MAD2L1

GO Celluar
Component

kinetochore microtubule (GO:0005828) 1.92E-11 7.15E-10 −1.7 41.94 SPAG5;PRC1;KIF4A;CDK1;KIF11;AURKB;
AURKA

GO
Biological
process

spindle organization (GO:0007051) 2.68E-11 3.42E-09 −2.63 63.98 RANBP1;SPAG5;TTK;KIF11;AURKB;
AURKA

GO
Biological
process

sister chromatid cohesion (GO:0007062) 3.00E-11 3.42E-09 −2.74 66.3 BUB1B;CDCA8;BIRC5;BUB3;BUB1;
AURKB;NDC80;SPC25;MAD2L1

GO Celluar
Component

spindle microtubule (GO:0005876) 4.08E-11 1.35E-09 −2.24 53.52 TPX2;SPAG5;PRC1;KIF4A;CDK1;TTK;
KIF20A;KIF11;AURKB;AURKA

GO Celluar
Component

spindle pole (GO:0000922) 5.66E-11 1.69E-09 −2.15 50.77 TPX2;CCNB1;PRC1;TTK;CDC6;KIF20A;
KIF11;AURKB;AURKA

GO Celluar
Component

spindle pole centrosome (GO:0031616) 1.05E-10 2.86E-09 −3.37 77.48 RANBP1;PCNA;CDC6;KIF11;AURKB;
NDC80;AURKA;KIF15;TPX2;CCNB2;
CCNB1;CHEK1;CDK1;DLGAP5

GO
Biological
process

anaphase-promoting complex-dependent cata-
bolic process (GO:0031145)

2.18E-10 1.66E-08 −2.6 57.76 CCNB1;PTTG1;CDK1;BUB1B;BUB3;
AURKB;AURKA;MAD2L1

GO
Biological
process

mitotic cell cycle (GO:0000278) 3.93E-10 2.24E-08 −2.78 60.2 TPX2;PBK;BUB1B;CDC6;KIF11;NDC80;
AURKA;KIF15

GO
Biological
process

mitotic spindle organization (GO:0007052) 7.06E-10 3.22E-08 −2.88 60.61 CCNB1;TTK;KIF11;NDC80;SPC25;
AURKA

GO Celluar
Component

meiotic spindle (GO:0072687) 7.13E-10 1.77E-08 −1.86 39.08 TPX2;PRC1;TTK;KIF20A;KIF11;AURKB;
AURKA

GO Celluar
Component

mitotic spindle pole (GO:0097431) 3.29E-09 7.55E-08 −2.14 41.73 TPX2;CCNB1;SPAG5;CDK1;CDC6;KIF11;
AURKA;MAD2L1

GO
Biological
process

protein ubiquitination involved in ubiquitin-
dependent protein catabolic process (GO:
0042787)

6.50E-09 2.47E-07 −2.97 56.06 CCNB1;PTTG1;CDK1;BUB1B;BUB3;
AURKB;AURKA;MAD2L1

GO Celluar
Component

condensed nuclear chromosome outer
kinetochore (GO:0000942)

7.50E-09 1.60E-07 0.77 −14.35 CCNB1;BUB1B;BUB1;NDC80

GO
Biological
process

G2/M transition of mitotic cell cycle (GO:
0000086)

8.39E-09 2.73E-07 −2.75 51.19 TPX2;CCNB2;CCNB1;MELK;CDK1;
FOXM1;CDC25C;AURKA

GO Celluar
Component

meiotic spindle midzone (GO:1990385) 1.36E-08 2.70E-07 −1.25 22.56 BUB1B;CDCA8;CDC6;AURKB;AURKA

GO Celluar
Component

condensed chromosome, centromeric region
(GO:0000779)

1.85E-08 3.45E-07 −1.61 28.65 CDCA8;BIRC5;OIP5;NCAPD2;AURKB;
NDC80
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cohesion has been reported to be frequently amplified in
liver cancer cells, which might a driver gene promoting
the proliferation of liver cancer cells and related to poor
prognosis of liver cancer. Survival rates in breast cancer
patients were associated with sister chromatid cohesion
[22]. In addition, sister chromatid cohesion has been im-
plicated in studies of pancreatic, bladder, and colorectal

cancers. One report suggests that identifying cancer cells
with sister chromatid cohesion mutations may be a new
therapeutic opportunity [23]. Genes in green module en-
richment into the Ras signaling pathway that play an im-
portant role in tumor progression through proliferation,
survival, invasion and immune escape [24]. The Ras sig-
naling pathway is mutated and highly activated in

Table 2 GO functional annotation for genes in pink and blue modules (Continued)

Series Name P-value Adjusted
p-value

Z-
score

Combined
score

Genes

GO
Biological
process

DNA replication (GO:0006260) 5.79E-08 0.000001651 −2.75 45.81 FEN1;CHEK1;CDK1;MCM10;DNA2;
CDC6;CDC25C

GO
Biological
process

protein sumoylation (GO:0016925) 9.54E-08 0.000002418 −2.62 42.29 PCNA;TRIM28;CDCA8;BIRC5;SAE1;
AURKB

GO Celluar
Component

spindle (GO:0005819) 1.19E-07 0.000002088 −2.26 35.97 TPX2;CCNB2;PRC1;TTK;KIF20A;KIF11;
AURKB;AURKA

GO
Molecular
Function

protein kinase binding (GO:0019901) 4.76E-07 0.00004189 −5.54 80.67 TPX2;CCNB1;PRC1;KIF20A;KIF11;
FOXM1;CDC25C;TRIM22;AURKA

GO
Biological
process

chromosome segregation (GO:0007059) 5.15E-07 0.00001173 −2.27 32.94 SPAG5;OIP5;KIF11;NDC80;SPC25

GO Celluar
Component

centriolar satellite (GO:0034451) 9.11E-07 0.00001507 −3.18 44.17 CCNB2;RANBP1;CCNB1;PCNA;SPAG5;
CHEK1;CDK1;NDC80;AURKA;KIF15

GO
Biological
process

DNA damage response, signal transduction by
p53 class mediator resulting in cell cycle arrest
(GO:0006977)

0.000001877 0.00003609 −2.51 33.14 CCNB1;PCNA;CDK1;CDC25C;AURKA

GO
Biological
process

protein localization to kinetochore (GO:
0034501)

0.0000019 0.00003609 −0.67 8.8 CDK1;BUB1B;AURKB

GO Celluar
Component

centrosome (GO:0005813) 0.000002228 0.00003494 −3.18 41.37 CCNB2;RANBP1;CCNB1;PCNA;CHEK1;
CDK1;DLGAP5;NDC80;AURKA;KIF15

GO Celluar
Component

condensed nuclear chromosome, centromeric
region (GO:0000780)

2.78E-06 4.14E-05 −1.37 17.58 CHEK1;NCAPD2;AURKB;AURKA

GO
Biological
process

attachment of spindle microtubules to
kinetochore (GO:0008608)

0.000002843 0.00004986 −1.09 13.89 BUB3;AURKB;NDC80

GO
Biological
process

negative regulation of ubiquitin-protein ligase
activity involved in mitotic cell cycle (GO:
0051436)

0.000003956 0.00006443 −2.34 29.13 CCNB1;CDK1;BUB1B;BUB3;MAD2L1

GO Celluar
Component

chromosome, centromeric outer repeat region
(GO:0034507)

5.24E-06 7.10E-05 −1.08 13.07 CDCA8;BIRC5;OIP5;NDC80

GO Celluar
Component

chromosome, centromeric region (GO:
0000775)

0.000005243 0.00007102 −1.04 12.62 CDCA8;BIRC5;OIP5;NDC80

GO
Biological
process

positive regulation of ubiquitin-protein ligase
activity involved in regulation of mitotic cell
cycle transition (GO:0051437)

0.000005517 0.00008385 −2.29 27.77 CCNB1;CDK1;BUB1B;BUB3;MAD2L1

GO Celluar
Component

chromosome, centromeric core domain (GO:
0034506)

0.000005884 0.00007623 −1.13 13.61 CDCA8;BIRC5;OIP5;NDC80

GO Celluar
Component

centrosomal corona (GO:0031592) 0.000006456 0.00008016 −3.03 36.22 CCNB2;RANBP1;CCNB1;PCNA;CHEK1;
CDK1;NDC80;AURKA;KIF15

GO Celluar
Component

pericentriolar material (GO:0000242) 0.000007133 0.00008502 −3.06 36.22 CCNB2;RANBP1;CCNB1;PCNA;CHEK1;
CDK1;NDC80;AURKA;KIF15

Note: GO Gene Ontology
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thyroid cancer, melanoma and many other cancers. The
gene in the green module has also been enriched to exci-
tatory postsynaptic potential and excitatory synapse, and
relatively little research has been performed on these
pathways and cancers.
CDK1 is a prominent member of the cell cycle and is

the most connected gene in the PPI network of blue and
pink modules. CDK1 is a member of cyclin-dependent
protein kinases (CDKs), which was mentioned in the
pathogenesis and recurrence mechanism of various

malignant tumors. CDKs and the cell cycle protein, as
important proteins, are essential to the control and ex-
press the cycle [25]. CDK1 is mainly responsible for the
G1/S and G2/M cell-cycle transitions. Many studies have
shown that increased expression of CDKs or endogenous
CDK regulator/inhibitor levels drop in various cancers,
hematology tumor and sarcomas are visible, and because
CDKs are natural targets for the treatment of cancer,
many studies have shown that CDK inhibitors (e.g.,
AT7519) can inhibit cancer progression [26]. In the case

Table 3 KEGG enrichment analysis for genes in pink and blue modules

Series Name P-value Adjusted p-
value

Z-
score

Combined
score

GENE

KEGG Cell cycle 1.63E-16 1.01E-14 −5.14 186.92 PCNA;BUB1B;TTK;CDC6;CDC25C;CCNB2;CCNB1;PTTG1;CHEK1;
CDK1;BUB3;BUB1;MAD2L1

KEGG Oocyte meiosis 7.88E-09 2.44E-07 −27.81 519.01 CCNB2;CCNB1;PTTG1;CDK1;CDC25C;BUB1;AURKA;MAD2L1

KEGG Progesterone-mediated
oocyte maturation

3.60E-08 6.41E-07 −16.58 284.12 CCNB2;CCNB1;CDK1;CDC25C;BUB1;AURKA;MAD2L1

KEGG Human T-cell leukemia virus 1
infection

4.14E-08 6.41E-07 −20.7 351.91 CCNB2;RANBP1;HLA-DMA;PTTG1;IL1R1;CHEK1;BUB1B;BUB3;
MAD2L1

KEGG p53 signaling pathway 0.000094 0.001166 −7.32 67.86 CCNB2;CCNB1;CHEK1;CDK1

KEGG Cellular senescence 0.0001856 0.001918 −3.15 27.08 CCNB2;CCNB1;CHEK1;CDK1;FOXM1

KEGG DNA replication 0.0002267 0.002008 −48.57 407.62 FEN1;PCNA;DNA2

KEGG Human immunodeficiency
virus 1 infection

0.0006749 0.005231 −11.45 83.6 CCNB2;CCNB1;CHEK1;CDK1;CDC25C

KEGG Base excision repair 0.005301 0.03652 −41.27 216.26 FEN1;PCNA

Note: KEGG Kyoto Encyclopedia of genes and Genomes

Table 4 GO functional annotation for genes green modules

Series Name P-value Adjusted
p-value

Z-
score

Combined
score

GENE

GO Biological
process

excitatory postsynaptic potential (GO:
0060079)

0.0004911 0.08474 −2.92 22.27 MAPK8IP2;GRIN1

GO Biological
process

regulation of NMDA receptor activity (GO:
2000310)

0.0007466 0.08474 −3.46 24.95 DLG4;MAPK8IP2

GO Celluar
Component

excitatory synapse (GO:0060076) 0.0008938 0.03972 −2.75 19.28 DLG4;GRIN1

GO Celluar
Component

postsynaptic density (GO:0014069) 0.001281 0.03972 −3.05 20.29 DLG4;MAPK8IP2;GRIN1

GO Biological
process

calcium ion homeostasis (GO:0055074) 0.001819 0.1033 −2.92 18.41 TRPV6;GRIN1

GO Biological
process

positive regulation of excitatory
postsynaptic potential (GO:2000463)

0.001819 0.1033 −2.31 14.54 DLG4;GRIN1

GO Biological
process

stress-activated MAPK cascade (GO:0051403) 0.003053 0.1372 −2.45 14.17 TAOK2;MAP 2 K7

GO Biological
process

phosphatidylinositol 3-kinase signaling (GO:
0014065)

0.004254 0.1372 −2.45 13.38 LTK;PIK3CD

GO Biological
process

signal transduction (GO:0007165) 0.004805 0.1372 −6.49 34.63 PSD;CACNA1I;LTK;EPO;DLG4;PIK3CD;
IGFALS;RASGRP2;MAP 2 K7

GO Celluar
Component

postsynaptic membrane (GO:0045211) 0.006795 0.1289 −2.47 12.32 DLG4;GRIN1

GO Molecular
Function

triglyceride lipase activity (GO:0004806) 0.007203 0.2384 −1.95 9.61 CES1P1;PNPLA2

Note: GO Gene Ontology
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of CDK1, its down-regulation may induce mitotic muta-
tions leading to apoptosis of WT cells [27]. In addition,
CDK1 is associated with poor prognosis in human
pharyngeal squamous cell carcinoma [28], prostate can-
cer [29], ovarian cancer [30], oral squamous cell carcin-
oma [31], pancreatic ductal adenocarcinoma [32] and
other cancers. The recognized cancer genes CCNB1 and
CCNB2 were also identified as WT-related genes. The
hub gene in the pink module, TRIM28, is one of the sus-
ceptibility genes of WT. TRIM28 cells showed positive
immunohistochemical staining in WT cells but negative
staining in other tissues and WT epithelial components
[33]. This gene was identified as the new susceptibility
gene of wilms tumor in a study based on 890 wilms
tumor patients with lymphocyte DNA exome sequencing
[34], acting as a tumor suppressor gene by LOH [35].
Considering the above reasons, some scholars suggested
that patients with epithelial wilms tumor should undergo
TRIM28 gene detection [34].
Although there has been less research on the hub

genes in the blue and pink modules of WT, there has
been even less research on the hub genes in the green
modules and WT compared to the blue and pink

modules. Research on these hub genes is imperative to
fully elucidate how alterations in cell differentiation re-
late to WT. The 6 hub genes of the green module
(ELAVL3, DLG4, CES1P1, MYL10, CACNA1 and PTAF
R) that were shown to have statistically significant differ-
ences in survival analysis and moderate diagnostic value
in ROC curve were the focus of our attention. PTAFR
have been reported as biomarkers for breast cancer [36].
PTAFR is a platelet activating factor receptor associated
with many characteristic and inflammatory diseases, but
it has been less frequently reported in cancer [37, 38].
CES1P1 are associated with the progression of gastric
cancer. DLG4 is associated with poor prognosis for pros-
tate cancer and colorectal cancer. Compared with the
genes in the blue and pink modules, the genes in the
green module have been poorly studied, not only in rela-
tion to WT but also to other cancers. Therefore, further
investigating the genes in the green module may be the
direction of our future research.
Compared with a study using the WGCNA method to

identify hub genes associated with WT prognosis [39],
our study samples were all from NCI. Of the 44 hub
genes we identified, CDK1 and CDCA8 are also hub

Table 5 KEGG enrichment analysis for genes green modules

Series Name P-value Adjusted p-value Z-score Combined score Genes

KEGG Ras signaling pathway 0.001795 0.2316 −12.94 81.81 PIK3CD;FOXO4;RASGRP2;RIN1;GRIN1

KEGG MAPK signaling pathway 0.005023 0.2351 −12.02 63.64 CACNA1I;TAOK2;RASGRP2;MAP 2 K7;MAPK8IP2

KEGG Calcium signaling pathway 0.005468 0.2351 −1.88 9.78 CACNA1I;LTB4R2;PTAFR;GRIN1

Note: KEGG Kyoto Encyclopedia of genes and Genomes

Fig. 8 Overall survival analyses on hub genes. Note: The red lines represent high expression of hub genes, while blue lines represent low
expression of hub genes
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genes in that study, which also verified these two genes.
Although there are similarities, we found many new
genes that are closely related to WT pathological staging
and poor prognosis. Many of these new genes are associ-
ated with the relapse of WT, which is currently one of
the leading causes of death in WT patients. To the best
of our knowledge, our study is the first to use the
WGCNA method to identify genes associated with WT
recurrence. In a study on WT using the MTT assay and
clonal survival assay, mir-1180 was up-regulated in WT
and may be a therapeutic target for WT in the future
[40]. Another study showed that the hypomethylation

level of long interspersed element-1 in WT could be
used as a marker of recurrence after chemotherapy [41].
Glypican-3, which is specifically expressed in cancers in-
cluding WT, is being considered as a biomarker for pre-
dicting tumor recurrence [42]. In a study of constructing
a DEGs-Transcription Factors-miRNA network to ex-
plore WT-related biomolecular markers, and TFs and
miRNA were mainly studied, but this study focused on
hub genes [43]. Our study identified new biomarkers as-
sociated with WT recurrence, which may be a new re-
search direction in the future. However, our study has
some limitations: (1) Due to the small number of sam-
ples and possible bias, we need to conduct considerable
research in the future to verify our results. (2) The ori-
ginal NCI data did not provide the data of progression-
free survival, which prevented this study from evaluating
this important clinical outcome.

Conclusions
In summary, with the help of WGCNA, PPI network
model construction, GO analysis, KEGG analysis and
survival analysis, we identify hub genes are closely to

Fig. 9 ROC curve value of 6 hub genes. Note: Different colored curves represent different genes

Table 6 ROC curve value of 6 hub genes

Gene symbol AUC(95%CI)

ELAVL3 0.6344 (0.5621,0.7067)

MYL10 0.6193 (0.5431,0.6926)

DLG4 0.6451 (0.5731,0.7171)

PTAFR 0.6435 (0.5711,0.7159)

CES1P1 0.629 (0.5559,0.7021)

CACNA1I 0.6659 (0.5952,0.7365)

Liu et al. BMC Cancer          (2021) 21:316 Page 13 of 15



recurrence and staging of WT, and 6 of these hub genes
were strongly associated with overall survival. Our study
may be of great significance for potential susceptibility
gene of WT, which may improve the patient’s recur-
rence and prognosis by adjusting the clinical treatment
regimen.
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