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Abstract

signature in an independent dataset.

signatures.

biomarkers.

Background: RNA-seq data are increasingly used to derive prognostic signatures for cancer outcome prediction. A
limitation of current predictors is their reliance on reference gene annotations, which amounts to ignoring large
numbers of non-canonical RNAs produced in disease tissues. A recently introduced kind of transcriptome classifier
operates entirely in a reference-free manner, relying on k-mers extracted from patient RNA-seq data.

Methods: In this paper, we set out to compare conventional and reference-free signatures in risk and relapse
prediction of prostate cancer. To compare the two approaches as fairly as possible, we set up a common procedure
that takes as input either a k-mer count matrix or a gene expression matrix, extracts a signature and evaluates this

Results: We find that both gene-based and k-mer based classifiers had similarly high performances for risk prediction
and a markedly lower performance for relapse prediction. Interestingly, the reference-free signatures included a set of
sequences mapping to novel INCRNAs or variable regions of cancer driver genes that were not part of gene-based

Conclusions: Reference-free classifiers are thus a promising strategy for the identification of novel prognostic RNA

Keywords: Reference-free transcriptomic, Supervised learning, Prostate cancer signature

Introduction

The outcome of human cancer can be predicted in
part through gene expression profiling [1-3]. Outcome
prediction is particularly important in prostate can-
cer (PCa), where distinguishing indolent from aggres-
sive tumors would prevent unnecessary treatment and
improve patients’ quality of life. However, currently there
is no reliable signature of aggressive prostate cancer.
Pathologists classify prostate tumor biopsies using scoring
systems such as the Gleason score that evaluates tumor
differentiation and Tumour, Node, Metastasis (TNM)
staging that evaluates tumor extent and propagation.
Gleason, TNM and Prostate-specific antigen (PSA) levels
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can be combined into a low, medium or high risk status
[4]. Several studies used gene expression profiles to derive
predictors of Gleason score or risk [5-8]. Other studies
predicted actual clinical progression (tumor recurrence or
metastasis) after several years of patient followup. Clini-
cal progression can be evaluated either indirectly through
monitoring of PSA levels (BCR=biochemical relapse)
[9-12] or upon direct clinical observation [13-16]. Gene
expression predictors usually take the form a of signature,
that is a set of genes or transcripts and associated coef-
ficients of a model that can be used to predict risk or
outcome from a patient sample. Commercial tests such as
Decipher and Oncotype DX predict prostate cancer risk
based on gene expression. However these are still not rec-
ommended for routine use [17]. In general, the prostate
cancer community has progressed pretty well at identify-
ing low and high risk patients, but men with mid-range
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risk face more uncertainty and would most benefit from
improved tests.

Gene expression profiling of prostate biopsies is per-
formed either using DNA microarrays [13—-16] or high
throughput RNA sequencing (RNA-seq) [5-8]. An impor-
tant advantage of RNA-seq is its ability to identify novel
genes or transcripts, which can in principle be incor-
porated into predictive signatures. However, RNA-seq
analysis is usually performed in a “reference-based” fash-
ion, ie. by using RNA-seq reads to quantify a predeter-
mined set of transcripts. This amounts to using RNA-seq
in the same way as a microarray that only quantifies a
predetermined set of probes. Yet, there is abundant evi-
dence that non-reference RNAs are frequent in disease
tissues and may constitute clinically useful biomarkers
[18]. Therefore one may expect that prognostic models
incorporating non-reference RNAs may carry substantial
benefits.

Our group [19, 20] and others [21] introduced new
k-mer based strategies to analyse RNA-seq data in
a “reference-free” manner, that is without mapping
sequence reads to a predefined set of genes or tran-
scripts. K-mers are sub-sequences of fixed length which
are extracted and quantified from sequence files. When
applied to medical RNA-seq datasets using appropri-
ate statistical methods, this strategy identifies any sub-
sequence whose increased abundance is associated to a
given clinical label. This may include novel splice variants,
long non-coding RNAs (IncRNAs) or RNAs from repeated
retroelements [19, 20] which are ignored by conventional
protocols based on reference gene annotations.

Although attractive in principle, k-mer derived prog-
nostic signatures pose two major challenges. First, a single
RNA-seq dataset commonly contains tens to hundreds
of millions distinct k-mers. Therefore false positive and
replicability issues encountered with gene expression pro-
files [22-25] are expected to worsen with k-mer count
matrices. The second challenge is related to the transfer
of a k-mer signature across independent datasets. Signa-
tures inferred from an initial discovery set are expected to
generalize to any independent dataset. In the absence of
a unifying gene concept, independent validation requires
matching signature k-mers to read sequences from the
new dataset. This may cause significant signal loss if
sequencing or library preparation technologies differ.

Our main objective here was to compare the character-
istics and performances of reference-based and reference-
free classifiers for PCa risk and relapse prediction. We
built both types of classifiers using the same discovery
dataset and assessed their performances in independent
datasets using equivalent pipelines and parameters. For
the reference-free approach, this required special devel-
opments to reduce the number of variables and to trans-
fer expression measures between datasets. We present
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below a detailed analysis of the relative performances and
sequence contents of the different classifiers and discuss
possible future developments to improve performances of
models.

Materials and methods

Data acquisition and outcome labelling

We used tumor samples from the TCGA-PRAD data col-
lection [26] (N=505) for signature discovery. The resulting
classifiers were then assessed in two independent datasets,
from the Canadian Prostate Cancer Genome Network
(ICGC-PRAD-CA) [27] (N=148) and from the Por-
tuguese Oncology Institute’s “Porto” cohort, analyzed in
Stelloo et al. [28] (N=91). All three datasets were produced
from radical prostatectomies and used similar technolo-
gies for library preparation (frozen samples, poly(A)+
RNA selection) and Illumina sequencing, however they
differed by read-size, read depth, strandedness and use of
single or paired ends sequencing (Table 1).

TCGA-PRAD RNA-seq data were retrieved from
dbGAP accession phs000178.v9.p8 with permission.
ICGC-PRAD-CA RNA-seq data (EGAD00001004424)
were downloaded from the European Genome-Phenome
Archive (EGA) with permission. The RNA-seq files from
the “Porto” cohort [28] were retrieved from GEO, under
accession GSE120741. Clinical information was retrieved
from Liu et al. [29] for TCGA-PRAD, from Fraser et al.
[27] for ICGC-PRAD and from sample metadata of GEO
accession GSE120741 for Stello et al. [28].

We built predictors for risk and relapse using two-class
prediction models. To achieve a clear separation between
the two classes, we only focused on high risk (HR) samples
versus low risk (LR) samples, ignoring the medium risk,
and we focused on relapse prior to a given year and non-
relapse after a given year. For this reason, only a fraction
of samples could be labelled for a given class in each set.
Risk information was not available in the Stelloo dataset
and relapse labelling on the ICGC dataset led to a small
validation set (only 7 relapse samples).

We classified tumor specimens into low-risk and high-
risk groups using an adaptation of d’Amico’s classifica-
tion which does not take into account the PSA rate but
only the anatomo-pathological data on the basis of Glea-
son and TNM features as performed previously [20].
Tumors with Gleason score 6/7 (3+4) and TNM stage
pT1/2 were classified as low risk. Tumors with Glea-
son score 8/9 and/or TNM stage pT3b/4 were defined
as high-risk. Tumors classified as pT3a, pT1 or (pT2
and Gleason (4+3)) were considered as intermediate and
excluded from the analysis. 374 TCGA-PRAD tumors
and 63 ICGC-PRAD-CA tumors could be labelled for
LR or HR. We could not obtain Gleason/TNM scores
for Stelloo et al, hence we did not annotate risk for this
cohort.
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Table 1 Characteristics of prostate tumor RNA-seq datasets
Study RNA-seq library type Reads/sample #Tumor samples Risk Relapse

LR HR NO YES
TCGA-PRAD Poly(A)+ unstranded 2x50nt 130M 505 134 240 56 58
|CGC-PRAD Poly(A)+ stranded 2x100nt 313M 148 40 23 49 7
STELLOO Poly(A)+ stranded 1x65nt 20M 91 43 48

For relapse analysis, we distinguished patients with
biochemical relapse (BCR) and time to BCR <2yr and
patients with no BCR after 5 years or longer, except
for Stelloo et al. where only precomputed relapse data
was available with cutoffs at 5yr and 10yr, respectively
(Table 2). BCR information was obtained from Table S1
of Liu et al. [29] for TCGA-PRAD and from table S1
(PFS field) of Fraser et al. [27] for ICGC-PRAD. Precom-
puted relapse data for Stelloo et al. was taken from SRA
accession PRINA494345.

A generic framework to infer reference-based and
reference-free signatures

Risk and relapse predictors were derived using a combina-
tion of feature selection and supervised learning (Fig. 1).
The predictive model was tuned over a discovery (or train-
ing) dataset and its performance was then evaluated on
an independent validation (or testing) dataset, to avoid
selection bias [30]. The same procedure was used for
reference-based and reference-free models, however two
extra steps were included to obtain and validate reference-
free signatures. First a procedure was implemented to
reduce the k-mer matrix using a sequence assembly-like
algorithm to merge k-mers into contigs based on their
sequence overlap and on the similarity of their count vec-
tors. This step led to a contig count table an order of
magnitude smaller than the initial k-mer count table (see
“Results” section below). Feature selection and model fit-
ting were performed over this contig table. A second adap-
tation was necessary to validate the reference-free signa-
ture in an independent dataset. This required extracting
k-mers from both the signature and the sequence files of
the independent set, and compute the signature expres-
sion in the independent set based on counts of matching
k-mers. The pipeline is detailed in Methods. Note that we

Table 2 Relapse group definitions

select features and train a predictive model only on the
discovery dataset. The model is then applied to the valida-
tion set with no retraining (i.e. with the same coefficients)
for an unbiased evaluation of the signature.

Gene and k-mer count matrices

DEkupl-run [19] was used to produce gene and k-mer
count matrices for each dataset. DEkupl-run converts
FASTQ files to k-mer counts using Jellyfish [31], joins
individual sample counts into a single count table and
filters out low count k-mers. K-mer size was set to 31,
lib_type to unstranded, and parameters min_recurrence
and min_recurrence_abundance were set for each dataset
as in Additional file 4: Table S1. K-mer size was set to
31 as commonly adopted for human transcriptome appli-
cations [19, 32]. Note that contrary to TCGA-PRAD,
ICGC-PRAD uses stranded RNA-seq libraries. How-
ever we could not use this information as signatures
were produced from unstranded libraries. We thus built
all k-mer tables in canonical mode, which amounts to
consider all libraries as unstranded. Gene expression
was computed using Kallisto v0.43.0 [32] with Gen-
code V24 as a reference transcriptome. Gene-level counts
were obtained by summing counts for all transcripts
of each gene. Gene expression matrices were submit-
ted to the same recurrence filters as k-mer tables to
remove low expression genes. After count tables were
generated and filtered, the k-mer merging and differen-
tial expression analysis module of DEkupl-run were not
used. Instead, tables were further processed as explained
below.

Reduction of k-mer matrix via contig extension
k-mer occurence tables were converted into contig
occurence tables using an extension procedure similar

Relapse group TCGA-PRAD

ICGC-PRAD STELLOO

Relapse (YES) PFS=1and

PFS.time <2yr

Non relapse (NO) PFS=0and

PFS.time >5yr

BCR ="Yes" and BCR ="Yes" and

BCR.time <2yr BCR.time <5yr

BCR="No"and BCR ="No"and

BCR.time >5yr BCR.time >10yr
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Fig. 1 Uniform procedure for signature inference based on k-mer or gene expression. a The discovery matrix is built from normalized k-mer counts
or gene expression counts. Samples are labelled by their outcome (risk or relapse) status. Normalization is performed as count per billion for k-mers
or count per million for genes. b Features are ranked according to their F1-score computed by cross validation using a Bayes classifier (BC). The top
500 features are retained. € Among the top 500, features are selected using lasso logistic regression combined with stability selection. A logistic
regression is tuned on the selected features. d Features from the signature are measured in the count matrix from an independent dataset. e
Performance of the signature (selected features + tuned logistic regression) is evaluated using Area Under ROC Curve (AUC) on the validation
dataset. To deal with the specificity of k-mer matrices, extra steps A"and D' are introduced: @’ the k-mer matrix in converted into a much smaller
contig matrix by merging overlapping k-mers with compatible counts. d’ k-mers are extracted from the signature contigs and their counts in the
validation matrix are aggregated

to that described in Audoux et al. [19]. We define here
as contig any sequence produced by merging 1 or more
k-mers. Briefly, contigs overlapping by (k-1) to (k-15)
nucleotide were iteratively merged into longer contigs
till any of the following condition was encountered. In a
straightforward case, extension stops when no more over-
lapping contig is available. Alternatively, extension stops
when ambiguity is introduced i.e. when competing exten-
sion paths occur. Lastly, we applied here an intervention
not included in Audoux et al. [19] by considering sample
count compatibility between contigs, as shown in Fig. 2.
Sample count compatibility is measured by the mean value
of absolute contrast (MAC) between the counts of the two
contigs across all samples, i.e.

where ¢; and ¢y are count vectors of two contigs to be
merged, and ¢ and ¢y are counts in sample s from the
corresponding count vectors. The extension is rejected if
MAC > 0.25. In this way, all contigs are guaranteed to
have member k-mers with consistent sample count vec-

Cls — C2s

MAC (¢1, €2) = meanse(samples) ( st
»S S

tors. After the merging procedure, the new contig’s sam-
ple count vector is set to the mean of composite k-mer’s
sample count vectors.

Count normalization

To account for differences in sequencing depth among
samples, we applied a normalization step on feature
counts (genes or contigs) in discovery and validation
datasets. Each feature count in a sample is divided by the
sum of all feature counts in this sample, then multiplied by
a constant base number:

ef, s
Z .f e{features} €f s

ef,s <

: Cb’

where ey s refers to count of feature f in sample s, and Cj, is
the base constant. For genes, C, = 10° resulting in a con-
ventional count per million (CPM) normalization, while
for contigs, we used Cj, = 10%, or count per billion (CPB).
For contigs, normalization is applied on the contig count
table produced after contig extension and for genes it is
applied on the recurrence filtered gene expression matrix.
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(A) s1 | s2 | s3 | s4 | s5 | s6 | s7
contig2 | AAAAAATTGTACTGTGTACTGTGGAGGAATT | 38 | 56 | 50 | 34 | 53 | 36 | 124
contig3 AAAAATTGTACTGTGTACTGTGGAGGAATTG | 44 | 55 | 55 | 36 | 63 | 41 [ 135

(B) i MAC( , contig2) = 0.9020 > 0.25

contig2 MAC(contig2, contig3) = 0.0503 < 0.25
contig3

4

contigz+3 I

(©)

Fig. 2 Merging procedure of 3 example contigs: a Count table of contigs in samples. Both pairs (contig1, contig2) and (contig2, contig3) have good
overlaps shifting by only one nucleotide, but the sample count vectors of contig! and contig2 are not compatible. b Merging intervention
considering sample count compatibility between contigs. The mean absolute contrast (MAC) is calculated for each pair, and merging of (contig],
contig?) is rejected due to a MAC value exceeding threshold. ¢ The resulting contigs are the initial contig! and the merged contig from the initial

(contig2, contig3) pair

Univariate features ranking

Given the limited number of samples, it was necessary
to reduce the number of features (genes or contigs) in
the dataset. We discarded irrelevant features to focus on
a subset of 500 top candidates for subsequent feature
selection. To rank features, we selected a Bayes classi-
fier because the C++ implementation of this classifier was
the fastest to run among several available feature rank-
ing tools. We did not try to optimize this part to avoid
biasing the comparison towards gene-based or gene-free
methods. In detail, we performed prediction of status
(risk/relapse) using a Bayes classifier on each independent
feature, after log transformation of the normalized counts
(after adding an offset 1 to avoid numerical problem). To
assess the quality of the prediction, we computed the aver-
age fi score by 5-fold cross validation (f; = %m,
where precision = TP/(TP + FP) and recall = TP/(TP +
FN) and FP,TP,FN are respectively the False Positive,
True Positive and False Negative). In cases where 5-fold
cross-validation returned an undefined value, f; score was
set to O (the worst). The average fi score was used to rank
features. The Bayes classifier implementation was taken
from the MLPack library [33].

Feature selection, model fitting and predictor evaluation

To select a subset of non-correlated features (genes or
contigs) among the top 500 candidates, we performed
penalized logistic regression using the implementation
from the glmnet R package [34]. We implemented stabil-
ity selection [35]: only features selected with a frequency
of being selected above 0.5 upon 2000 resamples of the
input dataset were retained. To evaluate the performance

of the selected features on the discovery (training dataset),
we fitted a logistic regression and computed the area
under the ROC curve (AUC) using a 10-fold cross val-
idation scheme, repeated 20 times, as implemented in
the caret package [36]. To handle imbalanced datasets,
we included optional oversampling and downsampling in
our evaluation procedures [37]. We also computed the
Precision-Recall AUC, a more informative metric than the
ROC AUC when evaluating binary classifiers on imbal-
anced datasets [38]. To assess the performance of the
signature on the external validation datasets, we fitted
a logistic regression on the whole discovery dataset and
applied the predictor to the validation datasets. In the
reference-free approach, some features present in the sig-
nature were not found in the validation (see below). In this
case, the coefficient of the logistic regression correspond-
ing to missing features were set to zero. Signature contigs
were annotated through BLAST alignment vs. Gencode
V34 transcripts. HGNC symbols for signature genes were
obtained from the Ensembl EnsDb.Hsapiens.v79 R pack-
age [39].

Matching signature contigs in the validation cohort

To measure contig expression in the validation cohort we
implemented the procedure schematized in Fig. 3. The
procedure comprises two main steps: (1) all k-mers from
signature contigs were extracted and identified in the k-
mer count matrix generated from the validation cohort
and (2) the resulting sub-matrix was used to estimate
each contig’s expression in the validation cohort, mea-
sured for each sample as the median of extracted k-mer
counts.
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Fig. 3 Procedure for inferring signature contig expression in an independent validation dataset. The colored contig from the signature is quantified
in the validation cohort by extracting all its constituent k-mers and retrieving the corresponding k-mer counts from validation k-mer count matrix.
The count vector of the contig in each sample of the validation dataset is taken as the median of counts for k-mers in this sample

Results

A reference-free risk signature for prostate cancer

We first applied the gene-free and gene-based signature
discovery procedures detailed above to infer PCa risk
signatures. The k-mer table for 374 TCGA-PRAD risk-
labelled samples (Fig. 4a) had 94M k-mers after low count
filtering. The merging step reduced it to 5.2M contigs, i.e.
achieving a considerable 18-fold reduction in size (Fig. 4b).

Contig sizes (mean=49nt, median=34nt, Table 3) were small
relatively to a typical human RNA, which is characteris-
tic of the adopted contig extension procedure [19] (see
“Reduction of k-mer matrix via contig extension” section).

The 5.2M contig matrix and the 38k gene expres-
sion matrix were submitted to screening using univariate
Bayes classification and the top scoring 500 features were
retained for feature selection and model fitting. Interes-
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Initial matrix (not generated) 60,554 07
samples Low expression filter 94,539,338 38,382 o Snatre
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Fig. 4 Risk signatures generation and analysis. a Characteristics of prostate tumor RNA-seq datasets. b Result of filtering procedure on the k-mer and
gene matrices for risk analysis. Expression of risk signature elements in LR and HR samples in the TCGA-PRAD and ICGC-PRAD cohorts ¢ k-mer contig
signature; d Gene signature. e Signature performances for risk prediction in the TCGA-PRAD and ICGC-PRAD cohorts




Nguyen et al. BMC Cancer (2021) 21:394

Table 3 Contig sizes (Risk model)

After k-mer After Bayes clas-
merging sifier ranking
Mean contig size (nt) 49.1 189
Median contig size (nt) 34 61

tingly, the 500 top scoring contigs were significantly
longer than prior to selection (median 61lnt vs. 34nt,
Table 3), suggesting the procedure tended to eliminate
spurious short contigs.

Finally, Lasso logistic regression produced a reference-
free signature of 26 contigs and a reference-based sig-
nature of 14 genes (Fig. 4b). Ten-fold cross validation
performances of both signatures were very high on the
discovery dataset (0.90 and 0.93 for genes and k-mers,
respectively) (Fig. 4e), which is an over-estimated perfor-
mance since features here were tested on the same dataset
used to select features [30]. PR-AUC and ROC-AUC on
different sampling techniques to adjust the class distribu-
tion of a dataset are also presented in Additional file 4:
Table S2. These results lead to the same conclusion as the
ones presented in (Fig. 4e).

Figure 4c shows the 26 contigs in the reference-free risk
signature and their abundance distribution in LR and HR
samples. 24/26 contigs mapped Gencode transcripts from
21 unique genes (Additional file 1). Eleven of the 21 genes
were also found in a list 180 genes compiled from pub-
lished PCa outcome signatures (Additional file 2), which is
a highly significant enrichment (P-value = 7.9¢-9, Fisher’s
exact test), especially when considering that no gene infor-
mation was used to infer our signature. The gene and
contig signatures involved five shared genes: MYBPCI1,
ASPN, SLC22A3, SRD5A2 and CD38 (Additional file 2,
Fig. 4c and d). The first four genes are part of published
prostate risk signatures. CD38 is particular in that it is the
most downregulated in both signatures and it is not part
of previous signatures. However, downregulation of this
gene has been associated with poor outcome in prostate
cancer [40], supporting its status as a high risk biomarker.
Risk signature contigs mapped at least five other genes
with established driver roles in PCa or other cancers:
CAMK2N1 [41], COL1A1 [42], GTSE1 [43] and PTPRN2
[44], supporting the relevance of these sequence contigs
in PCa etiology.

Of the two contigs that did not map any Gencode
transcript, one aligned to an intron of GMNN (ctg_20),
a gene also mapped by an exonic contig, the other an
intron of LDLRAD4 (ctg_23). Contig ctg_23 corresponds
to a 1.29 kb spliced transcript located between exons
4 and 5 of LDLRAD4 and is strongly upregulated in
HR samples, as displayed in the Integrative Genomics
Viewer (IGV) [45] in Additional file 4: Figure S1. Although
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ctg_23 partly maps short annotated LDLRAD4 isoforms,
its expression seems unrelated to that of the longer LDL-
RAD4 transcripts whose coverage in flanking exons is
4-6 times lower than ctg 23 (Additional file 4: Figure
S2.) Therefore ctg_23 likely comes from an independent
IncRNA. The host gene LDLRAD4 is a negative regula-
tor of TGEF-beta signaling with roles in proliferation and
apoptosis and was recently associated to negative out-
come in other tumor types [46, 47]. Lastly, one contig
(ctg_11, EFNA2) was probably misassigned to the EFNA2
gene since it maps to a highly expressed discrete area
just 3’ of EFNA2 while EFNA2 seems silent. Thus ctg 11
probably comes from an independent IncRNA as well
(Additional file 4: Figure S3).

To assess the replicability of risk signatures, we evalu-
ated their performance in the ICGC-PRAD independent
dataset. To this aim, we developed a specific proce-
dure to estimate the expression of an arbitrary sequence
contig across datasets using matched k-mers (see
“Materials and methods” section). The 26 contigs repre-
sented 1444 k-mers, of which 97% were present in the
ICGC-PRAD validation dataset. Overall 5 contigs (SFRP4,
GTSE1, COL3A1, COL1Al.a, COL1Al.c) could not be
quantified in the validation set due to lack of supporting
k-mers (see Fig. 4b and c). In spite of this, the reference-
free signature had similar performance in the validation
set as the reference-based signature (0.85 and 0.86 respec-
tively, Fig. 4e), although the later did not sustain any loss
when transferred to the independent cohort (Fig. 4b).
High prediction AUCs observed in the independent val-
idation cohorts indicate a strong replicability of both the
reference-free and reference-based risk signatures.

Relapse signatures contain key PCa drivers

For relapse prediction, we distinguished patients with bio-
chemical relapse within less than 2 years and patients
with no BCR after 5 years or longer. Application of the
gene-free and gene-based signature discovery procedures
to relapse prediction produced a 14-contig reference-
free signature and a 10-gene reference-based signature
(Additional file 2, Fig. 5b, c and d). The reference-free
signature was populated by obvious PCa drivers. Strik-
ingly, 3 contigs matched KLK2, AR and KLK3, which
are among the most important genes in PCa onset and
progression [48], the androgen receptor (AR) and two
of its main targets, KLK2 and KLK3, the later encod-
ing the PSA protein (Fig. 5c¢). Another contig matched
SPDEEF, a gene whose loss is associated to PCa metastasis
[49].

Contigs matching KLK2 and AR were overexpressed 23-
fold and 7-fold, respectively in relapsed patients while the
contig matching KLK3 was depleted 1.8 fold. The AR con-
tig matches exon 1 of AR and contains an non-templated
poly-A end but no visible polyadenylation signal. The
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KLK2 contig is intronic and harbours a common SNP
(rs62113074). The KLK3 contig is located in a distal part
of the 3’ UTR region present only in longer isoforms of
KLK3. Its lower expression in relapsed patients was unex-
pected as low expression of PSA is usually associated to
a lower risk. It is possible though that only this longer
isoform is depleted in relapsing samples. The expression
boxplot shows the KLK2 contig occurs only in a few out-
lier patients while the AR and KLK3 contigs are common
(Fig. 5¢). The contig matching SPDEF is a special vari-
ant of the 3’ exon including two nonsynonymous SNPs.
The SPDEF gene as a whole was highly expressed in both
relapse and non-relapse samples but the contig expression
was twice lower in average in relapse samples. Two contigs
matched no known transcript: ctg_7 is a low complexity
sequence of unknown origin and ctg_1 matches an intron
of RPL9.

The contig matching IncRNA AC069228.1 also raised
our attention since AC069228.1 is the only gene mapped
by contigs in both relapse and risk signatures. The
AC069228.1 IncRNA is antisense of PPFIA2, a pro-
tein tyrosine phosphatase that is itself an alleged urine
biomarker of PCa [50]. The contigs from risk and relapse
models match different regions of AC069228.1 (Figure S4).
One is spliced, the other is a continuous 864 bp segment
of a long exon. In both cases, a negative outcome (HR or
relapse) is associated to a clearly higher expression of the
contig, while the antisense gene PPFIA2 does not appear
to follow the same trend (Figure S4).

Of note, the 10 genes in the reference-based signature
were also clearly PCa-related: one was the major PCa
biomarker PCA3 [51] and 5 others (DDC, RRM2, FEV,
TSPAN1, HMGCS2) are involved in PCa etiology [52—56].
Therefore both gene-based and gene-free relapse signa-
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tures were significant in terms of PCa related functions of
their component genes or contigs.

Relapse signatures do not accurately classify independent
cohorts

Contrary to the risk signatures, relapse signatures showed
little overlap with each other and with published PCa sig-
natures (Additional file 2). Only PCA3 and KLK2 were
found in prior signatures [16, 57] and the only gene found
shared between relapse and risk signatures in this study
was AC069228.1. The poor overlap in this study was not
unexpected as the discovery samples for risk and relapse
information were quite disjointed and not always con-
sistent: for instance only 25% of the high risk samples
were labelled for relapse and 28% of these did not relapse.
Conversely, 51% of non-relapse patients were labelled as
HR. Therefore risk and relapse classifiers were trained to
recognize quite different phenotypes.

As in the risk model, both reference-based and
reference-free signatures had excellent cross-validation
performance on the discovery set (AUC of 0.84 and
0.93 respectively, Fig. 5e). However this should again
be considered as an overly optimistic estimation due to
the experimental design. Indeed, performances of both
relapse signatures on the ICGC-PRAD and Stelloo valida-
tion sets were much lower (AUC 0.51 to 0.66), bordering
randomness and confirming overfitting of the trained
signatures. Substituting the logistic Regression classifier
by Random Forest, or Boosted Logistic Regression did
not improve performance of either model (Table S3).
The reference-based model performed slightly better over
ICGC-PRAD, and the reference-free model was slightly
better over the Stelloo dataset (Fig. 5e). Furthermore,
several genes and contigs in the discovery signatures
had inconsistent expression variations in the validation
datasets (Fig. 5c and d, Additional file 3). Overall two
genes from the reference-based signature (ALB and CTD-
2228K2.7) and 5 contigs from the reference-free signa-
ture (KLK2, AC069228.1, PDLIM5, RTN4, ctg_1) changed
logFC sign between the discovery and either validation
cohort. This problem, which was not observed in risk
models, underlines the poor replicability of the relapse
signatures, whether or not reference-free.

Low replicability of the relapse model may be caused
in part by weaknesses in validation datasets: the ICGC
dataset had only 7 samples labelled for relapse (Fig. 5a)
and the Stello dataset had very low coverage (Fig. 5a)
which caused considerable loss when computing con-
tig expression. Only three of the 14 signature contigs
(AC069228.1, KLK2 and KLK3) could be quantified in the
Stelloo dataset (Fig. 5b and c). Yet, we note that in spite
of this loss the reference-free model still outperformed
the reference-based model on this set (AUC of 0.62 vs.
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0.59, Fig. 5e). Other limitations of the relapse model are
addressed in the discussion.

Discussion

Properties of reference-free signatures

We evaluated here a method for building transcrip-
tome classifiers that are totally reference-free, i.e. that
do not require prior knowledge of genes or genome.
The major interest of this approach lies in its abil-
ity to discover and incorporate in models previously
unknown RNA biomarkers. Multiple examples exist of
such disease-specific RNAs produced by genome alter-
ations or deficient RNA processing and we hypothetized
their inclusion in predictive models would be beneficial
[18]. Applying a reference-free strategy to PCa outcome
prediction, we obtained signatures made of short RNA
contigs (median size 33 to 45 nt). These contigs are
not full transcript models as can be produced by usual
de novo assembly procedures. Instead, they often match
SNPs or splice variants thus describing specific genetic
or transcriptional events enriched in a patient group.
Our strategy thus identifies RNA variations independently
instead of lumping them into a full transcript model. Yet,
the mapped genes were highly relevant to PCa etiology
and included known cancer drivers LDLRAD4, GMNN,
COL1A1, CD38, PTPRN2, GTSE1 and CAMK2N1 in the
risk signature and KLK2, AR, KLK3, SPDEF in the relapse
signature. Furthermore the risk signature comprised con-
tigs matching two potential novel IncRNAs, located within
LDLRAD4 and immediately downstream of EFNA2.

To our knowledge the only other software using a
reference-free approach for inferring predictive signatures
is Gecko [21]. Gecko uses machine learning (genetic algo-
rithm) directly on the k-mer count matrix while we first
reduce the matrix by grouping k-mers into contigs, before
classification and machine learning. This enabled us to
produce a signature composed of sequences larger than k,
hence easier to interpret and quantify in an independent
dataset.

Transferring a reference-free model to a new dataset is
challenging. This requires that important features, such as
SNPs, are precisely evaluated in the independent dataset.
To this aim, we transferred signatures between datasets
based on exact k-mer matches. As k-mer contents vary
a lot between library preparation protocols, we expected
this strategy to show poor sensitivity when discovery and
validation datasets differed substantially. Indeed, trans-
fer of signatures trained on the TCGA-PRAD dataset
to the low coverage Stelloo dataset caused the loss of a
majority of contigs. However, in this particular case, the
remaining contigs were sufficient to maintain a prediction
performance at the same level as that of the gene-based
signature.
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Performances and generalization issues

To compare the reference-free and reference-based strate-
gies, a common evaluation framework was adopted. For
both risk and relapse predictions, performances of the
reference-free classifiers were on a par with that of
reference-based classifiers. However while risk signatures
showed satisfying reproducibility, relapse signatures per-
formed poorly in independent datasets.

A possible reason for the low performance of relapse
models is our grouping of patients in discrete relapse and
non relapse categories as done in other studies [9, 13, 15,
16]. This allowed us to address relapse prediction using
the same logistic regression method as for risk, however
this meant valuable patient information was left unused. A
more accurate prediction of relapse may be achieved using
survival models [10, 12, 14, 57, 58]. Adaptation of survival
analysis tools to large k-mer matrices require additional
developments that are certainly worth considering in the
future.

A more general concern with relapse analysis is related
to difficulty of predicting an outcome occurring several
years after a sample is biopsied and analyzed. There might
just be too little information available in the training data
to infer a reliable classifier, a problem that is independent
of the use of contigs or genes. However, both gene-level
and contig-level signatures were highly enriched in PCa
driver genes, which suggests information about tumor
progression was indeed present in the primary tumor
biopsy. The key problem with relapse analysis was more
likely related to sample heterogeneity. The diversity of
relapse mechanisms was not properly represented in a
training set of 100 patients as we used here. Patient
stratification have been proposed to deal with sample het-
erogeneity in omics data [59, 60]. Adaptations of these
solutions to large k-mers matrices will also be considered
in the future.

Conclusion

For prediction of PCa risk and relapse, reference-free clas-
sifiers did not significantly outperform reference-based
classifiers, however they incorporated a distinct set of
RNA sequences including unannotated RNAs and novel
variants of annotated RNAs. It is likely that with other
diseases and datasets, novel biomarkers will be identi-
fied with an even greater impact on prediction perfor-
mance. The reference-free approach will be of particular
interest in problems where unknown RNAs are expected
to play an important role, such as when studying rare
diseases, poorly studied tissue types or when analysing
dual human-pathogen RNA-seq samples. Our strategy
also permits to infer efficient transcriptome classifiers
in species lacking an accurate genome or transcriptome
reference.
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