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Abstract

Background: Lung adenocarcinoma (LUAD) is the most common pathology subtype of lung cancer. In recent years,
immunotherapy, targeted therapy and chemotherapeutics conferred a certain curative effects. However, the effect and
prognosis of LUAD patients are different, and the efficacy of existing LUAD risk prediction models is unsatisfactory.

Methods: The Cancer Genome Atlas (TCGA) LUAD dataset was downloaded. The differentially expressed immune
genes (DEIGs) were analyzed with edgeR and DESeq2. The prognostic DEIGs were identified by COX regression.
Protein-protein interaction (PPI) network was inferred by STRING using prognostic DEIGs with p value< 0.05. The
prognostic model based on DEIGs was established using Lasso regression. Immunohistochemistry was used to assess
the expression of FERMT2, FKBP3, SMAD9, GATA2, and ITIH4 in 30 cases of LUAD tissues.

Results: In total,1654 DEIGs were identified, of which 436 genes were prognostic. Gene functional enrichment analysis
indicated that the DEIGs were involved in inflammatory pathways. We constructed 4 models using DEIGs. Finally,
model 4, which was constructed using the 436 DEIGs performed the best in prognostic predictions, the receiver
operating characteristic curve (ROC) was 0.824 for 3 years, 0.838 for 5 years, 0.834 for 10 years. High levels of FERMT2,
FKBP3 and low levels of SMAD9, GATA2, ITIH4 expression are related to the poor overall survival in LUAD (p < 0.05). The
prognostic model based on DEIGs reflected infiltration by immune cells.

Conclusions: In our study, we built an optimal prognostic signature for LUAD using DEIGs and verified the expression
of selected genes in LUAD. Our result suggests immune signature can be harnessed to obtain prognostic insights.
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Introduction
Lung cancer is one of the most common diseases with
the highest morbidity and mortality, in which the lung
adenocarcinoma accounts for 40% of all cases. In recent
years, the morbidity and mortality of lung adenocarcin-
oma have gradually increased [1]. Chemotherapy, radio-
therapy and targeted therapy are the most common

therapeutic methods for advanced lung adenocarcinoma.
Although multiple therapeutics have been used in
LUAD, the overall effective rate is unsatisfactory.
Increasing evidence suggested that tumor microenvir-

onment (TME) which is composed of tumor cells,
immune cells, stromal cells, inflammatory mediators and
extracellular matrix [2], taking part in the tumor pro-
gression and drug resistance [3, 4]. Among them, im-
mune cells and inflammatory mediators have been
proved to be valuable for the prognostic of LUAD [5].
Much attention has been paid on the immune micro-
environment of LUAD.
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Current studies showed that immunology and immu-
nogenomics were closely tied to the development of
LUAD [6, 7]. Immunotherapy is expected to replace the
traditional treatment based on a number of clinical stud-
ies. In recent years, the emergence of immune check-
point inhibitors has enabled a dramatic progress in
cancer treatment [8, 9]. How to select the patients who
really benefit from immunotherapy has become an ur-
gent problem to be solved. It is important to identify
biomarkers that can predict disease prognosis and
identify the patients who have the greatest curative
effect. S-PD-L1 and T-PD-1 were verified as the inde-
pendent prognostic factors for non small-cell lung
cancer (NSCLC) patients by Paulsen [10]. Their combin-
ation added significant prognostic impact within each
pathologic stage. Several studies suggested that tumor
mutational burden (TMB) [11, 12], mismatch repair
(MMR) [13, 14] are new biomarkers for prediction of
response to PD-L1 treatment. However, cause of the
heterogeneity, accurate theranostic biomarkers are still
lacking. The exploration of biomarkers in the immune
microenvironment remains largely unknown. In this
study, we combined multiple datasets from TCGA
LUAD to develop and validate a prognosis prediction
model for LUAD. Meanwhile, an optimal prognostic
model with the identified DEIGs via lasso regression was
established by us. Our aim is to give a more in-depth
view of the prognostic potential of DEIGs in clinical and
provides a foundation for future, in-depth immune-
related work of LUAD.

Materials and methods
All methods were carried out in accordance with rele-
vant guidelines and regulations.

Data preprocessing
TCGA LUAD dataset legacy-archive (hg19) was down-
loaded from NCI’s Genomic Data Commons (GDC)
(https://portal.gdc.cancer.gov) using R package ‘TCGA
biolinks’ [15], and only “Primary solid Tumor” and
“Solid Tissue Normal” samples were included. Further-
more, the immune-related genes were derived from
InnateDB (https://www.innatedb.com) [16]. While the
estimated infiltration abundance of immune cells of
LUAD samples were obtained by TIMER (https://
cistrome.shinyapps.io/timer/) [17].TIMER is a resource
providing pre-calculated levels of six tumor-infiltrating
immune subsets for 10,897 tumors from 32 cancer
types.

Identification of prognostic DEIGs
Differentially expressed RNAs were detected using
DESeq2 [18] and edgeR [19]. RNAs with ‘|log2 (fold
change) | > 1’, ‘p value < 0.05’ and ‘fdr < 0.3’ in both

methods were considered to be differentially expressed.
COX regression was employed to identify prognostic
DEIGs.

Annotation of prognostic DEIGs
The R package ‘ClusterProfiler’ [20] was employed for
pathway enrichment analysis with DEIGs. Functional
enrichment analyses, via the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [21], were conducted to explore potential
molecular mechanisms of the differentially expressed
prognostic DEIGs.

PPI network construction and hub-genes identification
PPI network was inferred by STRING using the prog-
nostic differentially expressed immune genes with p
value< 0.05 in cox test [22]. Hub genes were identified
by cytoscape.

Modeling via lasso regression
We used glmnet package to fit regularized Cox models.
The function cv.glmnet was used to compute K-fold
cross-validation (CV) for the Cox model with parameters
‘ family=“cox”, nfolds=10’. The optimal λ value and a
cross validated error plot were shown as below. The left
vertical line indicated where the CV-error curve hits its
minimum. And the right vertical line showed the most
regularized model with CV-error within 1 standard devi-
ation of the minimum. We then extracted the lambda.-
min for model construction.
The whole TCGA dataset was divided into 70% of

training samples and 30% of test samples. The prediction
model was built on the most frequent gene set with
effective coefficients in the lasso regression using R
package ‘glmnet’ [23] for 1000 iterations on the training
dataset. The risk score was defined as the sum of the
normalized expression of genes multiplied by their coef-
ficients in the gene set. ROC was used to evaluate the
cutoff of risk scores as a predicting factor for the survival
of LUAD patients at 5 years prior to death. After divid-
ing the patient into two groups according to the risk
score, ‘Survminer’ was employed for survival analysis for
both training and testing data. The pearson correlation
coefficients of risk score and immune cells/immune cells
markers were calculated by the R package ‘ggpubr’.

Immunohistochemistry
This study recruited 30 patients of LUAD getting sur-
gery at Tumor Hospital of Shaanxi province between
January 2014 and December 2015 whom had no prior
chemotherapy or radiotherapy. Antibodies included a
rabbit polyclonal anti-FERMT2 antibody at a dilution of
1:50, anti- FKBP3 antibody at a dilution of 1:50, (all from
Proteintech Group, China), anti-SMAD9 antibody at a
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dilution of 1:100, anti-GATA2 antibody at a dilution of
1:100, anti-ITIH4 antibody at a dilution of 1:50 (all from
Beijing Biosynthesis Biotechnology, China). PBS was
used to displace the primary antibody as the negative
control. The histological diagnosis was performed by 3
independent, experienced pathologists for all the cases.
The Immunohistochemistry (IHC) was performed ac-
cording to our previous study [24]. Five micrometer-
thick sections were cut from the human lung adenocar-
cinoma tissue and fixed in 10% buffered formalin
overnight and paraffin-embedded. The slides were
deparaffinized and rehydrated in graded alcohols,
followed by antigen retrieval in a microwave oven. Slides
were blocked with 10% normal goat serum for 20 min at
37 °C to reduce nonspecific binding. The slides were in-
cubated overnight at 4 °C [25]. After being washed,
Horseradish peroxidase (HRP) conjugated goat anti-
rabbit IgG was used as secondary antibody, and then
visualized with 3,3′-diaminobenzidine (DAB) solution.
Finally, hematoxylin was used to counterstain the sec-
tion. The percentage of positive cells was classified into
5 score ranges: < 10% (0),10 to 25% (1), 25 to 50% (2), 50
to 75% (3), and > 75% (4). The intensity of staining was
divided into 4 groups: no staining (0), light brown (1),
brown (2), and dark brown (3). The staining positivity
was determined using immunoreactivity score (IRS)
which is the product of intensity score and quantity
score. An overall score of > 6 as strong positive, > 3 as
weak positive, and ≤ 3 was defined as negative.

Results
Identification of prognostic DEIGs
The immune-related genes were downloaded from Inna-
teDB. The differentially expressed gene analysis was
performed by edgeR and DESeq2, and only DEIGs de-
tected by both methods were included. Four hundred
thirty-six genes were identified with p value <= 0.05 in
cox tests by the R package ‘survival’ (Table S1).

PPI network and hub genes
To gain insights into the core pathways exerted by those
DEIGs, we constructed PPI network and identified core
modules within the network. PPI analysis demonstrated
that FANCI, MAD2L1, ECT2, PLK4, PCNA, BUB1B,
RACGAP1, PRC1, CDK1, TACC3, MCM7, EXO1,
TPX2, BUB1, ANLN, ESPL1, KPNA2, AURKB, FEN1,
NUSAP1, CCNB2, HMMR, CKAP2, INCENP, MKI67,
BIRC5, HELLS, ZWILCH, TOP2A, ERCC6L and INCE
NP were the hub genes (Figure S1).

Characteristics of prognostic DEIGs
As expected, the inflammatory pathways were indicated
as the most frequently implicated by gene functional
enrichment analysis. Regulation of leukocyte activation,
extracellular matrix and cell adhesion molecule binding
were the most frequent GO terms (Fig. 1a). The cyto-
kine−cytokine receptor interaction was the top term
enriched by differentially expressed prognostic DEIGs
(Fig. 1b). We also found that the missense is the most

Fig. 1 Gene functional enrichment of differentially expressed immune-related genes (aTop10 enriched KEGG gene sets; b GO analyses of the
prognostic DEGs in the categories of biological processes (BP), cellular components (CC), and molecular functions (MF))
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common type of mutations by examining genetic alter-
ations of these genes (Figure S2).

Prognostic modeling, identification of an optimal
prognostic signature using immune related genes
The prediction model was built on the most frequent
gene set with effective coefficients in the lasso regres-
sion. Model 1, Model 2, Model 3 and Model 4 were re-
spectively constructed using the top 100, 159, 200 and
436 DEIGs. We found that model 4 which was corre-
lated with tumor burden, tumor stage and metastasis,
performed best in prognostic predictions. The optimized

model consists of the following genes: CAMP, CCT6A,
CDH17, EFNB2, FKBP3, GATA2, ITIH4, SMAD9,
P2RX1, PFKP, PKP2, PTGFRN, PTPRH, CCL20, SSR4,
KLF10, UPK1B, SLC7A5, FKBP6, FERMT2, FLRT1,
DDIT4, LY6K, NLRP2, HAPLN2, CCNL2, EMR3,
COL27A1, TSLP, SFXN1, WFIKKN2, PCSK9, IZUMO1.
The list of coefficients for those genes are shown in
Supplementary Information (Table S2, Figure S3). The
ROC curve was 0.824 for 3 years, 0.838 for 5 years, 0.834
for 10 years, indicating the prognostic model based on
DEIGs has definite potential in survival monitoring
(Figs. 2 and 3, S4). Univariate Cox regression analysis

Fig. 2 ROC curve validation of prognostic value of the prognostic index of each model (a Modle-1, Input gene list: top100 sorted immune-
related genes by p value; b Modle-2, Input gene list: top159 sorted immune-related genes by p value; c Modle-3, Input gene list: top200 sorted
immune-related genes by p value; d Modle-4, Input gene list: top436sorted immune-related genes by p value)
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Fig. 3 Identification of an immune signature predicting prognosis risk of patients in LUAD using model 4 (a survival analysis of the training
dataset; b survival analysis in the testing data; c The heatmaps distinct gene expression profiles of the cases belonging to the high and low risk
score groups)
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suggested that the prognostic signature, age, tumor
stage, pathologic stage and metastasis status are all asso-
ciated with prognosis (Table 1). The prognostic model
based on DEIGs was identified as an independent pre-
dictor by using multivariate cox regression analysis after
the adjustment of other parameters (Fig. 4).

Correlation between prognostic signature and immune
infiltration
We analyzed the relationship between model predicted
risk score and immune cell infiltration to see if the
DEIGs accurately reflected the status of tumor immune
microenvironment. The risk score of our model is in-
versely related to the abundances of infiltrated immune
cells as well as classical markers for immune cells, in-
cluding CD8+ T cell, CD4+ T cell, B cell and dendritic
cell (Fig. 5, S5, S6, S7 and S8).

The relationship between the expression of FERMT2,
FKBP3, SMAD9, GATA2, IHIH4 and the overall survival of
LUAD
In order to verify the clinical value of the model, we fi-
nally examined the expression of FERMT2, FKBP3,
SMAD9, GATA2 and ITIH4 in 30 lung adenocarcinoma
tissues by immunohistochemistry, considering the avail-
ability of antibodies. 86.67% (26/30) of LUAD patients
tissue samples had positive expression of FERMT2,
83.33% (25/30) of FKBP3, 26.67% (8/30) of SMAD9,
23.33% (7/30) of GATA2 and 20.00% (6/30) of ITIH4
(Fig. 6). Based on the result of IHC of FERMT2, FKBP3,
SMAD9, GATA2 and ITIH4, we divided the patients
into 2 groups (negative group and positive group); the
characteristics of each group are shown in Table 2.We
found that the positive expression of FERMT2, FKBP3,
SMAD9, GATA2 and ITIH4 had a correlation with the
TNM stage, cellular differentiation and the lymph node
metastasis (p < 0.05). No significant correlation was
found with the age and sex (p > 0.05). We found that
83.33 and 91.67% of LUAD patients tissues in stage I-II

(15/18) and stage III-IV (11/12) had positive expression
of FERMT2(P < 0.05). 83.33% of LUAD patients tissues
in stage I-II (15/18) and stage III-IV (10/12) had positive
expression of FKBP3 (P > 0.05). Meanwhile, the positive
rate of SMAD9, GATA2 and ITIH4 were 27.78% (5/18),
16.67% (3/18) and 1.11% (2/18) in stage I-II and
25.00%(3/12),33.33%(4/12) and 33.33% (4/12) in stage
III-IV(P < 0. 05). These were consistent with the results
of our survival analysis: high levels of FERMT2, FKBP3
and low levels of SMAD9, ITIH4, GATA2 expression
are associated with poor overall survival in LUAD.
Then Kaplan–Meier was performed to determine the

effect of the immune related genes on prognosis of
LUAD patients. Univariate Cox regression analysis
demonstrated that the expression of FERMT2(HR =
5.084, 95% CI, 2.569 ~ 8.215), FKBP3(HR = 3.186, 95%
CI, 2.279 ~ 7.945), SMAD9(HR = 0.791, 95%CI = 0.769 ~
0.913), GATA2 (HR = 0.801, 95%CI = 0.744 ~ 0.952) and
ITIH4 (HR = 0.776, 95%CI = 0.695 ~ 0.889) were signifi-
cantly associated with overall survival (OS) (Fig. 7). Of note,
The detailed coefficients of these five genes are
0.242851(FERMT2), 0.168033(FKBP3), − 0.00976(SMAD9),
− 0.04737(GATA2) and − 0.0019 (ITIH4). The signs of
those coefficients are consistent with the roles of the ex-
pression of those genes as revealed by survival analysis.

Discussion
Adenocarcinoma is the most common pathological type
of lung cancer with highly invasive and fatal. Most pa-
tients’ overall survival is less than 5 years whom were di-
agnosed at advanced stage [26]. Existing treatments
extend the survival of part of patients with lung adeno-
carcinoma, but the overall curative effect is not so good,
especially in the advanced cases [27, 28]. The shortage of
effective prognostic biomarkers to guide therapy is one
of the reasons for the poor prognosis [29]. Therefore,
there is a need to construct an efficient prognostic
model to develop individualized treatment plans for pa-
tients and improve the prognosis of LUAD.
Current studies have found that the development of

cancer are not only dependent on tumor cell characteris-
tics but are also affected by the interaction with infil-
trated immunocytes [30, 31]. The tumors with higher
immune cells and mediators proportion were proved to
be more effective to the immune treatment [32]. There
is mounting evidence supporting that the immunoge-
nomics and immune microenvironment play an import-
ant role in cancer [33, 34]. As an example, at the levels
of DNA, RNA and the epigenome, Rosenthal et al. has
observed the signs of immunologic sculpting, immu-
noediting, and immune escape [35]. These studies
provide the clues for our research toward DEIGs. In
our study, the DEIGs were identified by the

Table 1 Univariate cox regression analysis

HR 95%CI P value

Riskscore 4.6 (3.5–6.1) 4.5e-28

TMB 0.97 (0.9–1) 0.46

T 1.5 (1.3–1.8) 7.8e-06

M 2.2 (1.3–3.7) 0.0047

N 1.7 (1.4–2) 1.9e-09

Age 1 (0.99–1) 0.48

Stage 1.7 (1.5–1.9) 4.9e-13

Smoke 0.92 (0.67–1.3) 0.59

Gender 1.1 (0.79–1.4) 0.68
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bioinformatics analysis with TCGA datasets, we found
that the inflammatory pathway was an inseparable as-
pect of tumor development. Similar results were
found in other studies [36–38].
Four prediction models were built with lasso regres-

sion using distinct lists of immune related genes. Model
4 which contains 33 prognosis DEIGs performed best in
prognostic predictions, and correlated with tumor bur-
den, tumor stage and metastasis. Among those

prognosis-specific immune related genes, 14(e.g.,
CCT6A, EFNB2, FKBP3, FERMT2, SMAD9, GATA2,
PFKP, PKP2, PTPRH, CCL20, SLC7A5, DDIT4, LY6K,
ITIH4) have been demonstrated to be participate in the
the pathogenesis of cancer or reported to be significant
predictors of survival [39–46]. This implies that our ana-
lysis has certain theoretic value. The remaining genes
which have not been reported could serve as new poten-
tial biomarkers of LUAD.

Fig. 4 Multivariate cox regression analysis
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On one hand, the coef of FERMT2 and FKBP3 were
highest, and the expression of FERMT2, FKBP3,
SMAD9, GATA2 and ITIH4 in the tissues of LUAD pa-
tients and their correlation with patient survival have
not been studied. On the other hand, considering the
availability of antibodies, we finally examined the expres-
sion of FERMT2, FKBP3, SMAD9, GATA2 and ITIH4
in 30 LUAD tissues by immunohistochemistry. Previous
studies showed that FERMT2 highly expressed in NSCL
C, esophageal squamous cancer, breast cancer, cholan-
giocarcinoma and pancreatic cancer, and can affect the
migration ability of tumor cells and disease progression
[47–49]. Guo et al. found the expression of FERMT2 is
closely correlated with the tumor clinical stage of lung
cancer [50]. Our findings concordant with these results.
It is hypothesized that FERMT2 may have effects on
tumor immunity through interactions with integrin-like
protein. A large number of studies have proved that
HDACs are involved in regulating the innate and adap-
tive immune processes of the body [51]. FKBP3 which is
a member of FK506-binding proteins, could promote
proliferation of lung cancer cells through regulating
Sp1/HDAC2/p27 [52], we assumed that its immunoreg-
ulation effects could be related to HDAC2 [53].

Meanwhile, there is plenty of evidence that SMAD9,
ITIH4 and GATA2 have close connection with the initi-
ation, progression and prognosis of various malignancies
including lung cancer [54–57]. SMAD9 is located on
chromosome 13q13.3 and encodes a protein that is a
member of the SMAD family, which is a crucial pathway
for the TGF-β transcription factor family [58]. It was
found that SMAD9 may be regulated by methylation,
phosphorylation and dephosphorylation in the occur-
rence and development of lung cancer [59]. Previous
studies suggested that GATA2 is important for survival
and growth of NSCLC cells with mutations in KRAS and
other oncogenes on the RTK/RAS pathway. The deletion
of GATA2 reduces survival of KRAS mutant NSCLC
cells significantly inhibit the development of NSCLC
[60]. In addition, recent study reported that GATA2 is
sufficient to drive PD-L1 and PD-L2 expression and is
necessary for PD-L2 expression. It was reported that cy-
tokines, such as IL-6, TNF-α, IL-10 and lipopolysacchar-
ide (LPS) influence the expression of ITIH4. ITIH4, as
an inflammation biomarker may participate in immune
regulation through JAK/STAT [61].
In our study, we also revealed that the expression of FERM

T2, FKBP3, SMAD9, ITIH4 and GATA2 are independent

Fig. 5 Relationships between the risk score and estimated infiltration abundances of immune cells
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prognostic factors, furthermore, high levels of FERMT2,
FKBP3 and low levels of SMAD9, ITIH4, GATA2 expression
are associated with poor overall survival in LUAD.
Combined with the TCGA database analysis and lit-

erature reports in this study, we speculated that the ex-
pression of these genes that influence tumor prognosis
are significantly correlated with multiple cytokine path-
ways and immunity correlation reaction.
As we know, the tumor immune microenvironment was

composed of various infiltrating immune cells including T
cells, B cells, natural killer cells, dendritic cells, myeloid-
derived suppressor cells, neutrophils, and macrophages
[62, 63]. Lots of studies have demonstrated the relation-
ship between the tumor-infiltrating immune cells and
tumor growth, metastasis or angiogenesis of lung cancer

[64–66]. These reports are in line with our results. We
found that the risk score of our model was inversely re-
lated to the infiltration of various immune cells, as well as
the markers of B cell, CD4+ T cell, CD8+ T cell and den-
dritic cell. These results indicated that the high-risk pa-
tients’ infiltration levels of immune cells might be lower,
suggesting that the abnormal expression of immune genes
can lead to the disorder of tumor immune microenviron-
ment, and then participate in the occurrence, develop-
ment, invasion and metastasis of LUAD.

Conclusions
In this study, we constructed 4 models to predict
the prognosis of patients with LUAD, and proposed
an optimal prognostic model, our preliminary

Fig. 6 Immunohistochemical staining of FERMT2, FKBP3, SMAD9, GATA2 and IHITH4 protein in LUAD tissues (magnification, × 200). A1:weak
expression of FERMT2;A2:moderate expression of FERMT2;A3:strong expression of FERMT2; B1:weak expression of FKBP3; B2:moderate expression
of FKBP3;B3:strong expression of FKBP3;C1:weak expression of GATA2;C2:moderate expression of GATA2; C3:strong expression of GATA2;D1weak
expression of IHITH4;D2:moderate expression of IHITH4;D3:strong expression of IHITH4; E1:weak expression of SMAD9;E2:moderate expression of
SMAD9;E3:strong expression of SMAD9
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results hint at the correlation between immune re-
lated genes and the prognosis of LUAD. However,
the further research about the mechanisms of the
DEIGs modulate the progression of LUAD is
needed.

Supplementary Information
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