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Discovery of breast cancer risk genes and
establishment of a prediction model based
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Abstract

Background: Multiple common variants identified by genome-wide association studies have shown limited
evidence of the risk of breast cancer in Chinese individuals. In this study, we aimed to uncover the relationship
between estrogen levels and the genetic polymorphism of estrogen metabolism-related enzymes in breast cancer
(BC) and establish a risk prediction model composed of estrogen-metabolizing enzyme genes and GWAS-identified
breast cancer-related genes based on a polygenic risk score.

Methods: Unrelated BC patients and healthy subjects were recruited for analysis of estrogen levels and single
nucleotide polymorphisms (SNPs) in genes encoding estrogen metabolism-related enzymes. The polygenic risk
score (PRS) was used to explore the combined effect of multiple genes, which was calculated using a Bayesian
approach. An independent sample t-test was used to evaluate the differences between PRS scores of BC and
healthy subjects. The discriminatory accuracy of the models was compared using the area under the receiver
operating characteristic (ROC) curve.

Results: The estrogen homeostasis profile was disturbed in BC patients, with parent estrogens (E1, E2) and
carcinogenic catechol estrogens (2/4-OHE1, 2-OHE2, 4-OHE2) significantly accumulating in the serum of BC patients.
We then established a PRS model to evaluate the role of SNPs in multiple genes. PRS model 1 (M1) was established
from SNPs in 6 GWAS-identified high risk genes. On the basis of M1, we added SNPs from 7 estrogen metabolism
enzyme genes to establish PRS model 2 (M2). The independent sample t-test results showed that there was no
difference between BC and healthy subjects in M1 (P = 0.17); however, there was a significant difference between
BC and healthy subjects in M2 (P = 4.9*10− 5). The ROC curve results showed that the accuracy of M2 (AUC =
62.18%) in breast cancer risk identification was better than that of M1 (AUC = 54.56%).
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Conclusion: Estrogen and related metabolic enzyme gene polymorphisms are closely related to BC. The model
constructed by adding estrogen metabolic enzyme gene SNPs has a good predictive ability for breast cancer risk,
and the accuracy is greatly improved compared with that of the PRS model that only includes GWAS-identified
gene SNPs.

Keywords: Breast cancer, Risk prediction, Estrogens, Estrogen-metabolizing enzyme, Gene polymorphism, Polygenic
risk score

Background
Breast cancer is the most common malignant disease
among women worldwide, accounting for 24% of new
cancer cases and 15% of cancer deaths in 2018, and inci-
dent cases are expected to increase by more than 46% by
2040, according to the GLOBOCAN Cancer Tomorrow
prediction tool, which will seriously endanger women’s
lives and health [1]. At present, people’s understanding
of breast cancer is deepening substantially, and new
treatment strategies for tumors, including breast cancer,
are continually emerging [2, 3]. With continuous
improvements in diagnosis and treatment methods, the
survival rate of breast cancer patients has been greatly
improved. Early prediction, early detection, and early
treatment of high-risk groups are the key issues that
urgently need to be solved in the clinic.
The occurrence and development of breast cancer are

closely related to genetic and environmental factors. In
1989, Gail proposed the breast cancer risk prediction
model, which included factors such as age at evaluation,
age at menarche, age at first live birth, race, number of
breasts, and family history of breast cancer [4, 5]. Some
subsequent prediction models also involved BRCA1/2,
estrogen replacement therapy, mammography screening
times, and genetic polymorphisms. Rare high-risk muta-
tions, particularly in the BRCA1 and BRCA2 genes, ex-
plain less than 20% of the twofold familial relative risk
(FRR) and account for a small proportion of breast can-
cer cases in the general population. Low-frequency vari-
ants conferring intermediate risk, such as those in
CHEK2, ATM, and PALB2, explain 2 to 5% of the FRR
[6]. Genome-wide association studies (GWASs) have led
to the discovery of multiple common, low-risk variants
(single nucleotide polymorphisms [SNPs]) associated
with breast cancer risk [7]. Recently, it was found that
genetic risk factors can account for 31% of breast cancer
risk evaluations [8], which indicates that breast cancer is
a multifactorial disease and that genetic factors are im-
portant etiological factors involved in the occurrence
and development of breast cancer. At present, an in-
creasing number of researchers are inclined to develop a
comprehensive genetic risk scoring method to evaluate
the polygenic effects of single nucleotide polymorphisms
(SNPs) based on GWASs [9–11]. Some well-known

studies, such as Mavaddat et al., used 77 GWAS-selected
SNPs to construct a PRS for BC. Compared with middle
quintile polygenic scores, the risk scores of the highest
1% were increased threefold [9].
GWASs also have their own limitations. First, a major

limitation of genome-wide approaches is the need to
adopt a high level of significance to account for multiple
tests. Second, GWASs explain only a modest fraction of
the missing heritability [12]. Estrogen is an important
risk factor for breast cancer. With long-term exposure,
super physiological concentrations of estrogen can bind
to estrogen receptors, mediate the overexpression of
various growth factors, and promote the growth and
proliferation of cells, and various metabolites of estrogen
can form adducts with DNA, induce genetic mutations
and produce direct genotoxicity [13]. Thus, the abnor-
mal accumulation of estrogen and its toxic metabolites
in breast tissue is an important risk factor for breast can-
cer development. Estrogen homeostasis is regulated by
estrogen-related metabolic enzymes. Endogenous estro-
gens are metabolized to be 2-, 4- and 16α-hydroxy estro-
gens, which are catalyzed by the phase I metabolizing
enzymes cytochrome P450 CYP1A1, CYP1B1 and
CYP3A4, respectively [14–16]. Hydroxyestrogens are de-
toxified by conjugation reactions catalyzed by phase II
metabolizing enzymes such as COMT, UGTs and
SULTs. Thus, the expression level of estrogen and its
toxic metabolites can be considered to be a comprehen-
sive reflection of the role of these estrogen metabolic en-
zymes to a certain extent. Polymorphisms in genes
encoding these estrogen-related metabolic enzymes are
reported to be closely related to differences in enzyme
activities and alter the levels of DNA-damaging species
to influence the individual’s susceptibility to breast can-
cer [14, 17, 18]. Genetic epidemiological studies have
suggested that there is a correlation between polymor-
phisms in estrogen metabolism genes and breast cancer
risk; however, these results are not consistent [18–20].
This is an important reason for the inconsistency of exist-
ing research results that studied the correlation between
gene polymorphisms of estrogen metabolic enzymes and
breast cancer in isolation. Currently, breast cancer risk
gene prediction models have not taken estrogen metabolic
enzyme genes into consideration; therefore, further
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optimization is needed from the perspective of overall
estrogen metabolism levels.
Based on the above analysis, our research aims to

reveal the form of estrogen homeostasis disorders in
breast cancer and explore the association between
metabolic enzyme gene polymorphisms and breast
cancer occurrence from the overall level of estrogen
metabolism. Furthermore, we developed a risk score
comprising GWAS-selected SNPs and estrogen meta-
bolic enzyme gene SNPs to optimize the breast
cancer risk prediction model.

Methods
Chemicals
The standards and other chemical reagents were
described in our previously published study [21].

Clinical sample collection
Serum samples were collected during the follicular
and luteal phases of 64 premenopausal women
(mean age: 45.5 ± 5.04 years) first diagnosed with BC
and 49 matched healthy women (mean age: 43.7 ±
8.80 years) to detect the level of estrogens. Blood
samples were also collected from 140 premenopausal
women (mean age: 43.3 ± 6.24 years) first diagnosed
with BC and 140 matched healthy women (mean
age: 40.2 ± 3.52 years) to extract DNA and analyze
SNP genotypes. All samples and related data were
obtained from the Affiliated Hospital of Xuzhou
Medical University, Xuzhou, China, from June 2017
to May 2019. Patients with BC were enrolled from
the Department of Nail Surgery, whereas healthy
subjects were enrolled from the physical examination
center. Blood samples were collected before any
therapy.
The enrollment criteria were as follows: no history of

smoking; BMI ranging from 19 to 26; and no history of
chemotherapy, radiotherapy, or estrogen-related endo-
crine therapy during blood sample collection. The charac-
teristics of the patients at baseline can be seen in Table 1.
This protocol was approved by the Ethics Committee of
the Affiliated Hospital of Xuzhou Medical University.
Written informed consent was obtained from each subject
before the study.

Quantification of estrogens using the LC-MS/MS method
The LC-MS/MS method was performed according to
our previously published method [21].

Genotyping analysis
DNA was extracted from peripheral whole blood with a
Tiangen DNA extraction kit (Biotech, Beijing, China).
The main metabolic enzymes CYP19A1, CYP1A1,
CYP1B1, HSD17B1, COMT, UGTs, and SULTs are
involved in the regulation of estrogen metabolism. In
this study, according to a previous study and pharmaco-
genomic database, 1 gene locus that is more common or
affects the function and activity of metabolic enzymes
was screened from each metabolic enzyme. At the same
time, we used GWAS-identified breast cancer-related
SNPs according to a previous study [22]. All selected
SNPs were potentially functional variants, with minor al-
lelic frequencies (MAFs) of more than 10%. The allelic
discrimination of the following SNPs was performed by
SNaPshot assay (Applied Biosystems Inc., Waltham,
MA, USA): estrogen metabolic enzyme gene SNPs in-
cluding CYP19A1 (rs700519), CYP1A1 (rs1048943),
CYP1A1 (rs4646903), CYP1B1 (rs1056827), CYP1B1
(rs1056836), COMT (rs4680), HSD17B1 (rs605059),
SULT1A1 (rs1042028), and UGT2B7 (rs7439366) and
the GWAS-identified high-risk breast cancer gene SNPs
including ZNF365 (rs10822013), FGFR2 (rs2981579),
RAD51B (rs3784099), TOX3 (rs3803662), MAP3K1
(rs889312), and HCN1 (rs981782). The allelic discrimin-
ation analysis was performed by Genesky Biotechnolo-
gies Inc., Shanghai, China (http://www.geneskybiotech.
com). Detailed information about the basic SNP infor-
mation can be found in Table 2. To assure genotyping
quality, detailed quality control (QC) procedures, includ-
ing the duplicate identification of genotypes and a
Hardy–Weinberg equilibrium (HWE) test, were carried
out. All 15 SNPs were successfully genotyped in 280
subjects with call rates of 100%.

Statistical analysis
SPSS 22.0 software was used to perform statistical ana-
lysis. We used the mean ± SEM to express all estrogen
data and Student’s t-test to test differences between the
two groups. Multivariate analysis was performed using
SIMCA 14.0 software.

Table 1 The characteristics of the patients at baseline

Patients Healthy volunteers

Age (detecting the level of estrogens) 45.5 ± 5.04 years 43.7 ± 8.80

Age (Analyzing SNP genotype) 47.61 ± 3.55 years 40.2 ± 3.52 years

BMI 24.43 ± 3.42 23.09 ± 2.51

BMI Body mass index
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HWE was examined among controls using a
goodness-of-fit chi-squared test. The odds ratio (OR)
and 95% confidence interval (CI) were calculated using a
logistic regression model to assess the association be-
tween the SNPs and the risk of breast cancer.
We established a PRS to estimate the multigene con-

tribution of estrogen-metabolic enzyme gene loci for
breast cancer susceptibility, which was created using
marginally significant SNPs associated with breast cancer
risk based on the per-allele models. For SNPs in strong
linkage disequilibrium located on the same gene or
chromosome, we chose the one variant with the lowest
P value in the per-allele model as a candidate. The basic
formula is as follows:

PRS ¼ β1x1 þ β2x2 þ :… βkxk þ βnxn

where βk is the per-allele OR for breast cancer associ-
ated with the minor allele for SNP k, and xk is the num-
ber of alleles for the same SNP (0, 1, or 2).

Result
Disorders of estrogen expression in breast cancer
patients
Using LC-MS/MS quantitative analysis, we measured
the expression levels of 11 serum estrogens and metabo-
lites in 64 patients with premenopausal BC (mean age:
45.5 ± 5.04 years) and 49 matched controls (mean age:
43.7 ± 8.80 years). We found that there was no significant
difference in age between the BC group and NC group.
As shown in Fig. 1a, compared with the NC group, the
BC group exhibited significantly increased estrogen

levels, especially E1, E2, 2-OHE2, 4-OHE2 (P < 0.01) and
2/4-OHE1 (P < 0.05). OPLS-DA was constructed as an
unsupervised statistical method to identify potential
estrogen homeostatic changes between the two groups.
As shown in Fig. 1b, the metabolic profile of the NC
group was clearly separated from that of the BC group,
indicating that there was a considerable metabolite dif-
ference between the BC group and NC group. We also
found that the potential biomarkers with VIP values
higher than 1.0 in the OPLS-DA model were E1, E2, 2-
OHE2, 4-OHE2 and 2/4-OHE1 in the serum of BC pa-
tients (Fig. 1c). Overall, these results supported the view
that the disorder of estrogen homeostasis was closely re-
lated to increased risk of BC.

Cohort description and Hardy–Weinberg equilibrium
testing
We enrolled 140 patients first diagnosed with breast
cancer and 140 corresponding healthy women in this
study. The mean age at diagnosis (for patients with can-
cer) was 43.3 ± 6.24 years, and the mean age of healthy
women at enrollment was 40.2 ± 3.52 years. Blood sam-
ples were collected from these participants to extract
DNA and analyze the SNP genotype. We found that
there was no significant difference in age between the
BC group and NC group. The chi-square test was used
to test the HWE value, and P > 0.05 explained that the
samples at enrollment were representative of the group.
As seen in Table 2, all polymorphisms were found to be
in genetic equilibrium, which indicated that the observed
genotype frequencies of the case and control groups
were constant and representative.

Table 2 The basic information and HWE testing of each estrogens metabolizing enzymes gene polymorphisms

Gene rs number Chromosome position Domain Alleles Amino acid change Metabolism estrogens Test for HWE (p)

CYP19A1 rs700519 Chr15: 51507968 exon7 G/A Arg264Cys E1(E2) 0.392

CYP1A1 rs1048943 Chr15: 75012985 exon7 T/C Ile462Val 2-OHE1(E2) 0.241

CYP1A1 rs4646903 Chr15: 75011641 3′-flanking A/G / 2-OHE1(E2) 1.000

CYP1B1 rs1056827 Chr2: 38302177 exon2 C/A Ala119Ser 4-OHE1(E2) 0.602

CYP1B1 rs1056836 Chr2: 38298203 exon3 G/C Val432Leu 4-OHE1(E2) 0.101

HSD17B1 rs605059 Chr17: 40706906 exon6 G/A Gly313Ser E2 0.106

COMT rs4680 Chr22: 19951271 exon4 G/A Val158Met 2 (4)-MeOE1(2) 1.000

SULT1A1 rs1042028 Chr16: 28617514 exon7 C/T Arg213His Sulfated metabolites 0.144

UGT2B7 rs7439366 Chr4: 69964338 exon2 C/T Tyr268His Glucuronide metabolites 0.086

ZNF365 rs10822013 Chr10: 64251977 intron4 C/T / / 0.478

FGFR2 rs2981579 Chr10: 123337335 intron2 G/A / / 0.665

CASC16 rs3803662 Chr16: 52586341 exon4 G/A / / 0.360

RAD51B rs3784099 Chr14: 68749927 intron7 G/A / / 0.456

MAP3K1 rs889312 Chr5: 56031884 / A/C / / 0.776

HCN1 rs981782 Chr5: 45285616 intron6 A/C / / 0.818

HWE Hardy–Weinberg equilibrium
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Association of estrogen-metabolizing enzyme genetic
variants with breast cancer risk
Table 3 shows univariate analysis and ORs related to each
metabolizing enzyme SNP. The polymorphic genotypes of
CYP1A1 rs1048943 (P = 0.007), CYP1B1 rs1056827 (P =
0.004), CYP1B1 rs1056836 (P = 0.002) and SULT1A1
rs1042028 (P = 0.029) showed significant differences in
distribution. Compared with the wild-type genotypes of
CYP1A1 rs1048943 (TT) or SULT1A1 rs1042028 (CC),
the heterozygous variant genotypes of CYP1A1 rs1048943
(TC) or SULT1A1 rs1042028 (CT) showed significantly
higher risk in breast cancer, with ORs of 2.37 (95% confi-
dence interval [CI] = 1.27–4.43) and 2.21 (95% CI = 1.20–
4.05), respectively. Compared with the wild-type geno-
types of CYP1B1 rs1056827 (CC), the homozygous variant
genotypes (AA) showed a significantly higher risk in
breast cancer, yielding an OR of 6.90 (95% CI = 1.50–

31.76). Compared with the wild-type genotypes of
CYP1B1 rs1056836 (GG), the heterozygous variant geno-
types significantly reduced the risk of breast cancer, yield-
ing an OR of 0.37 (95% CI = 0.21–0.67). In addition, no
associations with breast cancer risk were observed for the
estrogen metabolic enzyme gene SNPs CYP19A1
(rs700519), HSD17B1 (rs605059), COMT (rs4680), or
UGT2B7 (rs7439366) or the GWAS-selected SNPs
ZNF365 (rs10822013), FGFR2 (rs2981579), RAD51B
(rs3784099), TOX3 (rs3803662), MAP3K1 (rs889312), or
HCN1 (rs981782).

PRS breast cancer risk prediction model establishment
and evaluation
The binary logistic regression method was used to
calculate the OR of the per-allele model, and the
detailed results are shown in Table 4. We used SNPs

Fig. 1 Imbalance of estrogen homeostasis in the serum of BC patients. a The concentrations of estrogens, including estrone (E1), estradiol (E2),
16α-hydroxy estrone (16α-OHE1), 2-methoxy estrone (2-MeOE1), 4-methoxy estrone (4-MeOE1), 2-methoxy estradiol (2-MeOE2), 4-methoxy
estradiol (4-MeOE2), 2/4-hydroxy estrone (2/4-OHE1), 2-hydroxy estradiol (2-OHE2), and 4-hydroxy estradiol (4-OHE2), in serum samples from NC
(49 healthy women, mean age of 43.7 ± 8.80 years) and BC (64 breast cancer patients, mean age of 45.5 ± 5.04 years) were detected by LC-MS/MS.
*, p < 0.05, **, p < 0.01 vs control group. The results are shown as mean ± SEM values to depict the levels of estrogens in serum of BC patients
and healthy women. b Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) score plots of serum (R2X(cum) = 0.335,
R2Y(cum) = 0.264, Q2(cum) = 0.003) estrogen metabolites in NC group (green) and BC group (blue) generated by SIMCA 14.0 software. c Variable
importance in the projection (VIP) values calculated from OPLS-DA models for estrogen metabolic profile data

Zhao et al. BMC Cancer          (2021) 21:194 Page 5 of 11



Table 3 Genotype frequencies and ORs associated with each gene polymorphism in breast cancer cases and controls

Gene and SNPs Genotype Control n (%) Case n (%) P-value# OR (95% CI) P –value*

CYP19A1 (rs700519) GG 97 (69.3%) 92 (65.7%) 0.813 1 –

GA 37 (26.4%) 41 (29.3%) 1.17 (0.69–1.98) 0.564

AA 6 (4.3%) 7 (5.0%) 1.23 (0.40–3.80) 0.719

CYP1A1 (rs1048943) TT 100 (71.4%) 80 (57.1%) 0.007 1 –

TC 31 (22.2%) 55 (39.3%) 2.37 (1.27–4.43) 0.003

CC 9 (6.4%) 5 (3.6%) 1.10 (0.30–4.00) 0.528

CYP1A1 (rs4649903) AA 68 (48.6%) 58 (41.4%) 0.300 1 –

AG 56 (40.0%) 58 (41.4%) 1.21 (0.73–2.02) 0.453

GG 16 (11.4%) 24 (17.1%) 1.76 (0.85–3.62) 0.126

CYP1B1 (rs1056827) CC 92 (65.7%) 80 (57.1%) 0.004 1 –

CA 48 (34.3%) 50 35.7%) 1.20 (0.73–1.97) 0.802

AA 0 (0.0%) 10 (7.2%) 6.90 (1.50–31.76) 0.001

CYP1B1 (rs1056836) GG 90 (64.3%) 116 (82.9%) 0.002 1 –

GC 44 (31.4%) 21 (15.0%) 0.37 (0.21–0.67) 0.001

CC 6 (4.3%) 3 (2.1%) 0.39 (0.10–1.59) 0.189

HSD17B1 (rs605059) GG 47 (33.6%) 46 (32.9%) 0.713 1 –

GA 73 (52.1%) 69 (49.3%) 0.97 (0.57–1.63) 0.896

AA 20 (14.3%) 25 (17.8%) 1.28 (0.63–2.61) 0.502

COMT (rs4680) GG 91 (65.0%) 80 (57.1%) 0.402 1 –

GA 42 (30.0%) 51 (36.4%) 1.38 (0.83–2.29) 0.212

AA 7 (5.0%) 9 (6.4%) 1.46 (0.52–4.11) 0.470

SULT1A1 (rs1042028) CC 117 (83.6%) 98 (70.0%) 0.029 1 –

CT 20 (14.3%) 37 (26.4%) 2.21 (1.20–4.05) 0.010

TT 3 (2.1%) 5 (3.6%) 1.99 (0.46–8.54) 0.354

UGT2B7 (rs7439366) CC 69 (49.30%) 64 (45.7%) 0.824 1 –

CT 60 (42.80%) 65 (46.4%) 1.17 (0.72–1.90) 0.533

TT 11 (7.90%) 11 (7.90%) 1.08 (0.44–2.66) 0.870

ZNF365 (rs10822013) CC 36 (25.71%) 43 (30.71%) 0.640 1 –

CT 75 (53.57%) 71 (50.71%) 0.79 (0.46–1.37) 0.407

TT 29 (20.71%) 26 (18.57%) 0.75 (0.38–1.50) 0.415

FGFR2 (rs2981579) GG 47 (33.57%) 40 (28.57%) 0.418 1 –

GA 70 (50.00%) 69 (49.29%) 1.16 (0.68–1.98) 0.592

AA 23 (16.43%) 31 (22.14%) 1.58 (0.80–3.14) 0.188

RAD51B (rs3784099) GG 111 (79.29%) 109 (77.86%) 0.848 1 –

GA 25 (17.86%) 28 (20.00%) 1.14 (0.63–2.08) 0.668

AA 4 (2.86%) 3 (2.14%) 0.76 (0.17–3.49) 0.728

TOX3 (rs3803662) GG 15 (10.71%) 18 (12.86%) 0.664 1 –

GA 61 (43.57%) 54 (38.57%) 0.83 (0.51–1.38) 0.475

AA 64 (45.71%) 68 (48.57%) 1.13 (0.53–2.43) 0.755

MAP3K1 (rs889312) CC 42 (30.00%) 35 (25.00%) 0.460 1 –

CA 67 (47.86%) 66 (47.14%) 1.18 (0.67–2.08) 0.560

AA 31 (22.14%) 39 (27.86%) 1.51 (0.79–2.89) 0.215
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in the GWAS-identified high breast risk genes,
namely, ZNF365 (rs10822013), FGFR2 (rs2981579),
RAD51B (rs3784099), TOX3 (rs3803662), MAP3K1
(rs889312), and HCN1 (rs981782), to create PRS
model 1 (M1) in the per-allele model. On the basis
of M1, we also added estrogen metabolic enzyme
gene SNPs, namely, CYP1A1 (rs1048943), CYP1B1
(rs1056827), SULT1A1 (rs1042028), CYP19A1
(rs700519), COMT (rs4680), HSD17B1 (rs605059),
and UGT2B7 (rs7439366), to create PRS model 2
(M2). For SNPs in strong linkage disequilibrium
located on the same gene or chromosome, we chose
the one variant (rs1048943) with the lowest P value
in CYP1A1, and rs1056836 is a protective gene loci,
we chose the risk variant rs10526827 in CYP1B1.
The PRS scores are expressed as the means ± SEM
to find the difference between the two groups.
Under M1 and M2, the PRS data of the two groups
obeyed a normal distribution; therefore, we used an
independent sample t-test to evaluate the difference
between the two groups of data. As shown in Table 5
and Fig. 2, the PRS scores in the NC group were

significantly lower than those in the BC group in
M2 (P = 4.9*10− 5); however, there was no significant
difference between NC and BC in M1 (P = 0.17).
Finally, the ROC curve was calculated to evaluate
how the risk models discriminated between women
with and without breast cancer (Fig. 3). The ROC
curve estimated for M2 was 62.18% (95% confidence
interval [CI] = 0.56–0.69), whereas that for M1 was
only 54.56% (95% confidence interval [CI] = 0.48–
0.61). Therefore, the accuracy of M2 in breast cancer
risk identification was better than that of M1.

Discussion
Breast cancer (BC) is an estrogen-dependent tumor, and
the occurrence of BC is closely related to the imbalance
of estrogen homeostasis. The accumulation of estrogen
and its toxic metabolites in vivo is a significant risk fac-
tor for BC development. Different types of estrogens
have different physiological and pathological activities
and can play an important role in the process of cancer
development through different mechanisms. Parent
estrogens are postulated to promote tumorigenesis
directly through the stimulation of the estrogen receptor
(ER) [23]. The endogenous conversion of estrogen to
genotoxic metabolites has been reported as an alterna-
tive, potentially ER-independent mechanism for
estrogen-dependent breast tumorigenesis [24]. Catechol
estrogens can form adducts with DNA, causing gene
mutations and producing direct genotoxicity [13]. Meth-
oxyestrogens, including 2-methoxyestradiol, have been
shown to inhibit carcinogenesis by suppressing cell pro-
liferation and estrogen oxidation due to their effects on
microtubule stabilization [25].
In this study, the LC-MS/MS quantitative analysis

method was used to determine the serum estrogens in
the BC group and NC group. Comparing the levels of
serum estrogens in the follicular phase and luteal phase
of premenopausal breast cancer patients with healthy
female volunteers, we found that the levels of parent and
hydroxylated estrogen in the BC group were significantly
higher than those in the NC group, which indicated that
estrogen metabolism disorder is closely related to the
occurrence and development of breast cancer. Using
OPLS-DA, we also noticed that E1, E2, 4-OHE2, 2-

Table 3 Genotype frequencies and ORs associated with each gene polymorphism in breast cancer cases and controls (Continued)

Gene and SNPs Genotype Control n (%) Case n (%) P-value# OR (95% CI) P –value*

HCN1 (rs981782) CC 16 (11.43%) 25 (17.86%) 0.475 1 –

CA 69 (49.29%) 63 (45.00%) 0.92 (0.55–1.53) 0.737

AA 55 (39.29%) 52 (37.14%) 1.45 (0.68–3.08) 0.336

Values are presented as number (%) or OR (95% CI)
OR Odds radio, CI Confidence interval, SNP Single nuclear polymorphism
#Comparison of polymorphic genotype distributions in patients with breast cancer and healthy case-controls
*Comparison of wild-type genotypes with heterozygous genotypes and homozygous variant genotypes respectively

Table 4 Univariate analysis and ORs associated with Per-allele
model

Gene
name

SNP rs
number

Allele
Risk/
reference

ORa (95% CI) P
value*Per-allele

CYP19A1 rs700519 G/A 1.15 (0.75–1.77) 0.515

CYP1A1 rs1048943 C/T 1.43 (0.94–2.16) 0.094

CYP1B1 rs1056827 A/C 1.61 (1.07–2.43) 0.023*

HSD17B1 rs605059 G/A 1.09 (0.78–1.53) 0.607

COMT rs4680 G/A 1.31 (0.88–1.90) 0.188

SULT1A1 rs1042028 T/C 1.97 (1.18–3.29) 0.009*

UGT2B7 rs7439366 T/C 1.09 (0.76–1.56) 0.645

ZNF365 rs10822013 C/T 0.87 (0.62–1.21) 0.396

FGFR2 rs2981579 G/A 1.24 (0.89–1.74) 0.202

RAD51B rs3784099 G/A 1.03 (0.62–1.72) 0.896

TOX3 rs3803662 G/A 0.98 (0.69–1.40) 0.928

MAP3K1 rs889312 C/A 1.00 (0.72–1.39) 1.000

HCN1 rs981782 G/A 1.20 (0.85–1.69) 0.297

*Comparison in Per-allele model
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OHE2, and 2/4-OHE1 are BC-related disease markers.
This result was consistent with the epidemiologic char-
acteristics of patients with BC [26].
A large number of studies have confirmed that breast

cancer exhibits heritability [27, 28]. However, high-risk
genes such as BRCA1 and BRCA2 account for less than
15% of breast cancer cases [29, 30], which suggests that
numerous breast cancer-related risk genes have not been
discovered, and these gene polymorphisms influence
susceptibility to breast cancer.
Estrogen is an important risk factor for breast cancer.

However, no research has incorporated estrogens into
the breast cancer risk prediction model. A possible
major reason is that there is no clinically effective estro-
gen evaluation method because the steady state of estro-
gen is affected by various physiological and pathological
factors, such as menstrual cycle fluctuations. However,
estrogen homeostasis is regulated by various metabolic
enzymes. Therefore, we believe that estrogen metabolic
enzyme gene polymorphisms are closely related to estro-
gen homeostasis and the occurrence and development of
breast cancer. In this study, univariate logistic regression
analysis showed that CYP1A1, CYP1B1, and SULT1A1
gene polymorphisms are closely related to the occur-
rence of breast cancer. It is worth noting that these gene
polymorphisms are also associated with other estrogen-
dependent tumors such as endometrial cancer and ovar-
ian cancer. Hiroshi Hirata et al. found that the SULT1A1

rs9282861 (rs1042028) was related to endometrial can-
cer [31]. A meta-analysis was performed to research the
association between CYP1A1 gene polymorphism and
ovarian cancer risk, which showed that the Ile/Val
(rs1048943) was significantly associated with ovarian
cancer, with homozygous carriers (Val/Val vs. Ile/Ile:
OR = 2.64; 95% CI: 1.63–4.28) being risk factors for
ovarian cancer development [32].
CYP1A1 and CYP1B1 are the major phase I drug

metabolism enzymes that catalyze the hydroxylation of
estrogens. The increasing polarity of estrogens may be
related to the risk of breast cancer [14]. Our experiments
also verified this view. In this study, we found that the
variant allele of CYP1B1 rs1086836 was involved in
reducing the risk of breast cancer and that the exact
mechanism of the protection of this variant allele was
not clear [33]. We assumed that the heterozygous model
of CYP1B1 rs1086836 (GC vs. GG: OR = 0.37, 95% CI:
0.21–0.67, P = 0.001) may result in decreased function of
the CYP1B1 enzyme, reducing the production of 4-
hydroxy estrogen and even catechol estrogen-3,4-quin-
one (CE-3,4-Q) to form adducts with DNA. At the same
time, this study also proved that the variant alleles of
CYP1A1 rs1048943 (TC vs. TT: OR = 2.37, 95% CI:
1.27–4.43, P = 0.003) and CYP1B1 rs1056827 (AA vs.
CC: OR = 6.90, 95% CI: 1.50–31.76, P = 0.001) are closely
related to the risk of breast cancer, which is consistent
with most research [34, 35]. The possible reason is that
the mutations promote the activity of CYP1A1 and
CYP1B1 enzymes to increase the production of
hydroxylated estrogens or promote the individual’s
susceptibility to estrogen.
SULTs catalyze the sulfate conjugation of a broad

range of substrates and play an important role in the
metabolism of endogenous and exogenous compounds,
including thyroid and steroid hormones, neurotransmit-
ters, drugs and procarcinogens [36]. SULTs catalyze the
sulfated metabolism of estrogen (E1 and E2) and its
metabolites (such as catechol estrogen) and eliminate
the activity of estrogen by forming sulfate compounds:
sulfated estrogens that cannot combine with estrogen
receptors (ERs). At the same time, it promotes the rapid
excretion of sulfated estrogen from the cells, which can
reduce the level of estrogen exposure in the circulation
and target tissues. SULT1A1 rs1042028 is the most
widely studied gene polymorphism. Its allelic variation

Table 5 PRS value results and difference analysis of two gene combinations (M1 and M2)

Model Group PRS (Mean ± SEM) Data distribution Testing method P value

M1 NC group 4.52 ± 0.15 Normal distribution T-test 0.17

BC group 4.80 ± 0.14

M2 NC group 8.38 ± 0.21 Normal distribution T-test 4.90*10−5

BC group 9.63 ± 0.22

Fig. 2 The Polygenic Risk Scores (PRS) of the NC group and BC
group in the two risk gene models: PRS model 1 (M1) and PRS
model 2 (M2). The results are shown as mean ± SEM values to
depict the distribution difference between NC and BC. *, p < 0.05,
**, p < 0.01 vs control group
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can reduce enzyme activity and thermal stability, result-
ing in increased estrogen accumulation and increased
individual susceptibility to breast cancer [37]. In this
study, the heterozygous model of rs1042028 had a 2.21-
fold higher risk of breast cancer than the wild-type
model. This is consistent with the results of multiple
studies [38, 39].
Previous studies investigated associations between the

PRS of multiple SNPs and breast cancer risk to study
the cumulative effect of genes on the disease. Mavaddat
et al. constructed a 77-SNP PRS for breast cancer and
found a threefold increase in risk when comparing the
polygenic scores of the highest 1% and the middle quin-
tiles [9]. Harlid et al. investigated the combined effect of
low-penetrant SNPs on breast cancer, which included
ten SNPs, and found that the cumulative effect was
strongly correlated with breast cancer [40]. However,
most of this research on PRS comes from the Caucasian
population sample database. Although Sueta, Chan and
others have also conducted similar studies in Asian pop-
ulations, the evidence is still limited [7, 41]. To date,
there have been no relevant reports on the establishment
of a breast cancer PRS risk prediction model from the
perspective of estrogen-metabolizing enzymes. Thus, a
multigene PRS model including estrogen metabolic
enzyme gene SNPs and GWAS-selected SNPs was con-
structed in this study to evaluate the comprehensive
effects of multiple estrogen metabolic enzyme SNPs on
breast cancer.

In this study, we evaluated possible relationships
between the increased breast cancer risk estrogen meta-
bolic enzyme gene SNPs and GWAS-identified gene
SNPs in an Asian population. Among them, the GWAS-
identified SNPs were not associated with breast cancer
risk in the per-allele model or dominant model in our
study. This finding was inconsistent with a previous
study [23]. Further, we established PRS model 1, includ-
ing only GWAS-identified SNPs, and PRS model 2,
which included estrogen metabolic enzyme gene SNPs
on the basis of M1. By calculating the PRS score of each
individual under the M1 and M2 PRS models and per-
forming a t-test analysis on the PRS score of the BC and
NC groups, we found that the P-value (4.9*10− 5) of the
M2 PRS model was far less than that of M1 (0.17).
Moreover, the ROC curve (62.18%) of the M2 model
was better than that of the M1 model (54.56%). There-
fore, the model constructed by adding estrogen meta-
bolic enzyme gene SNPs had a good ability in breast
cancer risk prediction, and the accuracy was greatly
improved.
There are several limitations of this study that should

be noted. First, the sample size was relatively small. In
this study, only 140 premenopausal women first diag-
nosed with BC and 140 matched healthy women were
recruited based on our criteria; thus, we did not have
enough statistical power to detect the effect of the gen-
etic variants on some of the parameters. Second, because
funding was limited, it did not include comprehensive

Fig. 3 The receiver operating characteristic (ROC) curve in the two risk models. The purple line with an area under the ROC curve (AUC) of 50% is
the reference. The AUC of the upper red line, which showed the PRS model 2 (M2), is 62.18%. The green line with a ROC of 54.56% is
PRS model 1 (M1)
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metabolic enzymes and adequate breast cancer risk gene
loci. Due to these reasons, the AUC was small and the
model have not been tested. In the future, we will study
additional estrogen-metabolizing enzyme genes and
other breast cancer risk genes in our research. At the
same time, we will also include recognized breast cancer
risk factors such as age at evaluation, age at menarche,
age at first live birth, race, number of breasts, and family
history of breast cancer and construct a breast cancer
risk prediction model composed of phenotype and geno-
type to obtain a more valuable ROC value. In addition,
the sample size needs to be further expanded, and it is
better to include more data information of different
races.

Conclusion
Estrogens and related metabolic enzyme gene poly-
morphisms are closely related to BC. The model con-
structed by adding estrogen metabolic enzyme gene
SNPs has good predictive ability for breast cancer
risk, and the accuracy is greatly improved compared
with that of the PRS model that only includes
GWAS-identified gene SNPs.
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