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Abstract

Background:Meningiomas are common brain tumours that are usually defined by benign clinical course.
However, some meningiomas undergo a malignant transformation and recur within a short time period regardless
of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can
discriminate between benign and malignant meningioma courses.

Methods: We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour
specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered
with the AutoPipe algorithm.

Results:We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan
metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-
free survival was significantly longer in the glycine/serine cluster.

Conclusion:Our findings suggest that alterations in glycine/serine metabolism are associated with lower
proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases
proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations,
which may support histological classifications to predict the clinical outcome of patients with meningiomas.
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Background
Meningiomas are common brain tumours in adults; they
account for 13–26% of all intracranial tumours [1]. The
2016 World Health Organization (WHO) classification
divided meningiomas into three histological grades (I to
III) and described 16 histopathological subtypes [2].
These WHO grades have presented a significant correl-
ation with clinical outcomes in several recent studies.
The majority of meningiomas are benign tumours (90%)

that are mainly treated by surgery, followed by an inno-
cent clinical course [1]. Atypical meningiomas (WHO
grade II) reveal a worse clinical outcome due to higher
recurrence rates of up to 30–40% [2]. In addition, a
small subset of meningiomas (1–2.8%) is classified as an-
aplastic; they show a particularly aggressive clinical
course and a recurrence rate of nearly 100% [1].

A few benign meningiomas (WHO grade I) can trans-
form into an aggressive growth pattern and recur after a
short period of time. To address the variety of clinical
outcomes within the WHO grade I group, multiple re-
search groups have investigated the genetic landscape of
meningiomas and have shown region-specific genomic
alterations [3]. The authors have identified five genetic
subgroups based on transcriptional similarity and
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associated mutational patterns. Meningiomas most fre-
quently contained anNF2, SMARCB1 (Group1), TRAF7/
KLF4 (Group2), and PI3K (Group3) mutation, which
drive WNT pathway activation. In another group, there
was Hedgehog pathway activation detected by transcrip-
tional profiles and mainly based on mutations in genes
such asSMO [4]. The last subgroup comprised meningi-
omas that showed a distinct mutation in thePOLR2A
gene followed by dysregulated RNA synthesis [3, 5].
others suggested that malignant meningiomas have dif-
ferent DNA methylation patterns than other types of
meningiomas and that the differently methylated genes
could serve as diagnostic biomarkers for malignant
transformation [6]. The importance of TERT promoter
mutations and their potential use as biomarkers to iden-
tify meningiomas at risk of malignant transformation
was also reported [7].

Besides genomic alterations, tumour metabolism has
recently been described as a hallmark driver of malig-
nancy and tumour development. Different tumour en-
tities, including brain and other solid tumours, have
shown numerous metabolic alterations. A strong associ-
ation between altered tumourmetabolism and chromo-
somal instability has been reported [8]. These metabolic
alterations were detected independently of the WHO
grade [9, 10]. Serna et al. [11] showed that metabolic ag-
gressiveness is driven by alterations in the expression of
IGF1R (insulin-like growth factor 1 receptor), which is
involved in the regulation of glycolysis. Following the
hypothesis of altered glycolysis in meningiomas, re-
searchers have shown that different components of gly-
colysis are transformed, including phosphofructokinase
(PFK) and lactate dehydrogenase (LDH), both of which
were significantly increased in anaplastic meningioma
compared with other histological subtypes. In addition,
there were alterations in tryptophan metabolism, a
phenomenon that forced the immune-escape mechanism
to increase kynurenine pathway activity [12, 13]. Today,
increased opportunities in bioinformatics and metabolic
profiling have allowed detecting associations between
metabolic networks and clinical parameters to predict
metabolic patterns and associated clinical outcomes.
Our aim was to identify benign and potentially malig-
nantly transformed meningiomas within the defined
WHO grade I by metabolic profiling and computational
analysis.

Methods
Contact for reagent and resource sharing
Further information and requests for resources, raw
data, and reagents should be directed to and will be ful-
filled by DH Heiland (dieter.henrik.heiland@uniklinik-
freiburg.de). A full table of all materials is given in the
supplementary information.

Ethical approval
For this study, we included 43 patients who underwent
surgery at the Department of Neurosurgery of the
University Medical Center Freiburg. The local ethics
committee of the University of Freiburg approved
data evaluation, imaging procedures, and the experi-
mental design (protocols 100,020/09 and 5565/15).
The methods were carried out in accordance with the
approved guidelines. Written informed consent was
obtained from each patient. The studies were ap-
proved by an institutional review board.

Imaging, tissue collection, and histology
Tumour tissue was sampled from the meningioma core,
snap-frozen in liquid nitrogen immediately after resec-
tion, and processed for further metabolic analysis. Rep-
resentative tissue from all samples were fixed using 4%
phosphate-buffered formaldehyde and embedded in par-
affin following standard procedures. Hemotoxylin and
eosin (H&E) staining was performed on 4μm paraffin
sections using standard protocols. This staining con-
firmed the correct sampling.

Metabolite extraction and hydrogen nuclear magnetic
resonance (1H-NMR) analysis
Metabolites were extracted with 400μL ice-cold 80%
methanol and 400μL ice-cold water, homogenized with
a tissue grinder (VWR, Radnor, PA, USA), sonicated at
1 °C, then centrifuged at 15,000g for 20 min to remove
protein. Extracts were dried by lyophilization and re-
suspended in 650μL deuterated water as described by
Beckonert et al [14] Six-hundred microliters of the
suspension was transferred to NMR tubes for the
subsequent NMR procedure.1H-NMR spectra were
collected at the Institute of Physical Chemistry of the
University of Freiburg with a Bruker Avance III HDX
600-MHz NMR spectrometer (Bruker, Rheinstetten,
Germany), equipped with a PABBO BB/19F-1H/D Z-
GRD probe head. Each individual spectrum was recorded
with two dummy scans and 32 scans with 64 k points in
the time domain. The sweep width was set to 16.02 ppm
with an offset of 4.691 ppm. This resulted in an acquisition
time of 3.4 s for each scan and a dwell time of 52 micro-
seconds. The relaxation delay was set to 2 s for acquisi-
tion, and the water signal was suppressed by an excitation
sculpting scheme [15].

Postprocessing of metabolic data
To adjust the spectra from multiple batches, spectra
were manually aligned by setting the peak ofL-lactic acid
at 1.310 ppm. All acquisition and processing of the spec-
tra were performed with TopSpin 3.2 patch level 6. A
detailed description of the methods was given in a re-
cently published study by Heiland et al [16] All spectra
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were analyzed with the software package“batman,” an
R-software-based tool for metabolite detection in com-
plex spectra [17]. This tool fits a predefined list of me-
tabolites by a Bayesian approach. Hao et al. [17]
provided a detailed description of the batman algorithm.
Normalization of the spectra was performed by the
pseudo-counted quantile (pQ) normalization algorithm
integrated in the KODAMA package. Further processing
of metabolic data is described in the subsequent
subsections.

Cluster analysis
Normalized metabolic data were processed with AutoP-
ipe (https://github.com-/heilandd/AutoPipe), a software
package for automated unsupervised clustering. First,
the number of subgroups was computed by the Parti-
tioning Around Medoids (PAM) algorithm (Cluster
number k = 2–12). To identify the optimal number of
clusters, we calculated the mean silhouette width of each
cluster composition. Next, to identify the core samples
of each cluster, we removed samples with a negative sil-
houette width from further analysis. We then used either
the PAMR algorithm [18], a machine-learning-based
method, or a generalized linear model [19] to identify
characteristic up- or downregulated metabolites of each
subgroup.

Weighted correlation network analysis (WCNA)
WCNA is a robust tool for integrative network analysis
and has been used in recent studies [20–22]. It is based on
a scaled-topology-free-based network approach and uses
the topological overlapping measurement to identify cor-
responding modules. These modules were analyzed by
their eigengene correlation to each metabolite. The correl-
ation of the intramodular connectivity (kME) and metabo-
lites was used as input for a“Cluster of Clusters Analysis.”
This analysis integrates expression modules and metabo-
lites, which presents equal correlation values (kME and
metabolite intensity values). A detailed description of
WCNA is given in a previous publication [23].

Functional analysis
Metabolic data was processed by pathviewer, an R
package that includes Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway maps [24]. Expression
data (as described above) and normalized, log2-
transformed, and median-centered metabolic data
were integrated in the pathviewer algorithm. Enrich-
ment analysis of metabolic data was performed with
the DOSE package and the web-based tool MetaboA-
nalyst 3.0 (www.metaboanalyst.ca).

Survival analysis
Progression-free survival analysis was conducted using
Kaplan-Meier analysis, with the betweed-cluster differ-
ences analyzed using a log-rank test.

Results
Meningiomas revealed two distinct metabolic clusters
We started our investigation by purifying metabolites
from 43 meningiomas localized at different anatomical
regions, including the convexity in 12 cases (27.9%), the
falcine site in 6 cases (13.9%), the sphenoid ridge in 6
cases (13.9%), the frontobasal region in 9 cases (20.9%),
the petroclival region in 2 cases (4.6%), the spinal site in
3 cases (6.9%), and 5 cases at other regions. The histo-
pathological analysis showed 28 patients with WHO
grade I meningiomas (65.1%), 12 with WHO grade II
meningiomas (27.9%), and 3 patients with WHO grade
III meningiomas (6.9%). Two patients with a WHO
grade II meningioma and 3 patients with a WHO grade
III meningioma showed a tumour recurrence within 1
year. Twenty-four (55.9%) patients had a proliferation
index (MIB-1) below 5% and 19 (44.1%) patients had a
proliferation index (MIB-1) above 5%. A gross total re-
section (Simpson grade 1 + 2) was achieved in 37 pa-
tients and a subtotal resection (Simpson grade 3 + 4) was
achieved in 6 patients. A detailed overview of all param-
eters can be found in Table1.

Metabolites were analyzed using NMR and processed
by a comprehensive computational analysis (Fig.1). Rep-
resentative MRI and histological staining’s are illustrated
in Fig. 1b-c. We first conducted an unsupervised cluster
analysis of the top 100 most variable metabolites by
PAM clustering. The optimal number of clusters was de-
fined by maximal mean silhouette widths (Fig.2a, b).
The analysis revealed two distinct clusters. In the first
cluster, named Metabolic Cluster I, we found upregu-
lated glycine/serine metabolism with the major signature
metabolites glycine, serine, and arginine. Patients in this
cluster were exclusively histological grade I and showed
a significantly lower rate of edema (p < 0.05) and a low
proliferation rate (mean 1.2, interquartile range [IQR]
0.3,p < 0.05) compared to cluster II. The second cluster
(Metabolic Cluster II) was easily separable into two sub-
clusters by PAM clustering. One subcluster contained
patients with a medium proliferation rate of 2.1 (IQR
0.7) and increased edema compared with Cluster I (p <
0.05; Fig.2a, b). The pathway that separated the clusters
was choline metabolism. For the second subcluster, we
found increased tryptophan metabolism and also a
strong activation of the choline pathway. Furthermore,
the proliferation rate was massively increased (mean
11.7, IQR 4.3,p < 0.05), and there was edema in most of
the patients compared to patients in cluster I. We found
a high incidence of meningioma WHO grade II (n = 12)
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