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Abstract

Background: Apoptosis-related genes(Args)play an essential role in the occurrence and progression of
hepatocellular carcinoma(HCC). However, few studies have focused on the prognostic significance of Args in HCC.
In the study, we aim to explore an efficient prognostic model of Asian HCC patients based on the Args.

Methods: We downloaded mRNA expression profiles and corresponding clinical data of Asian HCC patients from
The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The Args were
collected from Deathbase, a database related to cell death, combined with the research results of
GeneCards、National Center for Biotechnology Information (NCBI) databases and a lot of literature. We used
Wilcoxon-test and univariate Cox analysis to screen the differential expressed genes (DEGs) and the prognostic
related genes (PRGs) of HCC. The intersection genes of DEGs and PGGs were seen as crucial Args of HCC. The
prognostic model of Asian HCC patients was constructed by least absolute shrinkage and selection operator (lasso)-
proportional hazards model (Cox) regression analysis. Kaplan-Meier curve, Principal Component Analysis (PCA)
analysis, t-distributed Stochastic Neighbor Embedding (t-SNE) analysis, risk score curve, receiver operating
characteristic (ROC) curve, and the HCC data of ICGC database and the data of Asian HCC patients of Kaplan-Meier
plotter database were used to verify the model.

Results: A total of 20 of 56 Args were differentially expressed between HCC and adjacent normal tissues (p < 0.05).
Univariate Cox regression analysis showed that 10 of 56 Args were associated with survival time and survival status
of HCC patients (p < 0.05). There are seven overlapping genes of these 20 and 10 genes, including BAK1, BAX,
BNIP3, CRADD, CSE1L, FAS, and SH3GLB1. Through Lasso-Cox analysis, an HCC prognostic model composed of
BAK1, BNIP3, CSE1L, and FAS was constructed. Kaplan-Meier curve, PCA, t-SNE analysis, risk score curve, ROC curve,
and secondary verification of ICGC database and Kaplan-Meier plotter database all support the reliability of the
model.

Conclusions: Lasso-Cox regression analysis identified a 4-gene prognostic model, which integrates clinical and
gene expression and has a good effect. The expression of Args is related to the prognosis of HCC patients, but the
specific mechanism remains to be further verified.
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Background
At present, liver cancer has become one of the com-
mon causes of malignancy-related death globally [1],
and its incidence is increasing year by year [2]. The
World Health Organization (WHO) predicts that
more than 1 million people will die of liver cancer by
2030 [3]. The incidence of liver cancer has remained
high in Asia, as well [4]. HCC, as the main histo-
logical subtype of liver cancer, accounts for 90% of
primary liver cancer. HCC is usually caused by vari-
ous risk factors, including hepatitis B virus, hepatitis
C virus, fatty liver, alcohol-related cirrhosis, smoking,
obesity, different dietary exposures, etc. [5, 6]. Be-
cause HCC is a highly heterogeneous disease [7, 8], it
is difficult to predict the prognosis. HCC is highly
prevalent in Asia, and it is challenging to predict
prognosis. Therefore, it is necessary to develop a use-
ful prognostic model for Asian HCC patients.

Apoptosis is a way of programmed cell death related
to the changes in cell morphology and structure [9].
Apoptosis mainly includes exogenous pathways caused
by death receptors on the cell surface and endogenous
apoptotic pathways caused by drugs, chemicals, endo-
plasmic reticulum stress, perforin, and granzyme [10].
Effector caspases activated by apoptosis signals will des-
troy the inhibitor of apoptosis, start the activity of
caspase-activated deoxyribonuclease (CAD), and then
destroy the structure of DNA, inhibit the activity of pro-
teins regulating cell structure, destroy cell structure,
transform cells into apoptotic bodies [11]. Apoptosis is
closely related to HCC, the defect of apoptosis-inducing
pathways will lead to the abnormal proliferation of
tumor cells, and the resistance of cells to apoptosis will
also increase the ability of tumor cells to evade immune
system surveillance [12]. Args are closely related to the
progression of HCC. Therefore, we intended to use the

Fig. 1 Flow chart of data collection and analysis
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data of Asian HCC patients in TCGA database to con-
struct a poly-genes prognostic model of Args and verify
it by the data of ICGC database and Kaplan-Meier plot-
ter database.
In the study, we downloaded the mRNA expression

profiles and corresponding clinical data of Asian HCC
patients from TCGA database. Japanese HCC patients’
data from ICGC and Asian HCC patients’ data from
Kaplan-Meier plotter database were used for valid-
ation. Through Wilcoxon-test, we found the Args
which were differentially expressed between HCC and
adjacent normal tissues. Univariate Cox regression
analysis showed some Args were associated with the
survival time and survival status of HCC patients. By
taking the intersection, we found that some Args
were not only differentially expressed but also corre-
lated with the prognosis of HCC. On this basis, we
used Lasso-Cox analysis to mine a HCC prognostic
model. Next, we used Kaplan-Meier curve, PCA, t-
SNE analysis, risk score curve, ROC curve, and the
HCC data from ICGC database and Kaplan-Meier
plotter database to verify the prognosis effect of the
model. The overall analysis flow was shown in Fig. 1.

Table 1 The Information of ARGs

Symbol Description Reference

ANXA1 Annexin A1 [11, 17]

APAF1 Apoptotic protease-activating factor 1 [18]

AVEN Cell death regulator Aven [19]

BAD Bcl2 antagonist of cell death [20]

BAK1 Bcl-2 homologous antagonist/killer [21]

BAX Apoptosis regulator BAX [22]

BCL2 Apoptosis regulator Bcl-2 [23, 24]

BCL2A1 Bcl-2-related protein A1 [25, 26]

BCL2L1 Apoptosis regulator Bcl-X [27]

BCL2L10 Apoptosis regulator Bcl-B [28]

BCL2L11 Bcl-2-like protein 11 [29]

BCL2L12 Bcl-2-like protein 12 [30]

BCL2L14 Bcl-2-like protein 14 [31]

BCL2L2 Bcl-2-Like Protein 2 [32]

BID BH3-interacting domain death agonist [33, 34]

BIK Bcl-2-interacting killer [35, 36]

BIRC2 Baculoviral IAP repeat-containing protein 2 [37, 38]

BIRC3 Baculoviral IAP repeat-containing protein 3 [38, 39]

BMF Bcl-2-modifying factor [40]

BNIP3 BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3

[41]

BNIP3L BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3-like

[42, 43]

CALR Calreticulin Precursor [44]

CASP10 Caspase-10 Precursor [45]

CASP3 Caspase-3 Precursor [46]

CASP6 Caspase-6 Precursor [47]

CASP7 Caspase-7 Precursor [48]

CASP8 Caspase-8 Precursor [49]

CASP9 Caspase-9 Precursor [50]

CFLAR CASP8 and FADD-like apoptosis regulator
Precursor

[51]

CRADD Death domain-containing protein CRADD [52, 53]

CSE1L Exportin-2 [54]

CYCS Cytochrome c [55]

DIABLO Diablo homolog, mitochondrial Precursor [56]

FADD Protein FADD [57, 58]

FAS Tumor necrosis factor receptor superfamily
member 6 Precursor

[59]

FASL Tumor necrosis factor ligand superfamily
member 6

[60, 61]

HRK Activator of apoptosis harakiri [62]

LRP1 Prolow-density lipoprotein receptor-related
protein 1 Precursor

[63]

MCL1 Induced myeloid leukemia cell differentiation
protein Mcl-1

[64]

MOAP1 Modulator of apoptosis 1 [65]

Table 1 The Information of ARGs (Continued)

Symbol Description Reference

NOXA Phorbol-12-myristate-13-acetate-induced protein
1

[66]

PHAP Acidic leucine-rich nuclear phosphoprotein 32
family member A

[67]

PUMA Bcl-2-binding component 3 [68]

RIPK1 Receptor-interacting serine/threonine-protein
kinase 1

[69]

SH3GLB1 Endophilin-B1 [70]

TNF Tumor necrosis factor Precursor [71]

TNFR
SF1A

Tumor necrosis factor receptor superfamily
member 1A Precursor

[72]

TNFR
SF1B

Tumor necrosis factor receptor superfamily
member 1B Precursor

[73]

TNFSF10 Tumor necrosis factor ligand superfamily
member 10

[74]

TP53 Cellular tumor antigen p53 [75]

TRADD Tumor necrosis factor receptor type 1-associated
DEATH domain protein

[76]

TNFR
SF10A

Tumor necrosis factor receptor superfamily
member 10A Precursor

[77]

TNFR
SF10B

Tumor necrosis factor receptor superfamily
member 10B Precursor

[77]

TNFR
SF10C

Tumor necrosis factor receptor superfamily
member 10C Precursor

[78]

TNFR
SF10D

Tumor necrosis factor receptor superfamily
member 10D Precursor

[78]

XIAP Baculoviral IAP repeat-containing protein 4 [79]
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Methods
Data preparation and processing
As of August 31, 2020, we downloaded the RNA-seq
data and corresponding clinical characteristics of 158
Asian HCC patients from TCGA database (https://
portal.gdc.cancer.gov/), including 6 normal paracancer-
ous samples and 160 tumor samples, and the RNA-seq
data and corresponding clinical information of 231 HCC
patients from ICGC database (https://dcc.icgc/). The
data of the 231 HCC patients downloaded from ICGC
database are mainly from Japan [13]. The data of 155

Asian HCC patients from Kaplan-Meier plotter database
(http://kmplot.com/analysis/) was selected as well [14].
To obtain the gene expression and clinical traits, we
used R package limma [15] to process and normalize the
data. We also downloaded Args from Deathbase dataset
(http://deathbase.org/) and referred to the research re-
sults of GeneCards database (https://www.genecards.
org), NCBI database (https://www.ncbi.nlm.nih.gov/),
literature.

Identification of prognostic apoptosis-related DEGs in the
TCGA dataset
The expression of Args was screened from the TCGA
expression matrix. The average value of repetitive genes
was taken; the abnormal values were deleted. Through
Wilcoxon-test, the genes with p < 0.05 were selected as
DEGs. We used Univariate Cox analysis to combine the
expression of Args with survival time and survival status
of HCC patients to screen out PRGs. The screening con-
dition was p < 0.05. The DEGs and PRGs were inter-
sected to select the Args, which were not only
differentially expressed between HCC tissues and adja-
cent normal tissues but also related to the prognosis of
HCC. The protein-protein interaction network was
drawn by STRING database (version11.0) (https://string-
db.org/) to clarify the interaction of the proteins, and the
expression correlation coefficient diagram was drawn by
R package igraph to show the expression relationship of
the genes. R package pheatmap was used to illustrate the
expression heatmap to show the expression of the inter-
sect ARGs. The correlation filtering threshold is 0.2. R
package survival was used to clarify the relationship be-
tween the genes and the prognosis of HCC patients. The
screening condition was p < 0.05, as well.

Table 2 Differentially expressed ARGs

Gene conMean treatMean logFC p.value

BAK1 3.6840 7.3115 0.9889 0.0049

BAX 11.4039 22.1529 0.9580 0.0029

BCL2 0.7565 0.6726 −0.1696 0.0416

BCL2L12 4.5640 9.7040 1.0883 0.0013

BNIP3 32.5056 24.7871 −0.3911 0.0283

BNIP3L 11.6700 7.6242 −0.6141 0.0033

CALR 253.8644 564.4069 1.1527 0.0002

CASP7 7.0616 4.9815 −0.5034 0.0037

CASP8 1.9536 2.8375 0.5385 0.0471

CASP9 4.3837 2.3624 −0.8919 0.0160

CFLAR 4.0543 3.2914 −0.3008 0.0178

CRADD 6.0676 3.7604 −0.6902 0.0036

CSE1L 11.4809 20.6950 0.8500 0.0010

FAS 6.2966 3.0988 −1.0229 0.0035

SH3GLB1 8.8173 7.2783 −0.2767 0.0135

TNFRSF1B 24.5535 12.4104 −0.9844 0.0049

PHAP 10.3958 13.9188 0.4210 0.0129

PUMA 1.6533 3.6201 1.1307 0.0034

TRAIL-R4 5.2293 3.1865 −0.7147 0.0156

FASL 0.4797 0.3434 −0.4824 0.0096

Table 3 HCC prognostic ARGs

Gene HR HR.95 L HR.95H p.value

AVEN 0.5495 0.3382 0.8928 0.0156

BAK1 2.4836 1.5969 3.8626 0.0001

BAX 1.7013 1.0807 2.6781 0.0217

BMF 1.4375 1.0879 1.8995 0.0107

BNIP3 0.6521 0.4665 0.9113 0.0123

CRADD 0.3687 0.2097 0.6483 0.0005

CSE1L 2.9130 1.8551 4.5741 <0.0001

FAS 0.5185 0.3474 0.7737 0.0013

SH3GLB1 2.3639 1.2372 4.5170 0.0092

NOXA 2.0811 1.3305 3.2553 0.0013
Fig. 2 Venn diagram showing the intersect genes of differential
genes (DEGs) and prognostic gens (PGGs)
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Construction an Args related prognostic model of Asian
HCC patients
The Lasso-penalized Cox regression analysis was ap-
plied to construct a prognostic model [16]. We used
R package glmnet and lasso algorithm to contract
variables, screen the genes that are positively related
to the prognosis of HCC, and delete the genes with
high correlation, to effectively avoid over-fitting of the
prognostic model. The risk score of patients was cal-
culated according to the expression of each gene and
its corresponding regression coefficient. The formula
was: Risk score = esum (expression of each gene * corresponding

coefficient). Next, the HCC patients of TCGA and ICGC
were divided into the high-risk and the low-risk
groups according to the median cut-off risk score of
the TCGA dataset.

Validation of the prognostic model
According to the gene expression of the prognostic
model, R package Stats and Rtsne were used for PCA
analysis and t-SNE analysis to reduce the dimension-
ality of data, to explore the distribution of the high-
risk and low-risk samples. R package survival and
survminer were used to draw the Kaplan-Meier curve
to show the overall survival (OS) of different groups.
We also illustrated the risk curves to show the rela-
tionship between OS and risk scores of patients in
two groups. Univariate and multivariate prognostic
analysis, ROC curve drawn by R package timeROC
were used to determine whether the model can be
regarded as a useful biomarker relating to the prog-
nosis of Asian HCC patients. To rule out accidental
error, we used the expression data of Japanese HCC
patients downloaded from ICGC database for second-
ary detection. We also used the data of 155 Asian
HCC patients of Kaplan-Meier plotter database to

draw the Kaplan-Meier curve to show the correlation
between the expression of BAK1, BNIP3, CSE1L, FAS
and overall survival (OS) to verify the reality of this
prognostic model further.

Correlation analysis with clinical traits
At first, we classified the clinical characteristics of
HCC patients. Next, the model gene expression and
risk score were compared with the clinical traits. T-
test was used to determine whether the gene expres-
sion and risk score were associated with the clinical
characteristics of HCC patients. The screening condi-
tion was p < 0.05. And the relationship between OS
and clinical traits (Stage, Gender, Age) were displayed
by the Kaplan-Meier curves.

Statistical analysis
Wilcoxon-test was used to screen DEGs. Kaplan-
Meier analysis was used to compare the differences in
OS among different groups. Cox regression analysis
of univariate and multivariate variables was performed
to determine the independent prognostic factors. All
statistical analyses were carried out with R software
(3.6.2). P < 0.05 is considered to be statistically signifi-
cant. All the data were calculated to the nearest ten-
thousandth.

Results
The results of data preparation and processing
A total of 158 Asian HCC patients from the TCGA-
LIHC dataset, 231 Japanese HCC patients from the
ICGC (LIRI-JP) dataset, and 155 Asian HCC patients
from Kaplan-Meier plotter database were selected. We
synthesized the data of Deathbase dataset, GeneCards
dataset, NCBI database, and related literature. A total of
56 Args were selected (Table 1).

Fig. 3 The analysis of 7 intersect ARGs. a The PPI network. b The expression correlation network. c The expression heatmap
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The results of the screening of prognostic apoptosis-
related DEGs
We found that a total of 20 Args were differentially
expressed between HCC tissues and adjacent normal
tissues (p < 0.05) (Table 2). Through univariate Cox
regression analysis, we found that a total of 10 Args
genes were related to the prognosis of HCC patients
(p < 0.05) (Table 3). The intersection of the DEGs and
PGRs was taken, seven apoptosis-related prognostic
DEGs were screened out (Fig. 2). There are BAK1,

BAX, BNIP3, CRADD, CSE1L, FAS, and SH3GLB1.
Using the confirmed protein interaction relationship
of String database [80], a PPI protein interaction net-
work was constructed (Fig. 3a). The results showed
that BAK1, BAX have the most edges in the network.
The R package igraph was used to draw the correl-
ation network according to the coefficient of the ex-
pression of the above gene. Figure 3b showed that
according to the expression, BAK1, BAX, and CRAD
D might be the crucial genes of the network. Figure

Fig. 4 Forest plot showing the results of the univariate Cox regression analysis between gene expression and OS (overall survival)

Fig. 5 The Construction of a 4-gene prognostic model in the TCGA dataset. a Lasso coefficient profiles of the expression of 7 genes. b Selection
of the penalty parameter (Lambda) in the Lasso model via 10-fold cross-validation
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3c showed that CSE1L, BAX, BAK1 were up-
expressed in the HCC tissues and BNIP3, CRADD,
FAS, SH3GLB1 down-expressed. Hazard ratio (HR) >
1 indicated that the gene was a high-risk gene related
to the prognosis of HCC. Figure 4 showed among the
7 intersect Args, BAK1, BAX, CSE1L, and SH3GLB1
were high-risk prognosis-related genes of HCC,
BNIP3, CRADD, FAS were low-risk prognosis-related
genes.

The results of the construction of the prognostic
signature
Lasso-Cox regression analysis was applied to establish
a prognostic model based on the expression of the 7
genes. According to the penalty parameter (Lambda)
in the model, we constructed a prognostic model of
HCC patients consisting of 4 genes (Fig. 5). These
genes are BAK1, BNIP3, CSE1L, and FAS (Table 4).
We then calculated the risk score based on the ex-
pression of the 4 genes in the TCGA dataset and cor-
responding coefficient (coef) (Risk score = e (the

expression of BAK1*0.4252 + the expression of BNIP3*-0.0237 + the

expression of CSE1L*0.6321 + the expression of FAS*-0.1360)) and
divided the patients into high- and low-risk groups
according to the median cutoff value of TCGA (risk
score < = 3.5614 was low-risk, > 3.5614 was high-risk).
The HCC samples of ICGC were also divided into
the high- and low-risk groups according to the same
median cut-off value.

The results of the validation of the 4-gene prognostic
model
We had classified the Asian HCC patients of TCGA
database into the high- and low-risk groups

according to the median cut-off value (Fig. 6a). Fig-
ure 6b showed that in HCC patients of TCGA, the
OS of high-risk patients was significantly lower than
that of low-risk patients, suggesting the probability
of premature death in high-risk patients was higher
than that in low-risk patients. What is more, there
are significant differences in gene expression. The
expression of BAK1, CSE1L in the high-risk group is
higher than that in the low-risk group, but BNIP3,
FAS was down-regulated in the high-risk group (Fig.
6c). We used PCA analysis and t-SNE analysis for
data dimensionality reduction to observe a significant
difference between the high- and low-risk groups.
The results (Fig. 7a, b) showed that high-risk and
low-risk groups of TCGA were a two-way distribu-
tion. Kaplan-Meier curve (Fig. 7c) showed that the
OS of high-risk patients was significantly lower than
that of patients with low risk at the same timing
(p < 0.001). ROC curves evaluated the predictive per-
formance of the risk score for OS, and the area
under the curve (AUC) reached 0.854 at 1 year,
0.809 at 2 years, and 0.785 at 3 years (Fig. 7d). The
AUC of the three timings were all higher than 0.700,
suggesting that the prognostic model can be
regarded as a qualified prognostic biomarker of
Asian HCC patients. Then we conducted univariate
and multivariate Cox regression analysis to deter-
mine whether the risk score model could be used as
an independent prognostic factor of OS. In univari-
ate Cox regression analysis, the risk score was sig-
nificantly associated with the OS of the TCGA HCC
patients(p < 0.001)(Fig. 8a). After adjusting for other
interfering factors, multivariate Cox regression ana-
lysis showed that the risk score was still an

Table 4 The information of the 4 genes used to construct the prognostic signature

Symbol Description Coef

BAK1 Bcl-2 homologous antagonist/killer 0.4252

BNIP3 BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 −0.0237

CSE1L Exportin-2 0.6321

FAS Tumor necrosis factor receptor superfamily member 6 Precursor −0.1360

Table 5 The clinical correlation analysis

Gene Age (<=60/> 60)
(p.value)

Gender (male/female)
(p.value)

Grade (G1–2/ G3–4)
(p.value)

Stage (Stage I-II/Stage III-IV)
(p.value)

BAK1 0.9288(0.3553) 1.6066(0.1146) −1.1404(0.2559) −2.1657(0.0343)

BNIP3 −1.8423(0.0683) −2.4848(0.0172) 0.0997(0.9207) 1.4734(0.1463)

CSE1L 1.3898(0.1675) 0.4319(0.6674) −1.9311(0.0554) −4.1353(0.0001)

FAS −1.7086(0.0904) −2.4645(0.0168) 1.7182(0.0879) 0.1881(0.8515)

riskScore 1.7350(0.0859) 1.6985(0.0956) −2.1455(0.0335) −3.5536(0.0008)
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independent predictor of OS (p < 0.001) (Fig. 8b). In
order to exclude the contingency, we used the Japa-
nese HCC samples from ICGC database for second-
ary detection. The HCC samples of the ICGC
dataset were also categorized into high- and low-risk
groups by the same median value (Fig. 9a). The re-
sult showed that most patients with ICGC were at
low-risk. Figure 9b showed that OS in the high-risk
group of ICGC was also lower than that in the low-
risk group. The expression levels of BAK1, CSE1L,
BNIP3, and FAS were consistent with those in the
TCGA patients (Fig. 9c). The results of PCA analysis
and t-SNE analysis showed that the patients in the
high-risk group and the low-risk group in the ICGC
dataset also showed a two-way distribution (Fig. 10a,
b). The Kaplan-Meier curve showed that the OS of
HCC patients in the ICGC dataset was lower than
that in the low-risk group (p < 0.001) (Fig. 10c) at
the same timing. Figure 10d displayed the AUC

reached 0.760 at 1 year, 0.738 at 2 years, and 0.721
at 3 years. The AUC of the three-time points were
all higher than 0.700 as well. We performed univari-
ate and multivariate Cox regression analysis to deter-
mine whether the risk score model was also an
independent prognostic factor of OS in HCC pa-
tients of ICGC. Through the analysis, we found that
risk score could be regarded as an independent
prognostic factor of the OS of IGCG HCC patients
as well (p < 0.001) (Fig. 11a, b). Moreover, to verify
the relationship between the prognosis model and
different clinical traits, we divided the Japanese HCC
samples from ICGC database into a high-risk group
and low-risk group according to the risk value and
drew the Kaplan-Meier curves based on the gender,
age, and HCC stage (Fig. 12). The results showed
that the HCC prognostic model could also be used
as the prognosis of HCC with different age, gender,
and stage. Meanwhile, because only used the

Fig. 6 The validation of the reliability of the 4-gene signature by analyzing the risk score and the TCGA dataset. a The distribution and the
median value of the risk scores. b The distributions of OS status, OS and risk score. c The expression of four prognosis-related ARGs between
high-risk and low-risk group

Yan et al. BMC Cancer          (2021) 21:175 Page 8 of 18



Japanese HCC dataset for validation to reduce the
regional influence of HCC disease, the data of
Kaplan Meier plotter database was used to verify
again. We selected HCC as the research disease and
155 Asian patients as the research objective. The ex-
pression of 4 genes (BAK1, BNIP3, CSE1L, FAS)
used to construct the predictive model were selected,
and the Kaplan-Meier curves were drawn, respect-
ively (Fig. 13). The results suggested that the prog-
nostic model can be seen as an effective prognostic
factor for Asian HCC patients.

The results of correlation analysis with clinical traits
The TCGA-BC-A10W and TCGA-ZP-A9CZ cases
without HCC stage information were deleted. T-test
was used to determine whether the expression of the
genes and the risk score were associated with the
clinical characteristics of HCC patients. Some clinical
features of HCC, including age, sex, grade, and stage,
were assessed for their probable correlation with
BAK1, BNIP3, CSE1L, FAS, and risk score, as shown
in Table 5. We selected the correlation, which satis-
fies p < 0.05 to draw the box plots. The results

Fig. 7 The validation of the reliability of the 4-gene signature using the TCGA dataset. a PCA plot. b t-SNE analysis. c Kaplan-Meier curve showing
the OS of patients in the high-risk group and low-risk group. d AUC of time-dependent ROC curves verified the prognostic performance of the
risk score
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Fig. 8 Results of the univariate and multivariate Cox regression analysis regarding OS in the TCGA dataset. a The result of univariate Cox
regression analysis. b The result of multivariate Cox regression analysis

Fig. 9 The validation of the reliability of the 4-gene signature by analyzing the risk score and the ICGC dataset. a The distribution and the median
value of the risk scores. b The distributions of OS status, OS and risk score. c The expression of four prognosis-related ARGs between high-risk and
low-risk group
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showed that the expression of BNIP3 and FAS were
significantly different between male and female
(Fig. 13a). BAK1 and CSE1L were all significantly dif-
ferentially expressed between Stage I-II and Stage III-
IV patients (Fig. 13b-d). The values of risk score were
significantly different between the Grade 1–2 and
Grade 3–4 (p < 0.05) (Fig. 13e). The values of risk
score were different between Stage I-II and Stage III-
IV, as well. (p<0.001) (Fig. 14f). Correlation analysis
of clinical traits showed that risk score was near re-
lated to the grade and stage of HCC. We also used

the clinical character data of Japanese HCC patients
in the ICGC database. The relationship between dif-
ferent clinical traits (Age, Gender, Stage) and OS was
showed by Kaplan-Meier curves, respectively. The re-
sults (Fig. 14) showed that the prognosis of HCC was
Significant different with age, gender, and cancer
stage in both high-risk and low-risk groups divided
according to the median risk value of the prognostic
model (P < 0.05). The result further demonstrated the
prognostic model we constructed for Asian HCC pa-
tients is reliable.

Fig. 10 The validation of the reliability of the 4-gene signature using the ICGC dataset. a PCA plot. b t-SNE analysis. c Kaplan-Meier curve
showing the OS of patients in the high-risk group and low-risk group. d AUC of time-dependent ROC curves verified the prognostic performance
of the risk score
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Discussion
Large geographic disparities in incidence and mortal-
ity of HCC exist. Asia has the highest incidence of
HCC in the world because of the presence of multiple
risk factors, such as hepatitis B and the contamin-
ation of aflatoxin [81]. Another risk factor for HCC,
chronic hepatitis C infection, in Asia is most signifi-
cant in Japan, the only Asian country with more
hepatitis C virus (HCV) than hepatitis B virus (HBV)-
related hepatocellular carcinoma. To eliminate the
cells infected by viruses, the body will activate apop-
tosis, but to reduce the death of cancer cells, HCC
cells will inhibit apoptosis. The balance of survival
and apoptosis are closely related to the progression of
HCC [12]. The etiology of HCC in Asia is quite dif-
ferent from that in Europe, the US, and the balance
of survival and apoptosis is crucial for the progression
of HCC. Therefore, it is necessary to study the cases
of Asian HCC patients and find a useful Args related
prognostic model based on the genes of Asian
populations.
In the study, we systematically studied the expres-

sion of 56 Args and the effect of prognosis. And we
constructed a new prognostic model based on
apoptosis-related DEGs and verified it by the data of
TCGA and ICGC databases. The HCC prognostic
model consists of four Args (BAK1, BNIP3, CSE1L,
and FAS). Pro-Apoptotic Protein BAK (BAK1) is a
pro-apoptotic protein [21], which plays a vital role
in the process of mitochondrial apoptosis. When re-
ceiving an apoptosis signal, BAK1 can change the
permeability of mitochondrial outer membrane
(MOM), release apoptotic factors, and activate ef-
fector caspases to realize apoptosis [82, 83]. BNIP3,
a pro-apoptotic member of the Bcl-2 family of apop-
totic proteins [84], can overcome the inhabitation of

apoptosis caused by BCL2. However, some studies
have found that BNIP3 has an inhibitory effect on
cancer [85]. BNIP3 can delay the progression of pri-
mary breast cancer by preventing the accumulation
of dysfunctional mitochondria and reducing the
resulting excess reactive oxygen species (ROS) [86].
CSE1L, the cellular apoptosis susceptibility protein,
is highly expressed in various cancers [87]. It has
been found that CSE1L plays an essential role in
regulating apoptosis induced by chemotherapeutic
drugs [88]. CSE1L can inhibit paclitaxel-induced
apoptosis by affecting G2/M phase cell cycle arrest
and microtubule aster formation induced by pacli-
taxel [88, 89]. The Fas-antigen is a cell surface re-
ceptor that transduces apoptotic signals into cells
[90]. Fas/FasL signaling pathway will promote cell
apoptosis.
In the study, we found that BAK1, CSE1L, BNIP3, and

Fas were all related to the prognosis of HCC, but the ex-
pression changes were different. BAK1 and CSE1L were
up-regulated in HCC tissues, while BNIP3 and Fas were
down-regulated. We recognized that it is not clear
whether these genes affect the prognosis of HCC pa-
tients mainly by affecting cancer cell apoptosis because
these genes affect the progress of HCC in many ways,
not only apoptosis. Therefore, further studies on these
four genes are needed.

Conclusion
We successfully constructed a novel apoptosis gene-
related prognostic model of accurately predicting the
prognosis of Asian HCC patients, with higher risk
scores demonstrating adverse prognosis. Kaplan-Meier
curve, PCA analysis, t-SNE analysis, risk score curve,
ROC curve, and the data of ICGC were used to verify

Fig. 11 Results of the univariate and multivariate Cox regression analysis regarding OS in the ICGC dataset. a The result of univariate Cox
regression analysis. b The result of multivariate Cox regression analysis
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Fig. 12 The Kaplan-Meier curves of 4 prognostic model genes. a. Kaplan-Meier curve showing the OS of BAK1 in the high-risk group and low-risk
group. b. Kaplan-Meier curve showing the OS of CSE1L in the high-risk group and low-risk group. c. Kaplan-Meier curve showing the OS of BNIP3
in the high-risk group and low-risk group. d Kaplan-Meier curve showing the OS of FAS in the high-risk group and low-risk group
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Fig. 13 The correlation between gene expression, risk score, and clinical traits. a The correlation between the expression of BNIP3 and gender. b
The correlation between the expression of FAS and gender. c The correlation between the expression of BAK1 and HCC stage. d The correlation
between the expression of CSE1L and HCC stage. e The correlation between risk score and HCC grade. f The correlation between risk score and
HCC stage
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Fig. 14 (See legend on next page.)

Yan et al. BMC Cancer          (2021) 21:175 Page 15 of 18



the reliability of the model. We believed this model
could act as a useful independent prognostic predictor
for Asian HCC patients.
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