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A prognosis-related molecular subtype for
early-stage non-small lung cell carcinoma
by multi-omics integration analysis
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Abstract

Background: Early-stage non-small cell lung carcinoma (NSCLC) accounts for more than 80% of lung cancer, which
is a kind of cancer with high heterogeneity, so the genetic heterogeneity and molecular subtype should be
explored.

Methods: Partitioning Around Medoid algorithm was used to acquire the molecular subtype for early-stage NSCLC
based on prognosis-related mRNAs and methylation sites. Random forest (RF) and support vector machine (SVM)
were used to build prediction models for subtypes.

Results: Six prognosis-related subtypes for early-stage NSCLC, including 4 subtypes for lung squamous cell
carcinoma (LUSC) and 2 subtypes for lung adenocarcinoma (LUAD), were identified. There were highly expressed
and hypermethylated gene regions for LUSC-C1 and LUAD-C2, highly expressed region for LUAD-C1, and
hypermethylated regions for LUSC-C3 and LUSC-C4. Molecular subtypes for LUSC were mainly determined by DNA
methylation (14 mRNAs and 362 methylation sites). Molecular subtypes for LUAD were determined by both mRNA
and DNA methylation information (143 mRNAs and 458 methylation sites). Ten methylation sites were selected as
biomarkers for prediction of LUSC-C1 and LUSC-C3, respectively. Nine genes and 1 methylation site were selected
as biomarkers for LUAD subtype prediction. These subtypes can be predicted by the selected biomarkers with RF
and SVM models.

Conclusions: In conclusion, we proposed a prognosis-related molecular subtype for early-stage NSCLC, which can
provide important information for personalized therapy of patients.
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Background
Non-small cell lung carcinoma (NSCLC) accounts for
more than 80% of lung cancer, which is the second most
common cancer and the most common cause of cancer-
associated deaths worldwide [1, 2]. With the develop-
ment of diagnostic techniques, more NSCLC patients
will be diagnosed at earlier stage [3, 4]. These patients

can achieve a relatively superior prognosis, but some pa-
tients still develop recurrent cancer and about 40% of
them will die of cancer within 5 years [5, 6]. NSCLC is
also a kind of cancer with high heterogeneity, of which
45% were lung squamous cell carcinoma (LUSC) and
30% were lung adenocarcinoma (LUAD) [7]. Histological
and genetic diversity can account for some of the indi-
vidual variation in NSCLC survival. Therefore, identifica-
tion of molecular subtype for early-stage NSCLC
patients associated with survival will benefit early treat-
ment and patient prognosis.
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Molecular subtype has been used in the exploration of
NSCLC heterogeneity. Gene expression subtypes of
LUSC and LUAD have been proposed by The Cancer
Genome Atlas (TCGA) research network, respectively
[8, 9]. A multiplatform-based NSCLC molecular subtype
including 9 subtypes for 1023 NSCLC patients has also
been identified in a recent study [10]. There are some
other kinds of lung cancer molecular subtypes according
to different gene sets [11, 12]. However, there were some
special molecular characteristics for early-stage NSCLC.
Patient prognostic information has also not well utilized
in these subtypes and gene sets, leading to weak predict-
ive ability for patient prognosis.
In this study, we analyzed gene expression and DNA

methylation data for early-stage NSCLC, and proposed a
prognosis-related molecular subtypes for LUSC and
LUAD. Then, we explored the function of differentially
expressed genes and differentially methylated genes. We
also selected biomarkers and built prediction model for
each subtype in training dataset, and validated the
models in test dataset. The prediction model was evalu-
ated by sensitivity (SE), specificity (SP) and area under
the ROC curve (AUC). Furthermore, we analyzed the
molecular functions of these biomarkers in cancer
development.

Methods
Datasets and preprocessing
RNA-Seq data, DNA methylation data and clinical infor-
mation of NSCLC patients were downloaded from the
UCSC Xena website (http://xena.ucsc.edu/). The RNA-
seq data were log2 transformed RSEM normalized
counts and mapped to HUGO gene symbols. The DNA
methylation levels were represented by β-values (from 0
to 1). Methylation sites were filtered by the following
criteria: 1) probes located in the X or Y chromosome; 2)
SNP present within the assay of probe; 3) probes did not
annotate with any reference genes; 4) probes located in
the shelves and oversea regions of CpG island. Genes
and methylation sites with missing value in more than
20% of patients were excluded, and patients without
mRNA data or methylation data were also removed from
further analysis. Data were centralized and standardized
before analysis.

Molecular subtypes related with overall survival
For each gene and methylation site in the entire data set,
we built a univariate Cox proportional hazard (Cox-PH)
model and selected variables with P values less than
0.001. We than used these genes and methylation sites
to cluster the patients using Partitioning Around Medoid
(PAM) clustering algorithm. The cluster number K of
PAM clustering algorithm was set to 2–5. The optimal
number of NSCLC clusters was determined by

maximizing the difference of overall survival among differ-
ent subtypes. The Database for Annotation, Visualization
and Integrated Discovery (version 6.8, DAVID) tool was
used for the functional annotation for Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways.

Prediction model for molecular subtypes
We randomly divided the data set into training set and
test set, in which training set contained 60% patients
(Table 1). We selected biomarkers and built prediction
models for molecular subtypes in training set, and vali-
dated the models in test set. In the biomarker selection
phase, univariate Wilcoxon test was firstly used to se-
lected differentially expressed genes and methylated sites
(P < 0.001) compared with other subtypes in the training
dataset. Then, a multivariate partial least square (PLS)
model was established, and 10 variables with largest vari-
able important projection (VIP) values were selected as
biomarkers for each subtype. Random forest (RF) and
support vector machine (SVM) models were constructed
with 10 selected biomarkers in training dataset. The
model prediction ability was evaluated in training and
test datasets, respectively.

Evaluation criteria
The prediction model performance was evaluated by
sensitivity (SE), specificity (SP) and area under the ROC
curve (AUC). SE and SP were defined by:

SE ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

where.
True Positive (TP): the patient belongs to a subtype,

and the prediction model predicts the patient as this
subtype;
False Positive (FP): the patient does not belong to a

subtype, but the prediction model predicts the patient as
this subtype;
True Negative (TN): the patient does not belong to a

subtype, and the prediction model does not predict the
patient as this subtype;
False Negative (FN): the patient belongs to a subtype,

but the prediction model does not predict the patient as
this subtype.
AUC were defined by:

AUC ¼
P

ri − n0 n0 þ 1ð Þ=2
n0n1

where n0 and n1 are the number of patients who belong
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to and not belong to a subtype respectively, and ri is the
rank of ith patient of a subtype in the ranked list.

Results
Prognosis-related molecular subtypes
An overview workflow of this study was shown in Fig. 1.
In total, 303 LUSC and 351 LUAD patients with coupled
mRNA and methylation data were analyzed in this study.
After screening according to the criteria in the “method”
section, 16249 mRNAs and 162,926 methylation sites
were included. In the univariate Cox regression analysis,
14 mRNAs and 362 methylation sites in LUSC, and 143
mRNAs and 458 methylation sites in LUAD were associ-
ated with overall survival at the 0.001 level.
In the identification of prognosis-related molecular

subtypes, the genes and methylation sites related with
overall survival were used in the PAM clustering ana-
lysis, with cluster number K ranging from 2 to 5 (Sup-
plementary Fig. 1). In the Kaplan-Meier (K-M) survival
curves of LUSC and LUAD patients for different cluster
number K, optimum survival curves were identified by 4
clusters for LUSC and 2 clusters for LUAD, respectively
(Fig. 2). These subtypes showed different gene expres-
sion and DNA methylation patterns (Fig. 3). There were
highly expressed and hypermethylated gene regions for
LUSC-C1 and LUAD-C2, highly expressed region for
LUAD-C1, and hypermethylated regions for LUSC-C3
and LUSC-C4.

Functional annotation of differentially expressed genes
and methylated genes related with overall survival
Functional enrichment was conducted for genes and
methylated genes related with overall survival in LUSC
and LUAD. Firstly, 362 and 458 methylation sites in
LUSC and LUAD were located in 267 and 339 genes, re-
spectively. The distribution of methylation sites was
showed in Supplementary Fig. 2. The methylated genes
in LUSC were significantly enriched in 8 GO biological
process terms, 4 GO cellular component terms, and 7
GO molecular function terms (Supplementary Table 1).
The 14 differentially expressed genes were also enriched
in 3 GO cellular component terms at 0.2 level.
For LUAD patients, the methylated genes were signifi-

cantly enriched in 11 biological process terms, 9 cellular
component terms, 7 molecular function terms, and 2
KEGG pathways (Supplementary Table 2). The differen-
tially expressed genes were significantly enriched in 21
biological process terms, 12 cellular component terms,
11 molecular function terms, and 7 KEGG pathways.

Biomarkers for the prediction of subtypes
We next sought to select specific biomarkers and build
prediction models for molecular subtypes. There were
only 4 patients and obvious hypermethylated region in
LUSC-C4 subtype, so we selected biomarkers and built
prediction model for LUSC-C1, LUSC-C3 and LUAD. In
the training dataset which included 60% patients, univar-
iate Wilcoxon test was firstly used, and 114, 182, 303

Table 1 Clinical characteristics of early-stage NSCLC patients in training and test sets

LUSC LUAD

Training set Test set Training set Test set

N 181 122 210 141

Age 68.41 ± 8.41 66.93 ± 9.48 65.43 ± 9.66 65.46 ± 9.98

Sex Female 48 (26.52) 32 (26.23) 117 (55.71) 73 (51.77)

Male 133 (73.48) 90 (73.77) 93 (44.29) 68 (48.23)

Pathologic stage I 101 (55.80) 69 (56.56) 140 (66.67) 99 (70.21)

II 80 (44.20) 53 (43.44) 70 (33.33) 42 (29.79)

Therapy outcomea CR 128 (88.28) 89 (85.58) 138 (77.97) 99 (81.15)

PR 1 (0.69) 3 (2.88) 1 (0.56) 2 (1.64)

SD 5 (3.45) 7 (6.73) 17 (9.60) 4 (3.28)

PD 11 (7.59) 5 (4.81) 21 (11.86) 17 (13.93)

Smoking statusb 1 5 (2.84) 5 (4.20) 33 (16.26) 17 (12.32)

2 62 (35.23) 35 (29.41) 48 (23.65) 37 (26.81)

3 30 (17.05) 18 (15.13) 54 (26.60) 37 (26.81)

4 77 (43.75) 60 (50.42) 66 (32.51) 45 (32.61)

5 2 (1.14) 1 (0.84) 2 (0.99) 2 (1.45)

Pack year 52.20 ± 27.93 52.65 ± 28.92 39.18 ± 24.70 43.81 ± 28.38

The clinical characteristics were not statistically significant between training and test sets (P > 0.05). a CR complete response, PR partial response, SD stable disease,
PD progressive disease. b 1: Lifelong non-smoker; 2: Current smoker; 3: Current reformed smoker for > 15 years; 4: Current reformed smoker for ≤15 years; 5:
Current reformed smoker, duration not specified

Yang and Wu BMC Cancer          (2021) 21:128 Page 3 of 8



biomarkers with P < 0.001 were selected for LUSC-C1,
LUSC-C3 and LUAD. Then, these biomarkers were fur-
ther used to build a multivariate PLS model and 10 var-
iables with VIP values were selected as biomarkers for
each subtype, respectively (Table 2). Ten methylation
sites were selected as biomarkers for prediction of
LUSC-C1 and LUSC-C3, respectively. Seven biomarkers
(cg00894870, cg03041700, cg04738309, cg08356572,
cg09844983, cg11416447 and cg22627950) were down-
regulated, and 3 biomarkers (cg15987088, cg22627950
and cg24599434) were up-regulated in LUSC-C1 (Sup-
plementary Fig. 3). Two biomarkers (cg02074191 and
cg12065562) were down-regulated, and 8 biomarkers
(cg00431236, cg00894870, cg02590972, cg03041700,
cg04417954, cg08356572, cg11416447 and cg22627950)
were up-regulated in LUSC-C3 (Supplementary Fig. 4).
Nine genes and 1 methylation site were selected as bio-
markers for LUAD subtype prediction. These biomarkers
were all down-regulated in LUAD-C1 (Supplementary
Fig. 5).
To evaluate the predictive performance of biomarkers,

RF and SVM models for subtype prediction were built,
and SE, SP and AUC were calculated in training and test
datasets (Table 3). As results, we got a good prediction
performance in the both training and test datasets.
AUCs for LUSC-C1, LUSC-C3 and LUAD in RF model
were 0.84, 0.77 and 0.83, whereas 0.85, 0.85 and 0.83 in
SVM model, respectively. The prediction model built by
SVM model was superior to the one built by RF model.
These subtypes were significantly associated with overall
survival, except for LUAD subtypes in test set, which
also tended to be significant (Supplementary Fig. 6).

Discussion
In this study, we proposed a prognosis-related molecular
subtype for early-stage NSCLC, including 4 subtypes for
LUSC and 2 subtypes for LUAD. These subtypes showed
different trend in overall survival, gene expression

Fig. 1 An overview workflow of prognosis-related molecular
subtypes identification and biomarkers selection in
early-stage NSCLC

Fig. 2 The association between molecular subtypes and overall survival. a LUSC. b LUAD
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pattern, and DNA methylation level. Most subtypes
showed highly expressed and hypermethylated gene re-
gions, which facilitated the biomarker selection for sub-
types. We also selected biomarkers and built prediction
models with good performance, which can help the
grouping of new patients and therapy strategy selection.
LUSC patients were divided into 4 clusters by 14

mRNAs and 362 methylation sites related with overall
survival. These subtypes were mainly determined by
DNA methylation information, and all the selected bio-
markers were also methylation sites. Five methylation
sites (cg00894870, cg03041700, cg08356572, cg11416447
and cg22627950) were selected as biomarkers for both
LUSC-C1 and LUSC-C3, in which the function of 4
methylated genes were associated with cancer [13–18].
The function of 267 genes were mainly associated with
regulation of cell cycle and gene transcription.
In LUSC-C1, 3 hyper-methylated sites were located in

transcriptional start site (TSS) 200 regions of GHSR and
weakly negatively related with GHSR (Supplementary
Table 3), which can encode growth hormone secreta-
gogue receptor (GHS-R) and related with energy metab-
olism. KIAA0090, ATAD3B, TRIM27 and DMTF1,
regulated by hypo-methylated sites, were also associated
with cancer. KIAA0090, which was positively related
with hypo-methylated cg00894870, was associated with
cancer metastasis and prognosis [16]. ATAD3B was
expressed in cancer cell, and may related with tumori-
genesis, proliferation and chemoresistance [14, 15].
TRIM27 was an oncogene [18] and DMTF1 can regu-
lated ARF-p53 pathway [13, 17].

In LUSC-C3, 8 hyper-methylated sites were located in
10 genes. In addition to 4 same genes (KIAA0090,
ATAD3B, TRIM27 and DMTF1) with LUSC-C1, ACP1
and SH3YL1 also played important roles in cancer.
ACP1 can encode a tyrosine phosphatase, which was an
anti-tumorigenic factor interacted with PDGF-R and
FAK [19]. SH3YL1 can regulate migration of cancer cell
[20]. Two hypo-methylated sites were located in gene
body of PCDH gene family (PCDHA, PCDHB and
PCDHG). The aberrant methylations of these genes were
also found in breast cancer [21].
Unlike LUSC, LUAD patients were divided into 2 clus-

ters by 143 mRNAs and 458 methylation sites, which in-
dicated that these subtypes were determined by both
mRNA and DNA methylation. These differentially
expressed genes were mainly associated with cell cycle
regulation. Whereas the differentially methylated genes
were involved in a variety of GO terms and KEGG path-
ways, such as signal transduction, cell division and
apoptosis.
In LUAD-C1, 10 selected biomarkers were all down-

regulated in LUAD-C1. ANLN, CCNA2, CDCA5, DLGA
P5, TPX2 and KIF4A were involved in the regulation of
cell cycle (Supplementary Table 4). CKAP2L and
SHCBP1 were associated with spindle formation, which
was also involved in cell cycle. In previous study, over
expression of 9 selected gene biomarkers (ANLN,
CCNA2, CDCA5, CKAP2L, DLGAP5, KIF4A, KPNA2,
SHCBP1 and TPX2) can indicate poor prognosis in dif-
ferent cancer types, including lung cancer, colon cancer,
breast cancer and bladder cancer [22–31].

Fig. 3 The heatmap plot of mRNAs and methylation sites in different subtypes of NSCLC. Highly expressed and hypermethylated gene regions
were marked with green boxes
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Table 2 Biomarkers for prediction of LUAD and LUSC subtypes

ID_REF Chr. Gene name Genetic location Epigenetic location

LUSC-C1 cg00894870 1 MRTO4; KIAA0090 Body; TSS1500 Island

cg03041700 1 ATAD3B Body Island

cg04738309 5 C5orf13 Body Island

cg08356572 6 TRIM27 1stExon Island

cg09844983 1 RPA2 Body Island

cg11416447 7 DMTF1 TSS200 N_Shore

cg15987088 3 GHSR TSS200 Island

cg17152757 3 GHSR TSS200 Island

cg22627950 7 TMED4 TSS1500 Island

cg24599434 3 GHSR TSS200 Island

LUSC-C3 cg00431236 2 ACP1; SH3YL1 1stExon; TSS1500 Island

cg00894870 1 MRTO4; KIAA0090 Body; TSS1500 Island

cg02074191 5 PCDHGA1; PCDHGA2; PCDHGA3; PCDHGA4;
PCDHGA5; PCDHGA6; PCDHGA7; PCDHGA8;
PCDHGB1; PCDHGB2; PCDHGB3; PCDHGB4;
PCDHGB5

Body; Body; Body; Body;
Body; Body; Body; Body;
Body; Body; Body; Body;
1stExon

Island

cg02590972 2 RPL37A TSS200 N_Shore

cg03041700 1 ATAD3B Body Island

cg04417954 15 CRTC3 Body Island

cg08356572 6 TRIM27 1stExon Island

cg11416447 7 DMTF1 TSS200 N_Shore

cg12065562 5 PCDHB18 Body Island

cg22627950 7 TMED4 TSS1500 Island

LUAD ANLN 7

CCNA2 4

CDCA5 11

CKAP2L 2

DLGAP5 14

KIF4A X

KPNA2 17

SHCBP1 16

TPX2 20

cg20097219 17 TBC1D16 Body S_Shore

Table 3 Diagnostic capacities of prediction model for molecular subtypes of LUSC and LUAD

Comparison
group

Prediction
model

Training dataset Test dataset

SE SP AUC (95% CI)* SE SP AUC (95% CI)*

LUSC C1 vs C2 and C3 RF 1 1 1 0.72 0.96 0.84 (0.76–0.92)

SVM 0.93 0.90 0.93 (0.89–0.98) 0.75 0.96 0.85 (0.77–0.93)

C3 vs C1 and C2 RF 1 1 1 0.69 0.86 0.77 (0.68–0.86)

SVM 0.88 0.96 0.92 (0.87–0.97) 0.81 0.89 0.85 (0.78–0.93)

LUAD C1 vs C2 RF 1 1 1 0.86 0.80 0.83 (0.76–0.89)

SVM 0.90 0.89 0.90 (0.85–0.94) 0.81 0.85 0.83 (0.77–0.89)
* P < 0.05. CI confidence interval, RF random forest, SVM support vector machine
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We built 2 prediction models for subtype prediction
based on RF and SVM algorithms. The SE, SP and AUC
for subtype prediction in training dataset were 1 by RF
model, larger than the values calculated by SVM model.
However, these values were smaller than those calcu-
lated by SVM model in test dataset. This phenomenon
indicated that the model built by RF was over-fitting,
and the prediction ability was worse for new data than
SVM model.

Conclusions
In conclusion, we identified 6 subtypes for early-stage
NSCLC, including 4 subtypes for LUSC and 2 subtypes
for LUAD, by gene expression and DNA methylation
data integration analysis. Furthermore, we also selected
biomarkers and built prediction model to distinguish
these subtypes, and most of these biomarkers were in-
volved in tumor related function.
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