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Inhibition of Kpnβ1 mediated nuclear
import enhances cisplatin chemosensitivity
in cervical cancer
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Abstract

Background: Inhibition of nuclear import via Karyopherin beta 1 (Kpnβ1) shows potential as an anti-cancer
approach. This study investigated the use of nuclear import inhibitor, INI-43, in combination with cisplatin.

Methods: Cervical cancer cells were pre-treated with INI-43 before treatment with cisplatin, and MTT cell viability
and apoptosis assays performed. Activity and localisation of p53 and NFκB was determined after co-treatment of
cells.

Results: Pre-treatment of cervical cancer cells with INI-43 at sublethal concentrations enhanced cisplatin sensitivity,
evident through decreased cell viability and enhanced apoptosis. Kpnβ1 knock-down cells similarly displayed
increased sensitivity to cisplatin. Combination index determination using the Chou-Talalay method revealed that
INI-43 and cisplatin engaged in synergistic interactions. p53 was found to be involved in the cell death response to
combination treatment as its inhibition abolished the enhanced cell death observed. INI-43 pre-treatment resulted
in moderately stabilized p53 and induced p53 reporter activity, which translated to increased p21 and decreased
Mcl-1 upon cisplatin combination treatment. Furthermore, cisplatin treatment led to nuclear import of NFκB, which
was diminished upon pre-treatment with INI-43. NFκB reporter activity and expression of NFκB transcriptional
targets, cyclin D1, c-Myc and XIAP, showed decreased levels after combination treatment compared to single
cisplatin treatment and this associated with enhanced DNA damage.

Conclusions: Taken together, this study shows that INI-43 pre-treatment significantly enhances cisplatin sensitivity
in cervical cancer cells, mediated through stabilization of p53 and decreased nuclear import of NFκB. Hence this
study suggests the possible synergistic use of nuclear import inhibition and cisplatin to treat cervical cancer.
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Background
Multiple members of the nucleo-cytoplasmic transport sys-
tem are deregulated in cancers and malignant tissues, in-
cluding the importin protein Karyopherin Beta 1 (Kpnβ1)
[1, 2]. Kpnβ1 is the major importing machinery in mamma-
lian cells, which functions to traffic cargoes from the cyto-
plasm into the nucleus in interphase cells [3]. In the
classical importing pathway, the nuclear localisation signal
(NLS) bearing cargo is recognized and bound by the
“adapter” protein – the alpha members of the Karyopherin
family (Karyopherinα) [4]. The dimeric complex is then
bound by Kpnβ1, which docks the newly formed trimeric
complex to the nuclear pore complex (NPC). Interaction
between Kpnβ1 and NPC components facilitates the transi-
tion of the transporter-cargo complex through the NPC [5].
Once on the nuclear side, RanGTP binds to the trimeric
complex leading to its dissociation [6]. The cargo is freed to
perform its nuclear function, while the Karyopherins are cy-
cled back to the cytoplasm bound to RanGTP to perform
the next round of nuclear import [7, 8]. During non-clas-
sical import, cargoes are imported in an adapter-
independent manner and is shuttled directly by
Kpnβ1 [9, 10]. Through shuttling a wide range of
cargoes, Kpnβ1 regulates numerous cellular functions
including inflammation, migration, apoptosis, morph-
ology, circadian clock function and others [2, 11–13].
In addition to its nuclear importing function in inter-
phase cells, Kpnβ1 also mediates cell division by regulating
spindle assembly and mitotic exit [14, 15], thereby exhibit-
ing pleiotropic functions in maintaining cell homeostasis
and division.
Owing to its deregulation in multiple cancers,

Kpnβ1 has been studied as a target for anti-cancer
treatment. Multiple studies have shown that inhibition
of Kpnβ1 exhibited broad-spectrum cancer killing
activities through various mechanisms, including
interfering with E2F1 activity [16], disruption of pro-
teostasis [17], altering MET proto-oncogene expres-
sion and downregulating the epithelial-mesenchymal
transition [18]. Most importantly, the impact of
Kpnβ1 inhibition showed no toxicity on non-cancer
cells, making Kpnβ1 an attractive target for cancer
treatment [1]. Using an in vitro cervical cancer model,
we previously demonstrated that siRNA mediated
Kpnβ1 inhibition induced various mitotic defects,
leading to a G2/M cell cycle arrest and ultimately
apoptosis [19]. This further led to the in silico
screening, and identification of the small molecule
compound Inhibition of Nuclear Import-43 (INI-43),
which exhibited nuclear-import inhibitory effect on
Kpnβ1 cargoes and reduced cervical and oesophageal
tumour growth in xenograft mouse models [13]. In
addition, exogenous Kpnβ1 overexpression rescued
the cytotoxic and nuclear import inhibitory effects of

INI-43 on cancer cells, confirming that INI-43 exerts
its impact via interfering with Kpnβ1 function [13].
In this study, we addressed the use of INI-43 in com-

bination treatment (CT), by investigating its combined
use with a clinically relevant chemotherapeutic agent –
cisplatin. CT can be an effective way for treating cancer
when participating agents engage in synergism, where
the combined use produces greater anti-cancer effects
compared to the additive effects of each when used indi-
vidually. Successful combination chemotherapy trans-
lates into longer survival periods for cervical cancer
patients, and this has been demonstrated for various
combinations including topotecan, irinotecan, gemcita-
bine and docetaxel when paired with platinum based
drugs [20–23]. More recently, various natural-derived
compounds have been shown to synergize with cisplatin
in treating cervical cancer, such as melatonin, epigallo-
catechin gallate, and genistein in vitro [24–26]. These
findings suggest that platinum-based drugs hold great
potential in combinational use. There is also evidence
suggesting that interfering with the nuclear transport
system could mediate sensitivity to chemotherapeutic
agents. Kpnβ1 has been reported to confer docetaxel re-
sistance, and siRNA mediated inhibition enhanced the
cancer killing effect of docetaxel [27]. The combination
of CRM1 inhibition and various conventional chemo-
therapeutic agents have also yielded promising results in
reversing the chemo-resistance of many cancers [28–30],
suggesting that manipulating nuclear transport may be a
viable option in combination therapy. Selinexor, in par-
ticular, reduces the expression of DNA damage repair
proteins and potentiates DNA damage-based therapy, in-
cluding cisplatin [31].
Here we report that the combined use of nuclear im-

port inhibitor INI-43 and cisplatin exhibited synergistic
anti-cancer effects in cervical cancer cells. Furthermore,
we show that enhanced cell death is mediated through
p53 and NFκB function. The advantage of incorporating
INI-43 into routine cisplatin use in treating cancer could
be beneficial in two ways; firstly, to increase treatment
response in patients exhibiting moderate resistance to
cisplatin, and secondly, to achieve the same treatment
outcome at lower doses of cisplatin, thereby minimizing
undesired side effects associated with cisplatin.

Methods
Cell lines and tissue culture
HeLa, SiHa, CaSki and C33A cell lines were purchased
from the American Type Culture Collection (ATCC)
and maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM, Gibco, Life Technologies) containing 10% Fetal
Bovine Serum (Gibco, Life Technologies), supplemented
with 100 U/mL penicillin and 100 μg/mL streptomycin.
Cells were cultured at 37 °C in a humidified chamber
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with 5% CO2. All cell lines were authenticated by DNA
profiling using the Cell ID System (Promega, Madison,
WI, USA).

Half inhibitory concentration (IC50) determination
Cells were plated in 96-well plates and subjected to
single or CT (2 h INI-43 pre-treatment followed by
cisplatin treatment, without removing INI-43 from the
media) for 48 h. Following treatment, MTT (Sigma)
was added and 4 h later crystals solubilized using 10%
SLS in 0.01 M HCl. Absorbencies were measured at
595 nm and IC50 values determined via plotting [Fa/
(1-Fa)] in log scale against log cisplatin concentration,
where Fa = 100 − %viable cells relative to the untreated

100 . The half
inhibitory concentration was calculated using the
formula IC50 = 10x-intercept.

Drug washout experiments
Cells were plated in 96-well plates and subjected to 2 h
INI-43 pre-treatment followed by cisplatin treatment,
with or without removing INI-43 from the media, for 48
h. Following treatment, MTT (Sigma) was added and 4 h
later crystals solubilized using 10% SLS in 0.01M HCl.

Caspase-3/7 assay
Cells were subjected to single or CT for 48 h, and
caspase-3/7 activity monitored using the Promega
Caspase-GloR 3/7 assay, according to the manufacturer’s
instructions. Luminescence was measured using the
Veritas™ microplate luminometer (Promega) and results
standardized to viable cells in each treatment as deter-
mined by MTT assays performed in parallel.

Combination index (CI) determination
To elucidate the nature of the combined use of INI-43
and cisplatin, the Chou-Talalay method was adopted
[32]. Cell viability was determined after 48-h treatment
at fixed INI-43 to cisplatin ratios of 1:3, 1:4 and 1:5
(Table S1). Cell viability was converted to fraction af-
fected (Fa) and CI calculated using CompuSyn software
(ComboSyn, Inc.).

siRNA transfection
Cells were transfected using Transfectin (Bio-Rad) and
20 nM si-Kpnβ1 (H-7, sc-35,736, Santa Cruz) or 30 nM
si-p53 (sc-29,435, Santa Cruz). Control cells were trans-
fected with the equivalent amount of ctrl siRNA (si-ctrl,
sc-37,007, Santa Cruz).

Western blot analysis
For protein extraction, cells were washed with PBS and
lysed using RIPA buffer (50 mM Tris-Cl, pH 7.4, 150
mM NaCl, 1% (w/v) sodium deoxycholate, 0.1% (v/v)

SDS, 1% (v/v) Triton X-100, 2 mM EGTA, 2 mM EDTA,
50mM NaF, 5 mM Na2P2O7, 1 X complete protease
inhibitor cocktail (Roche) and 0.1M Sodium Orthovana-
date). For PARP cleavage analysis, dead cells were col-
lected by centrifugation and combined with live cell
lysates. Lysates were sonicated, centrifuged, and the
supernatant quantified using the BCA Protein Assay Kit
(Pierce, Thermo Scientific) according to the manufac-
turer’s instructions. Proteins were subjected to Western
blot analysis using the following antibodies: rabbit anti-
Kpnβ1 (H-300, sc-11,367, Santa Cruz), rabbit anti-β-
tubulin (H-235, sc-9104, Santa Cruz), rabbit anti-
PARP1/2 antibody (H-250, sc-7150, Santa Cruz), mouse
anti-GAPDH (0411, sc-47,724, Santa Cruz), rabbit anti-
p21 (H-164, sc-756, Santa Cruz), rabbit anti-Mcl-1 (H-
260, sc-20,679, Santa Cruz), mouse anti-cyclin D1
(HD11, sc-246, Santa Cruz), rabbit anti-c-Myc (N-262,
sc-764, Santa Cruz), mouse anti-p53 (DO-7, M7001,
DakoCytomation), mouse anti-XIAP (610,763, BD Bio-
sciences), and rabbit anti-phospho-Histone H2AX
(γH2AX, Ser139, 20E3, #9718, Cell Signal).

Nuclear/cytoplasmic fractionation
For nuclear/cytoplasmic protein extraction, cells were
collected by trypsinization. Cell pellets were resuspended
in 10mM HEPES (pH 7.9), 50 mM NaCl, 0.5 M sucrose,
0.1 mM EDTA and 0.5% Triton X-100, followed by cen-
trifugation at 1000 X G for 10min to separate cytoplas-
mic (supernatant) and nuclear fractions (pellet).
Cytoplasmic fractions were centrifuged at 14,000 X G
for 15min at 4 °C, and the supernatant stored at -80 °C.
Nuclear pellets were washed in 10mM HEPES, 10 mM
KCl, 0.1 mM EDTA and 0.1 mM EGTA, and centrifuged
at 1000 X G for 5 min. Pellets were then resuspended in
10mM HEPES (pH 7.9), 500 mM NaCl, 0.1 mM EDTA,
0.1 mM EGTA and 1% (v/v) NP-40 and vortexed for 15
min at 4 °C to extract the nuclear protein, followed by
centrifugation at 14,000 X G for 10 min. The fractions
were quantified using the BCA Protein Assay Kit (Pierce,
Thermo Scientific) according to the manufacturer’s
instructions, followed by western blot analysis.

p53 half-life (T1/2) determination
Cells were treated with 5 μM INI-43 or DMSO for 2
hours or transfected with 20 nM si-ctrl or si-Kpnβ1 for
48 h prior to p53 half-life determination. Cells were
treated with 50 μg/mL cycloheximide (CHX), and pro-
tein harvested at 0, 15, 30, 45, 60 and 90min after CHX
treatment. p53 content was analysed by western blotting.
Bands were quantified by densitometrical scanning using
ImageJ, normalised to GAPDH and expressed as a value
relative to p53 intensity at time 0. Relative band inten-
sities were plotted in log scale against time of CHX
treatment and a linear trendline drawn. The half-life was
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calculated using the formula T1/2 (minutes) = Log(2)/
[slope].

Immunofluorescence
SiHa cells were plated on glass coverslips and treated for
24 h before fixation with 4% paraformaldehyde. Cells
were permeabilised using 0.5% Triton-X-100/PBS and
blocked using 1% BSA/PBST with 0.3M Glycine. Pri-
mary antibody incubations were performed in 1% BSA/
PBST, followed by secondary antibody incubation (Cy3
conjugated goat anti-rabbit, Jackson ImmunoResearch).
Cell nuclei were counterstained with 0.5 μg/mL DAPI,
and images captured using the Zeiss inverted fluores-
cence microscope under 100 X oil immersion.

Luciferase reporter assay
SiHa cells were transfected with 100 ng p65-luciferase
reporter construct (containing five copies of the p65-
binding site, Promega) or 200 ng p53-luciferase reporter
construct (containing thirteen wildtype p53 binding
sites, Addgene plasmid #16442, Addgene Plasmid Re-
pository [33] and 10 ng pRL-TK (encoding Renilla lucif-
erase, Promega), using Genecellin transfection reagent
(Celtic Molecular Diagnostics). The following day cells
were treated with 5 μM INI-43 for 2 h, followed by
30 μM cisplatin for 24 h, and luciferase activity assayed
using the Dual-Luciferase Report assay system (Pro-
mega), according to the manufacturer’s instructions.
Luciferase readings were measured using the Veritas™
microplate luminometer (Promega) and normalised to
Renilla luciferase from the same extract.

Statistical analysis
For all data comparisons, the Student’s t test was per-
formed using Microsoft Excel. A p value of < 0.05 was
considered statistically significant.

Results
INI-43 pre-treatment enhanced HeLa and SiHa cell
sensitivity to cisplatin
To investigate whether nuclear import inhibition
could influence cancer cell sensitivity to cisplatin
treatment, cisplatin IC50 values were compared be-
tween cervical cancer cells with and without INI-43
pre-treatment. Pre-treatment was conducted at sub-
lethal INI-43 concentrations (≤10 μM) for 2 h (con-
centrations which were previously shown to reduce
nuclear import of various Kpnβ1 cargoes [13]),
followed by cisplatin treatment. Cisplatin IC50 values
after 48-h treatments were 18.0 μM, 18.1 μM, 30.8 μM
and 12.8 μM for HeLa, CaSki, SiHa and C33A, re-
spectively. However, when cells were pre-treated with
INI-43, a significant dose-dependent decrease in cis-
platin IC50 was observed in both HeLa and SiHa cells

(44 and 46% in HeLa and SiHa cells, respectively)
(Fig. 1a). A small reduction in cisplatin IC50 was
observed in CaSki cells and no change in cisplatin
IC50 observed in C33A cells.
Cell viability was next examined at fixed cisplatin

concentrations, with or without INI-43 pre-treatment.
Figure 1b shows that in HeLa, CaSki and SiHa cells,
CT resulted in significantly decreased cell viability
compared to their cisplatin-only treated counterparts.
In line with the cisplatin IC50 results, C33A showed
no change in cell viability after single or CT. As
5 μM INI-43 on its own did not affect cell viability
across all cell lines, this suggests that the enhanced
cell death observed in the CT was due to the com-
bined action of INI-43 and cisplatin, rather than
addition of independent effects of the two drugs.
Since INI-43 was not removed from the cells before

cisplatin treatment it was next determined whether the
effects of INI-43 would be sustained following drug re-
moval, or whether the INI-43 treatment effects were
transient. Washout experiments were performed where
cells were incubated with INI-43 for 2 h, and thereafter
either treated with cisplatin (with INI-43 still present),
treated with cisplatin after INI-43 removal (washout 1),
or treated with cisplatin 2 h after INI-43 removal (wash-
out 2). Results showed that even after INI-43 was re-
moved before cisplatin treatment there was still
significantly reduced cell viability in response to the
combination treatment when compared to the effects of
cisplatin alone, suggesting that the effects of INI-43 are
not reversible following drug washout (Supplementary
Fig. 1). The enhancement of cell death upon CT was
slightly reduced in HeLa cells after INI-43 washout, but
this is likely due to the rapid doubling time of HeLa
cells, and thus quick synthesis of nascent Kpnβ1 which
would begin to counteract the effects of INI-43 over
time.
To determine whether INI-43-cisplatin CT resulted in

increased apoptosis, PARP cleavage and caspase-3/7 ac-
tivation were assayed. Protein from live and dead cells
was collected and PARP status examined by western
blot. In both HeLa and SiHa cells, enhanced PARP
cleavage was observed in the combination treated cells
compared to those receiving cisplatin only (Fig. 1c). Sup-
porting the cell viability data, 5 μM INI-43 treatment on
its own showed negligible apoptosis. Investigation of
caspase-3/7 activation revealed that combination
treated cells exhibited increased caspase-3/7 activation
compared to cisplatin only treated cells (3.6-fold and
2.8-fold increase in HeLa cells and SiHa cells, respect-
ively) (Fig. 1d). These results suggest that nuclear im-
port inhibition via INI-43 pre-treatment sensitized
both HeLa and SiHa cells to cisplatin through
enhanced activation of apoptosis.
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Fig. 1 (See legend on next page.)
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INI-43 and cisplatin combination treatment resulted in
synergistically enhanced cell death
Since the concentration of INI-43 used was not sufficient
to induce significant cell death alone, and yet in combi-
nation with cisplatin it significantly enhanced cell death, it

was proposed that INI-43 and cisplatin engaged in a syner-
gistic interaction, where the cytotoxic effect of their com-
bined use was greater than the additive effects of either
drug used independently. To test this, the combination
index (CI) was evaluated, according to the Chou-Talalay

Fig. 2 Combination index (CI) evaluation shows that INI-43 and cisplatin combination treatment results in a synergistic anti-cancer effect in SiHa
cells. a Cells were subjected to INI-43, cisplatin or the combination treatment for 48 h. Combination treatments were carried out at fixed INI-43-
to-cisplatin ratios of 1:3, 1:4 and 1:5 (see Table S1). Viable cells were determined using the MTT assay and expressed relative to untreated. Arrows
indicate enhanced cell death. b CI values were calculated using CompuSyn software and plotted against the fraction affected. Data shown are
the mean ± SEM (n = 5) and experiments were repeated at least two independent times

(See figure on previous page.)
Fig. 1 INI-43 pre-treatment significantly enhances cisplatin sensitivity in cervical cancer cell lines HeLa and SiHa. a Cisplatin IC50 values in cervical
cancer cell lines HeLa, CaSki, SiHa and C33A pre-treated with 2.5 μM and 5 μM INI-43 for 2 h, compared to control cells receiving no pre-
treatment. Results shown are the mean IC50 value ± SEM of three independent experiments (n = 6). b MTT cell proliferation assay 48 h post-
treatment, showing increased cisplatin sensitivity in HeLa, CaSki and SiHa cells after pre-treatment with 5 μM INI-43. c Western blot analysis
showing enhanced PARP cleavage in INI-43 and cisplatin combination treated HeLa and SiHa cells. GAPDH was used as a loading control, and
quantification via densitometry is shown. The full-length blots are shown in Supplementary Fig. 2. d Caspase-3/7 activity in HeLa and SiHa cells
was significantly enhanced upon INI-43 and cisplatin combination treatment, compared to cisplatin single treatment. In all cases, results shown
are the mean ± SEM of experiments performed in triplicate and repeated three independent times (*p < 0.05)
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Fig. 3 (See legend on next page.)
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method, using a fixed dose ratio [32]. SiHa cells were
treated with INI-43 and cisplatin at varying concentrations
to give INI-43-to-cisplatin ratios of 1:3, 1:4 or 1:5 (Table
S1). Cells were pre-incubated with respective INI-43 con-
centrations for 2 h prior to cisplatin treatment. Results
showed that while cisplatin reduced cell viability in a dose-
dependent manner, pre-treatment with INI-43 significantly
enhanced this effect (Fig. 2a). Based on the cell viability re-
sults, the CI values were calculated using CompuSyn soft-
ware (ComboSyn, Inc.) and plotted against Fraction Affected
(Fa), where Fa = 0 and Fa = 1 equates to no cell death and
complete cell death, respectively. At Fa > 0.2, CI values were
below 1 for INI-43 to cisplatin ratios of 1:3, 1:4 and 1:5,
revealing synergistically enhanced cell death (Fig. 2b).

Kpnβ1 knock-down sensitized cervical cancer cells to cisplatin
To confirm that the enhancing effect of INI-43 on cisplatin
cytotoxicity was due specifically to nuclear import inhib-
ition, rather than off-target effects, cisplatin sensitivity was
examined in Kpnβ1 knock-down cells. Cells were trans-
fected with Kpnβ1 targeting siRNA (si-Kpnβ1) or control
siRNA (si-ctrl), and cisplatin sensitivity determined. Suc-
cessful Kpnβ1 knock-down was confirmed by western blot-
ting 48 h post transfection, at which point cisplatin
treatment began (Fig. 3a). In Kpnβ1 knock-down cells,
there was a significant reduction of cisplatin IC50 from
24.4 μM in the control cells to 9.7 μM in HeLa cells, and
30.5 μM in the control cells to 19.3 μM in SiHa cells (Fig.
3b). To confirm this effect, cell viability was measured after
cisplatin treatment in Kpnβ1 knock-down and control
siRNA transfected cells. To eliminate the cell death that
was caused by Kpnβ1 knock-down, cell viability was nor-
malized to untreated cells in each transfection group. Re-
sults indicated that Kpnβ1 knock-down cells were more
sensitive to cisplatin-induced cell death at all concentra-
tions tested (Fig. 3c). Furthermore, Kpnβ1 knock-down
HeLa and SiHa cells exhibited visibly increased PARP
cleavage after cisplatin treatment compared to control
siRNA-transfected cisplatin-treated cells (Fig. 3d). Collect-
ively, these results show that Kpnβ1 knock-down enhanced
sensitivity to cisplatin, similarly to that observed after INI-
43 treatment, supporting that INI-43 increases cisplatin
sensitivity by disrupting Kpnβ1 function.

p53 is an important mediator of INI-43-cisplatin-induced
cell death
To elucidate whether p53 might play a role in the cellular
response to cisplatin and furthermore, whether the
enhanced cisplatin sensitivity in INI-43 pre-treated cells
involved p53, the effects of p53 knock-down were exam-
ined. p53 knock-down was confirmed via western blot 48
h post transfection, at which point cells were subjected to
drug treatments as previously described (Fig. 4a). After
single cisplatin treatment, p53 knock-down cells exhibited
similar cell viability to si-ctrl transfected cells, suggesting
that p53 was not involved in cisplatin-induced cell death
(Fig. 4b). These results were validated by PARP cleavage
analysis, where similar levels of cleaved PARP were ob-
served between the control and p53 knock-down cells at
the same cisplatin concentrations (Fig. 4c).
The impact of p53 on the enhancement of cell death

observed after INI-43 and cisplatin CT was next exam-
ined. To quantify the “additional” cell death associated
with the CT, cell viability was normalized to single cis-
platin treatment. As previously established, a significant
reduction in cell viability was observed after INI-43 and
cisplatin CT, compared to single cisplatin treatment in
the si-ctrl transfected cells. However, p53 knock-down
cells exhibited similar sensitivity to single and CT, i.e.,
INI-43 pre-treatment induced sensitisation to cisplatin
was lost with p53 inhibition (Fig. 4d). Examination of
PARP cleavage in these cells showed similar results;
while si-ctrl transfected cells showed increased levels of
cleaved PARP after CT compared to single cisplatin
treatment, p53 knock-down cells exhibited similar levels
of cleaved PARP between single and CT (Fig. 4e). These
results showed that cisplatin alone induced cell death is
p53-independent, however, p53 appears to be critical for
the enhancement of cell death observed in the CT, as
p53 knock-down abrogated this effect.

INI-43 pre-treatment stabilized p53 via Kpnβ1 inhibition
p53 is known to be highly unstable in HPV positive cells
due to the activity of HPV oncoprotein E6 [34], and as
SiHa is an HPV 16 positive cell line known to express
E6 [35], it was possible that INI-43 treatment interfered
with p53 stability, thereby altering cell sensitivity to

(See figure on previous page.)
Fig. 3 Kpnβ1 knock-down enhances cisplatin sensitivity in cervical cancer cells. a HeLa and SiHa cells were transfected with siRNA for 48 h, after
which Kpnβ1 knock-down was confirmed by western blotting, with GAPDH as the loading control. The full-length blots are shown in
Supplementary Fig. 3A. b Cisplatin IC50 values were determined in Kpnβ1 knock-down HeLa and SiHa cells and results showed a decrease in
cisplatin IC50 in both cell lines when transfected with si-Kpnβ1 compared to si-ctrl. Data shown are results ± SEM (n = 6) of a representative
experiment performed two times. c Kpnβ1 knock-down affected cell viability in response to cisplatin treatment in HeLa and SiHa cells. Control
and Kpnβ1 knock-down cells were treated with cisplatin for 48 h before viable cells were measured using the MTT assay. Data shown are mean ±
SEM (n = 6) of one representative experiment repeated two times (*p < 0.05). d Western blot showing that Kpnβ1 knock-down increased PARP
cleavage after cisplatin treatment in HeLa and SiHa cells. GAPDH was included as a loading control, and densitometrical quantification of C-PARP/
PARP relative to GAPDH is shown. The full-length blots are shown in Supplementary Fig. 2B. Results are representative of experiments performed
two independent times
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cisplatin treatment. To test this, the rate of p53 degrad-
ation was monitored in cyclohexmide (CHX)-treated
cells. Cells were treated with 5 μM INI-43 or DMSO for

2 h, whereafter CHX was added and protein extracted at
various time points after CHX treatment. Western blot
analysis showed an increase in p53 stability in INI-43

Fig. 4 p53 inhibition does not affect cisplatin sensitivity but is required for the enhanced cell death observed in the combination treatment. a
SiHa cells were transfected with siRNA for 48 h and p53 knock-down confirmed via western blot. GAPDH was included as a loading control. The
full-length blots are shown in Supplementary Fig. 4A. b MTT assay showing that p53 knock-down does not affect cell viability after 48-h cisplatin
treatment. Data shown are the mean ± SEM of experiments performed in triplicate and repeated two independent times. c Western blot showing
that p53 knock-down does not affect cisplatin-induced PARP cleavage in SiHa cells. GAPDH was included as loading control, and densitometrical
quantification is presented. Results shown are representative of experiments performed three times. The full-length blots are shown in
Supplementary Fig. 4B. d MTT assay comparing cell viability between single cisplatin treatment and INI-43-cisplatin combination treatment, in p53
knock-down SiHa cells. To compare the degree of enhancement of cell death as a result of the combination treatment, cell viability was
normalized to cells receiving single cisplatin treatment. Results shown are mean ± SEM of experiments performed in triplicate and repeated two
independent times (*p < 0.05). e Western blot showing that p53 knock-down abrogated the enhancement of PARP cleavage observed after
combination treatment compared to single cisplatin treatment. GAPDH was included as the loading control, and densitometrical quantification is
shown. The full-length blots are shown in Supplementary Fig. 4C. Results shown are representative of three independent experiments

Chi et al. BMC Cancer          (2021) 21:106 Page 9 of 16



treated cells compared to DMSO treated control cells
(Fig. 5a). To confirm that the prolonged p53 presence
observed after INI-43 treatment was associated with
Kpnβ1 inhibition, p53 levels were also examined in

Kpnβ1 knock-down cells after CHX treatment. Similar
to that observed after INI-43 treatment, Kpnβ1 knock-
down cells were able to sustain p53 for a longer period
after CHX treatment (Fig. 5b). The half-life of p53 was

Fig. 5 Inhibition of Kpnβ1 results in increased p53 stability and reporter activity, as well as increased p21 and decreased Mcl-1 in response to
cisplatin. a, b SiHa cells were treated with DMSO or 5 μM INI-43 for 2 h (a) or transfected with si-ctrl or si-Kpnβ1 for 48 h (b) followed by 50 μg/
mL CHX treatment. Protein was harvested at the indicated time points, and p53 content analyzed by western blot. GAPDH served as the loading
control. The full-length blots are shown in Supplementary Fig. 5A and 5B. c The fold increase in p53 half-life is shown as the mean ± SEM from
the three independent experiments (*p < 0.05). d p53 reporter activity is increased upon 24 h 5 μM INI-43 treatment of SiHa cells (*p < 0.05).
Experiments were performed in triplicate and repeated at least three independent times. e p53 reporter activity is enhanced in INI-43-cisplatin
combination treated SiHa cells, compared to cells treated with cisplatin alone (*p < 0.05). Experiments were performed in triplicate and repeated
at least three independent times. f Western blot showing levels of p53 after single and combination treatment. β-tubulin served as a loading
control. The full-length blots are shown in Supplementary Fig. 5C. g Western blot showing levels of p53 targets p21 and Mcl-1 after single and
combination treatment. β-tubulin served as a loading control for Mcl-1 and GAPDH for p21. Results shown are representative of two independent
experiments. The full-length blots are shown in Supplementary Fig. 5D
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calculated and an approximate 2.9-fold and 3.7-fold in-
crease in half-life was observed, in INI-43 treated and si-
Kpnβ1 transfected cells, respectively, compared to con-
trol cells (Fig. 5c). Similar observations were made in
HeLa cells, where Kpnβ1 knock-down increased p53
half-life by approximately 3.3-fold (data not shown). To
investigate whether the stabilization of p53 had any
functional relevance, p53 reporter activity was measured
after INI-43 treatment. 5 μM INI-43 treatment led to a
small but significant increase in p53 activity, consistent
with its prolonged half-life (Fig. 5d).
To relate these findings to combination treated cells,

p53 reporter activity was measured in SiHa cells treated
with INI-43 and cisplatin, compared to single cisplatin
treatment. Interestingly, p53 reporter activity was signifi-
cantly reduced upon single cisplatin treatment, in line
with the lack of involvement of p53 in cisplatin-induced
cell death observed in Fig. 4 (Fig. 5e). However, with
INI-43 pre-treatment, p53 reporter activity was signifi-
cantly increased (Fig. 5e). p53 protein levels, on the
other hand, were increased after single cisplatin treat-
ment and after treatment with INI-43 and cisplatin (Fig.
5f). These results show that while p53 is stabilized fol-
lowing treatment with cisplatin, its activity is inhibited.
Pre-treatment with INI-43, however, results in increased
p53 activity. Following from the increased p53 reporter
activity, the levels of two proteins known to be regulated
by p53 were investigated: p21 which is positively regu-
lated by p53, and Mcl-1 which is transcriptionally re-
pressed by p53. Western blot analysis showed that
cisplatin treatment at 30 μM and 60 μM decreased levels
of both p21 and Mcl-1. However, in cells receiving both
INI-43 and cisplatin, p21 levels were elevated compared
to single cisplatin treatment at both 30 and 60 μM con-
centrations, and Mcl-1 levels were reduced at 60 μM cis-
platin (Fig. 5g). These results confirm the involvement
of p53 and p53 downstream targets in the INI-43-
mediated enhanced cytotoxicity to cisplatin.

INI-43-cisplatin combination treatment reduced cisplatin-
induced nuclear accumulation of NFκB
We have previously shown that treating cancer cells with
INI-43 prohibited PMA-stimulated nuclear entry of
NFκB-p65 [13]. Others have reported that in SiHa cells,
cisplatin treatment leads to activation of NFκB which
contributes to cisplatin resistance in various cancer
models [36]. As NFκB activation requires nuclear trans-
location to initiate transcription of downstream targets,
NFκB nuclear localization was evaluated by immuno-
fluorescence after single and CT, as an indication of ac-
tivity. Results showed that while cisplatin treatment
stimulated nuclear localization of NFκB-p50 and NFκB-
p65, INI-43 pre-treatment prevented this nuclear trans-
location of both NFκB subunits upon cisplatin treatment

(Fig. 6a and c). Fluorescence quantification supported
these results, where cisplatin treatment led to a signifi-
cant increase in nuclear fluorescence relative to cytoplas-
mic fluorescence (Fc (Nu/Cy)), and the INI-43-cisplatin
CT significantly reduced this effect (Fig. 6b and d).
To independently confirm these results, nuclear and

cytoplasmic protein fractions were isolated from cisplatin-
treated or combination treated SiHa cells. Western blot
analysis showed that cisplatin treatment resulted in
increased levels of both NFκB-p50 and NFκB-p65 in the
nucleus, and that INI-43-cisplatin CT reduced this effect
(Fig. 6e). Next, it was determined whether the altered
localization of NFκB-p50 and NFκB-p65 after CT trans-
lated into functional significance. p65 reporter activity was
measured after single or CT, and results showed that p65
reporter activity was induced upon cisplatin treatment,
but the increase in p65 activity was reduced when cells
were pre-treated with INI-43 (Fig. 6f). The expression of
three downstream targets of NFκB known to respond to
cisplatin treatment were hence examined, namely cyclin
D1, c-Myc and X Chromosome Linked Inhibitor of Apop-
tosis (XIAP) [37–39]. Western blot analysis showed that
single cisplatin treatment led to elevated levels of cyclin
D1 and c-Myc (Fig. 6g). Moreover, the levels of cyclin D1,
c-Myc and XIAP were all reduced in INI-43-cisplatin
combination treated cells in a concentration dependent
manner compared to single cisplatin treated cells (Fig. 6g).
As both cyclin D1 and c-Myc have been shown to confer
chemoresistance via increasing the cells’ DNA repair cap-
acity [40, 41], we examined whether their decreased levels
observed in the CT had an impact on cisplatin-induced
DNA damage. The level of phosphorylated Histone 2AX
(γH2AX), a marker for DNA damage was examined 24 h
after single or CT by western blot. Results showed that
the INI-43-cisplatin CT increased γH2AX levels in a con-
centration dependent manner, suggesting that pre-treating
cells with INI-43 prior to cisplatin treatment enhanced
the DNA damaging effect of cisplatin (Fig. 6g).
Together, these results demonstrate that INI-43 pre-

treatment effectively reduced nuclear accumulation and
activity of NFκB, resulting in decreased expression of
cyclin D1, c-Myc and XIAP, and impaired DNA repair
ability, sensitising the cells to cisplatin treatment.

Discussion
This study is a first to demonstrate that inhibition of
Kpnβ1 is an effective way to enhance the anti-cancer
effects of cisplatin, and that both cisplatin sensitive,
HeLa, and the more resistant, SiHa cervical cancer cells
were responsive to this treatment. Furthermore, combin-
ation index analysis indicated a synergistic interaction
between INI-43 and cisplatin, where their combined use
produced greater anti-cancer effects compared to the
added effects when used alone.
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To understand the mechanism of action underlying
the increased cisplatin sensitivity observed in the CT,
proteins involved in cisplatin response were investigated,
including both p53 and NFκB. Whilst p53 is widely
accepted as a tumour suppressor protein important in
guarding the genome and regulating apoptosis, some

evidence has emerged to demonstrate that p53 can also
promote oncogenesis by preventing apoptosis [42], sug-
gesting that p53 can be involved in cisplatin resistance
or cisplatin-induced apoptosis. p53 knock-down experi-
ments demonstrated that p53 is involved in the pro-
apoptotic pathway in our model system, but only in

Fig. 6 INI-43 pre-treatment reduces the nuclear localization of NFκB and expression of its targets and enhances DNA damage after cisplatin
treatment in SiHa cells. a, c Distribution of NFκB subunits p50 (a) and p65 (c) were analyzed by immunofluorescence after single (30 μM cisplatin)
or combination treatment. b, d Fluorescence intensities were quantified using ImageJ and expressed as nuclear fluorescence relative to
cytoplasmic fluorescence (Fc (Nu/Cy)) for p50 (b) and p65 (d). Results shown are representative images for each condition (a, c), and mean ± SEM
of 6 cells (*p < 0.05, b, d). e Western blot analysis showing increased nuclear p50 and p65 levels after cisplatin treatment, which was reduced if
cells were pre-treated with INI-43. TBP served as the nuclear loading control and β-tubulin to confirm that pure nuclear lysates were obtained in
comparison to a random cytoplasmic protein sample ‘C’. Results shown are representative of experiments conducted three independent times.
The full-length blots are shown in Supplementary Fig. 6A. f p65 reporter assay showing increased p65 luciferase activity after 30 μM single
cisplatin treatment, which was reduced with INI-43 pre-treatment (*p < 0.05). g Western blot showing changing levels of various NFκB targets
(cyclin D1, c-Myc and XIAP) after single or combination treatment, and enhanced phosphorylation of H2A.X (γH2AX) in combination treated cells,
indicative of increased DNA damage. β-tubulin was included as the loading control, and results shown are representative of experiments
performed at least two independent times. The full-length blots are shown in Supplementary Fig. 6B
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response to the CT, as p53 knock-down did not affect
sensitivity to single cisplatin treatment.
SiHa cells are HPV positive, harbouring the HPV16 E6

oncoprotein [35], which has been reported to directly
associate with p53 and induce its degradation [34]. This
results in a highly unstable p53, which is supported by
our observation whereby p53 is rapidly degraded after
CHX treatment. We observed stabilisation of p53 in re-
sponse to INI-43 treatment and Kpnβ1 knock-down in
SiHa cells. Stabilization of p53 has also been observed in
HPV16 and HPV18 positive Kpnβ1 knock-down CaSki
cells [19]. The stabilisation of p53 upon Kpnβ1 inhib-
ition is likely due to the role of Kpnβ1 in mediating p53
and HPV E6 nuclear entry. p53 is reported to enter the
nucleus via Kpnα4 (Importin α3) and Kpnβ1 [43, 44],
however, it is known that there is redundancy between
nuclear transport receptors, and we have previously
shown an accumulation of p53 in the nucleus and cyto-
plasm upon Kpnβ1 inhibition [19], suggesting p53 still
has access to the nucleus when Kpnβ1 is inhibited. HPV
E6 protein has also been reported to enter the nucleus
via Kpnβ1 and Kpnβ2 [45]. It is possible that Kpnβ1
inhibition with INI-43 affects nuclear entry of p53 and
HPV E6 to varying extents, interfering with HPV E6-
mediated p53 degradation, and resulting in p53 stabilisa-
tion. The exact mechanism involved, however, requires
further investigation. Interestingly, inhibition of CRM1
via small molecules KPT-185 and leptomycin B has also
been shown to stabilize p53 in other cancers [46, 47].
Together with our findings, these data suggest that inter-
fering with the nuclear transport system in either direc-
tions has stabilizing effects on p53.
In combination treated cells, there was increased p53

activity after INI-43 pre-treatment, which associated
with increased responsiveness to cisplatin treatment. We
propose that in our model system, p53 protein accumu-
lates upon cisplatin treatment, however, the action of
HPV E6 renders it inactive [48]. p53 knock-down thus
had little effect on cisplatin induced cell death. However,
in the combination treated cells it is possible that the in-
hibition of Kpnβ1 interferes with p53 and HPV E6 nu-
clear entry, altering the levels of E6-bound p53 in the
nucleus, and the p53 that accumulates is more readily
available for apoptotic induction when cells are chal-
lenged with cisplatin. This could also explain why INI-
43 did not sensitize C33A cells to cisplatin, as C33A cells
are HPV negative and carry a non-functional mutant
p53 [49].
In addition to enhanced p53 stability and reporter ac-

tivity, increased p21 levels and decreased Mcl-1 levels
were observed in INI-43 pre-treated cells compared to
non-pre-treated cells in response to cisplatin treatment.
p53 is known to positively regulate p21 expression and
repress Mcl-1 [50, 51]. Furthermore, the elevated

caspase-3/7 activity observed in the CT could be associ-
ated with the decreased levels of Mcl-1, as Mcl-1 is
known to promote survival by inhibiting events preced-
ing mitochondrial release of cytochrome C [52]. Whilst
the link between Kpnβ1 inhibition and p53 stabilization
is demonstrated in our results, further experiments
should be performed to address how nuclear import
inhibition leads to p53 stabilization, and whether this is
mediated through interfering with HPV 16 E6 activity.
Interestingly, with opposing roles in apoptosis, NFκB

and p53 have been shown to mutually antagonize the
transcriptional activity of each other [53], and our results
showed there was also a differential distribution of NFκB
subunits p50 and p65 in cells receiving the single cis-
platin and CT. NFκB is an important response factor to
stress signals, including cisplatin-induced DNA damage
[54], whereupon it relocates to the nucleus to promote
the transcription of various genes involved in DNA re-
pair and survival [36]. As NFκB is reliant on Kpnβ1/Kar-
yopherinα for nuclear entry [55], the localisation of
NFκB was measured after INI-43 treatment which
showed that INI-43 inhibited cisplatin-induced nuclear
import of NFκB, as well as the expression of its tran-
scriptional targets cyclin D1, c-Myc and XIAP. This co-
incided with elevated levels of γH2AX, suggesting that
Kpnβ1 inhibition either augmented the DNA damaging
capacity of cisplatin, or, alternatively, impaired the DNA
repair response. c-Myc confers chemoresistance via sup-
pressing BIN1, an inhibitor of PARP-1 involved in DNA
repair activity, thereby increasing tolerance to DNA
damage and conferring cisplatin resistance [41]. XIAP
promotes survival by directly binding to and inhibiting
the activities of caspase-3, caspase-7 and possibly
caspase-9 [56]. Cyclin D1, best known for driving cell
cycle from G1 to S phase, is also involved in DNA
damage repair in association with Rad51 [57], and its
inhibition impairs DNA repair capacity leading to
sensitization of cancer cells to cisplatin [40]. Our results
showed that INI-43-cisplatin CT results in reduced
levels of these DNA-repair and anti-apoptotic proteins,
possibly via decreasing NFκB nuclear import and tran-
scriptional activity. However, it must also be noted that
the response of these proteins to INI-43-cisplatin CT
may also be attributed to other mechanisms besides
NFκB. For example, Yang et al. (2019) recently showed
that in addition to blocking NFκB nuclear translocation,
Kpnβ1 inhibition also reduced the nuclear translocation
of c-Myc in prostate cancer cells [58].
It is worth noting that a previous study from our

group demonstrated that Kpnβ1 overexpression similarly
sensitized cervical cancer cells to cisplatin. Although this
may seem contradictory to the current study, it is im-
portant to know that overexpression of Kpnβ1 (above
what is already expressed in the cancer cells) did not
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benefit cancer cell survival. Rather, it reduced cancerous
properties including reduced cell proliferation, increased
cell adhesion and mesenchymal-to-epithelial transition
[11]. Hence, it appears that it is a tightly controlled
balance of Kpnβ1 level that is beneficial to the cancerous
traits, and that perturbation of this equilibrium in either
direction (overexpression or inhibition) is detrimental to
the survivability of cancer cells. This is indeed, sup-
ported by earlier works which demonstrated that Kpnβ1
overexpression led to mitotic catastrophes, which was
avoided by co-overexpressing other Kpnβ1 interacting
partners [14, 59, 60]. While this phenomenon is interest-
ing, inhibition of Kpnβ1 may be a more viable strategy
as a therapeutic option and hence was pursued in the
current study in combination with cisplatin.

Conclusions
Taken together, this study shows that Kpnβ1 inhib-
ition sensitizes cervical cancer cells to cisplatin, sug-
gesting that coupling nuclear import inhibition with
cisplatin may be an effective anti-cancer approach.
This is mediated through stabilisation of p53 and pre-
vention of NKκB nuclear localization, leading to alter-
ations in the expression of various downstream
targets such as XIAP, c-Myc, and Mcl-1. These pro-
teins are known to confer cisplatin resistance in a
variety of cancers, and their inhibition through gen-
etic or pharmacological approaches have been demon-
strated to increase sensitivity to chemotherapeutic
agents [39, 61, 62]. The abrogation of enhanced cell
death in combination treated cells via p53 knock-
down suggest that p53 is likely upstream of the
NFκB-induced survival response.
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