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Abstract

in low-risk group.

nine IRGs was developed.

Background: Function of the immune system is correlated with the prognosis of the tumor. The effect of immune
microenvironment on esophageal cancer (EC) development has not been fully investigated.

Methods: This study aimed to explore a prognostic model based on immune-related genes (IRGs) for EC. We
obtained the RNA-seq dataset and clinical information of EC from the Cancer Genome Atlas (TCGA).

Results: We identified 247 upregulated IRGs and 56 downregulated IRGs. Pathway analysis revealed that the most
differentially expressed IRGs were enriched in Cytokine-cytokine receptor interaction. We further screened 13
survival-related IRGs and constructed regulatory networks involving related transcription factors (TFs). Finally, a
prognostic model was constructed with 9 IRGs (HSPA6, STO0A12, CACYBP, NOS2, DKK1, OSM, STC2, NGPTL3 and
NR2F2) by multivariate Cox regression analysis. The patients were classified into two subgroups with different
outcomes. When adjusted with clinical factors, this model was verified as an independent predictor, which
performed accurately in prognostic prediction. Next, MO and M2 macrophages and activated mast cells were
significantly enriched in high-risk group, while CD8 T cells and regulatory T cells (Tregs) were significantly enriched

Conclusions: Prognosis related IRGs were identified and a prognostic signature for esophageal cancer based on

Keywords: Esophageal cancer, Prognostic index, Immune-related genes, TCGA

Background

Esophageal cancer (EC) is the eighth commonest cancer
worldwide. The National Cancer Institute estimated 16,
910 new cases and 15,910 deaths from esophageal cancer
in the United States in 2016 [1]. Its incidence has risen
by more than six times (1999-2008) [2]. The overall
five-year survival of EC and that after esophagectomy
are still poor, although great improvements have been
made in treatment [3]. Squamous cell carcinoma is the
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most common histological type of EC [4]. Tobacco, alco-
hol, and malnutrition are the most associated risk factors
in the development of EC [5]. Once diagnosed, EC must
be accurately staged prior to the initiation of treatment.
TNM (tumor, lymph node, metastasis) is a staging sys-
tem based on the status of tumor invasion, lymph node,
and metastasis [6]. Early-stage EC is usually treated with
endoscopic surgery, advanced EC with surgery with or
without chemoradiation [7].

Certain specific genes and biomarkers are needed to
predict the patient’s therapeutic response and increase
their survival [3]. Immune responses is critical in the
tumor microenvironment. Tumor cells with genomic
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alterations can produce new antigens that can be recog-
nized by the immune cells [8]. Expression of IRGs can
serve as efficient biomarkers. Previous research have ex-
plored the IRGs-based prognostic features in patients
with non-squamous non-small cell lung cancer [9] and
papillary thyroid carcinoma [10]. However, prognostic
models based on IRGs for EC remain to be elucidated.
This study investigated the clinical significance of a
prognostic model based on immunogenomics.

Materials and methods

Data collection

The mRNA profiles and corresponding clinical information
of 11 normal tissues and 160 EC samples were downloaded
from TCGA (https://www.cancer.gov/) [11], which including
81 Esophagus Squamous Cell Carcinoma (ESCC) and 79
Esophagus Adenocarcinoma (EA). A set of IRGs were ob-
tained through the Immunology Database and Analysis Por-
tal (ImmPort) database (https://www.immport.org) [12]. A
set of tumor-related TFs were obtained from Cistrome Can-
cer (http://cistrome.org/CistromeCancer/) [13]. CIBERSORT
(https://cibersort.stanford.edu/index.php) is based on a gene
expression deconvolution algorithm [14] for obtaining im-
mune cells with differences between cancer and normal
tissues.

Identification of differentially expressed genes (DEGs)
DEGs between EC and normal tissues were identified via
R software (version: x 64 3.2.1) and package Limma. The
p value was adjusted into the false discovery rate (FDR).
A value of FDR less than 0.05 and |log2(FC)| higher than
1 were considered significant.

Identification of immune-related genes (IRGs)

DEGs overlapped with immune-related genes were ob-
tained as the differentially expressed IRGs. Based on
these IRGs, Gene Ontology (GO) [15] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [16] ana-
lyses were performed with the clusterprofiler R package
to explore the underlying mechanisms of these IRGs.

Identification of prognosis-related IRGs and construction
of regulatory network

Prognosis-related IRGs were identified using univariate
COX regression analysis. We analyzed these prognosis-
related IRGs using the package R. Then, we investigated
the interaction of these IRGs and differentially expressed
TFs with a threshold of P<0.05. Coefficient > 0.3 was
considered as positive regulation, otherwise as negative
regulation. Subsequently, we constructed a regulatory
network with relevant TFs and prognosis-related IRGs
by using cytoscape software 3.7.1 [17].
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Construction of a prognostic model in EC based on IRGs
We constructed a prognostic model based on the results
of a multivariate Cox regression analysis. Based on the
median risk score, EC patients were divided into high-
risk and low-risk groups. The performance of prognostic
model was validated by survival analysis between groups
with thresholds of p <0.05 using the survival and surv-
miner package of R. Receiver operating characteristic
(ROC) analysis was performed via the survivalROC
package, and the area under curve (AUC) was calculated
to evaluate the efficiency of the model in predicting dis-
ease onset [18]. At the same time, we collated the pa-
tient’s clinical information and deleted the incomplete
information. Finally, a total of 115 patients’ clinical in-
formation (Supplementary Table 1) were used for uni-
variate and multiple regression analysis to determine
whether the riskscore may become an independent pre-
dictor of ESCC. Association between IRG expression
and clinical parameters was tested using independent t-
tests, and p <0.05 were considered statistically signifi-
cant. Clinical survival analysis in subgroups was also
conducted, and p<0.05 was considered statistically
significant.

Verification of the prognosis-related IRGs in this model
We used the online software Oncomine (https://www.
oncomine.org) to verify the IRGs. For screening, we set
the following criteria: 1 “Gene: IRGs in this model”; 2
“Analysis Type: Cancer vs. Normal Analysis”; 3 “Cancer
Type: Esophageal Cancer”; 4“ Clinical Outcome: Survival
Status “ 5 “Data Type: mRNA”. Based on the specific
binding between antibodies and antigens, immunohisto-
chemistry can reveal the relative distribution and abun-
dance of proteins. Using The Human Protein Atlas
(THPA) (https://www.proteinatlas.org) [19], we observed
the differences in key gene expression between normal
and EC tissues.

Building a predictive nomogram

To investigate the possibility of EC 1-OS and 3-OS, we
established nomograms by including all independent
prognostic factors identified by multivariate Cox regres-
sion analysis. The effectiveness of the nomogram was
evaluated by discrimination and calibration. Finally, we
plotted the curve of the nomogram by package rms of R
to observe the relationship between the predicted rate of
nomogram and the observed rate.

Functional enrichment analysis

We used Gene Set Enrichment Analysis (GSEA) [20] to
identify consistent differences between high-risk and
low-risk groups and the associated biological processes.
In screening the gene list of KEGG, p < 0.05 was consid-
ered statistically significant.
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Differential expression of tumor-infiltrating immune cells
between high-risk and low-risk groups

Status of immune infiltration in EC patients was
achieved from the dataset of CIBERSORT. Subsequently,
we tested the abundance of immune cells, and its differ-
ence between high-risk and low-risk groups by using
two-sample T-test.

Results

DEGs between EC and normal samples

The RNAseq tertiary data set of EC from TCGA in-
cluded the biological information of 11 normal tissue
and 160 EC samples. We identified 4094 DEGs, includ-
ing 3272 upregulated DEGs and 822 downregulated
DEGs. (Fig. 1a).

Identification of IRGs

By overlapping the immune-related genes and DEGs of
EC, we identified 247 upregulated and 56 downregulated
IRGs, as shown in Fig. 1b. Figure 2 shows the results of
functional enrichment analysis. GO analysis (Fig. 2a)
demonstrated that these IRGs were most involved in
leukocyte migration in Biological Process (BP), vesicle
lumen in Cellular Component (CC) and receptor ligand
activity in Molecular Function (MF). KEGG analysis in-
dicated that these genes were most involved in the inter-
action of cytokines with cytokine receptors. (Fig. 2b).

Survival analysis and construction of regulatory network
A total of 13 survival-associated IRGs were identified
after integrating clinical information from TCGA via
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univariate COX regression, as shown in Fig. 3. After
examining the expression of 318 transcription factors
(TF), we found 61 with differential expressions between
EC and normal samples, as shown in Fig. 4a, b. Finally a
regulatory network was constructed using these survival-
associated IRGs with differently expressed TFs (Fig. 4c).

Construction of a prognostic model based on prognosis-
related IRGs and external validation

We constructed a prognostic model with nine prognos-
tic IRGs based on the results of multivariate Cox regres-
sion analysis (Table 1). The formula was as follows: Risk
score = expression level of HSPA6*0.006713979 +
S100A12%0.003828117 + CACYBP*0.042341765 +
NOS2%0.02490294 + DKK1*0.015602891 +
OSM*0.207589957 + STC2%*0.075574581 + ANGP
TL3*0.645334283 + NR2F2*0.015710952. We further ex-
plored the protein expression of these nine prognosis-
related IRGs in THPA (Fig. 5). Consistent with our re-
sults, THPA database showed that HSPA6, S100A12,
CACYBP, NOS2, and STC2 in EC tissues were up-
regulated, and ANGPTL3 was down-regulated compared
with those in normal tissues. However, we did not find
expression of DKK1, OSM and NR2F2 proteins in the
database.

Validation of the prognosis-related IRGs in the Oncomine
database

We validated the reliability of the prognosis-related IRGs
by using Oncomine. The databases showed that the
IRGs were differentially expressed in EC and normal
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Fig. 1 Differential expression analysis of DEGs and IRGs. a Heatmap of DEGs; Red plots: upregulation; Green plots: downregulation; Black plots:
normally expressed mRNAs. b Volcano plot of IRGs; Red, green and black plots: differentially expressed mRNAs as indicated in A
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Fig. 2 Functional enrichment analysis of differentially expressed IRGs. a Gene ontology analysis; the ball in the three rectangles represent
biological process, cellular component and molecular function, respectively. b The significant KEGG pathways of IRGs

tissues. As shown in Supplementary Fig. 1, HSPAS®,
S100A12, CACYBP, NOS2, DKK1, OSM and STC2 were
up-regulated, and ANGPTL3 and NR2F2 were down-
regulated in EC tissues compared with those in normal
tissues. We found that the results were almost consistent
with our predictions.

Validation of the prognostic capacity of the model

Patients were separated into the high-risk group and the
low-risk group based on the median risk score (Fig. 6 a-
¢). Survival analysis showed that the survival rate in the
high-risk group was remarkably lower than those in the
low-risk group (p==2.366e- 06, Fig. 6d). The area under
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Fig. 3 Forest plot of hazard ratios showing the prognostic values of genes, in which the unadjusted hazard ratios as well as the corresponding
95% confidence intervals are displayed




Zhang et al. BMC Cancer (2021) 21:113

Page 5 of 16

and the triangles filled with blue represent TFs

Fig. 4 Differential expression analysis of TFs and the regulatory network. a Heatmap of TFs, red: upregulation; green: downregulation; black:
normally expressed mRNAs. b Volcanic maps of TFs; red, green and black plots: differentially expressed mRNAs as indicated in A. ¢ Regulatory
network integrated the survival associated IRGs and differentially expressed TFs; the circles filled with pink represent the survival associated IRGs
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curve (AUC) of the receiver operating characteristic
(ROC) curve was 0.826 (Fig. 6e). Compared with clinical
factors (including age, gender, grade, stage and TMN), this
signature showed a greater performance in predicting the
prognosis of EC. At the same time, univariate and multiple
regression analysis (Fig. 7a, b) showed that when other
clinical parameters were adjusted, the prognostic signature
may become an independent predictor. The clinical sig-
nificance of included genes was also explored in this study
(Fig. 8a-j). In order to assess the prognostic capacity of the

model, we conducted a stratified analysis of clinical fac-
tors. Interestingly, we found that nearly the high-risk pa-
tients in subgroups of age < 65(Fig. 9a), male (Fig. 9b), G1
& G2(Fig. 9¢), stage III & IV (Fig. 9d), T-3-4(Fig. 9¢), MO
(Fig. 9f), N1-3(Fig. 9g) and EAC (Fig. 9h) were inclined to
unfavorable overall survival.

Construction and validation of predictive nomogram
Using a number of independent prognostic factors (in-
cluding age, gender, grade, stage, TMN, histology, and
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Table 1 The immune-based prognostic index model of EC
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id coef HR HR.95L HR.95H pvalue
HSPA6 0.006713979 1.006736568 1.000468103 1.013044308 0.035133319
S100A12 0.003828117 1.003835454 1.002153991 1.005519738 7.62E-06
CACYBP 0.042341765 1.043250965 0.992392076 1.09671631 0.096819638
NOS2 0.024902941 1.02521561 1.009716012 1.040953134 0.001355421
DKK1 0.015602891 1.015725251 1.005677036 1.025873864 0.002098124
OSM 0207589957 1.230708423 1.044607882 1449963424 0.013076143
STC2 0.075574581 1.07850366 1.018550661 1.141985558 0.009601837
ANGPTL3 0.645334283 1.906624275 1.249904495 2908395112 0.002741427
NR2F2 0.015710952 1.015835018 1.005558018 1.026217051 0.002459204

risk scores), we established a nomogram to predict 1-
year and 3-year OS in 100 EC patients. The calibration
chart showed that the nomogram might overestimate or
underestimate the mortality (Fig. 10). These results sug-
gested that the nomogram based on multiple factors can
better predict short-term survival (1year and 3 years)
compared to the nomogram based on a single factor.

Identification of related biological processes and
pathways

We employed risk score to classify the entire data set
and determine the related pathways with these nine
genes by using the Java software GSEA. The results
showed that “one carbon pool by folate”, “proteasome”,
“spliceosome” and “RNA degradation” were more abun-
dant in the high-risk group than in the low-risk group.
This suggests that in high-risk patients, the nine genes
were most involved in pathways of protein degradation,
RNA degradation and splicing. That is to say, patients
with protein degradation, RNA degradation and splicing
effects were more inclined to a poor prognosis (Fig. 11).

Difference of tumor-infiltrating immune cells between the
two risk groups

To explore the relationship between the present IRG-
based prognostic signature and tumor immune micro-
environment, we compared the infiltration of immune
cells in different risk groups as defined by the present
IRG-based prognostic signature. The results showed that
Macrophages M0, Macrophages M2 and activated mast
cells were significantly enriched in high-risk group, while
CD8 T cells and regulatory T cells (Tregs) were signifi-
cantly enriched in the low-risk group (Fig. 12). At the
same time, there was no significant difference in the en-
richment of some other immune subsets between the
two groups, such as B cells naive, Eosinophils, Mast cells
resting, T cells gamma delta, T cells follicular helper,
Plasma cells, NK cells resting, Macrophages M1, B cells
memory, Monocytes, T cells CD4 memory resting, Den-
dritic cells resting, Neutrophils, Dendritic cells activated,

T cells CD4 memory activated and NK cells activated
(Supplementary Fig. 2).

Discussion

Esophageal cancer has a large number of new cases
every year, and it has historically been regarded as an
uncontrollable disease process. The etiology of esopha-
geal cancer may be multifactorial, but part of it is due to
the unique manifestation of this cancer [21]. At present,
for the treatment of esophageal cancer, attention has
shifted to the development of immunotherapy with
novel immune biomarkers [22]. Somatic cells acquire
malignancy through genetic alterations. Cancer cells
usually evade the recognition of the immune system and
develop into clinically meaningful masses [23]. Com-
pared with conventional therapies, cancer immunother-
apy shows long-lasting response with fewer adverse
reactions [24]. This provides a new option for the treat-
ment of EC.

The prognostic model for EC has been continuously
updated [25-27]. In this study, we identified 247 up-
regulated and 56 down-regulated IRGs in EC and
screened out survival-related IRGs. Based on these data,
we established a prognostic model that divided EC pa-
tients into high-risk and low-risk groups. This model
showed a good predictive performance (AUC 0.826).
The model was also an independent prognostic indicator
by multivariate analysis incorporating other clinical fac-
tors. KEGG analysis indicated that the main pathway
was enriched in cytokine-cytokine receptor interaction.
Many biological processes are regulated by cytokines, in-
cluding cell growth, differentiation, immunity, inflamma-
tion, and metabolism [28]. Tumor progression can be
promoted by cytokines that affect the tumor microenvir-
onment and directly act on cancer cells [29]. Moreover,
cytokines participate in the immune response of cyto-
toxic T lymphocytes (CTLs) by modulating the differen-
tiation of Th1 and Th2 cells [30]. Kita Y et al. found that
STC2 may be involved in lymph node metastasis, mak-
ing it a potential prognostic marker for patients with EC
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[31]. Studies also demonstrated that STC2 may play an
important role in ESCC tumorigenesis [32]. Abnormal
expression of DKKI1, which is regulated by DKK1-
CKAP4 pathway, predicts the poor prognosis of esopha-
geal squamous cell carcinoma (ESCC) [33]. These results

are consistent with our findings. CacyBP regulates cell
proliferation, tumorigenesis, differentiation or gene ex-
pression [34]. In colon cancer, CacyBP can promote the
growth of cancer cells by enhancing the ubiquitin-
mediated degradation of p27kipl [35]. In addition,
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studies have confirmed that CacyBP level increased in
gastric, nasopharyngeal carcinoma, osteogenic sarcoma
and melanoma [36, 37].

In our prognostic model, the IRGs showing prognostic
values included HSPA6, S100A12, CACYBP, NOS2,
DKK1, OSM, STC2, ANGPTL3 and NR2F2. Among the,
HSPA6 may be associated with early recurrence of HCC

[38]. In ESCC, S100A12 is downregulated at the protein
level [39]. In Barrett’s esophagus and related adenocar-
cinoma, expression of inducible nitric oxide synthase
(NOS-2) is increased, and NOS-2 also plays a role in in-
flammation and epithelial cell growth [40]. OSM has
been identified as an inhibitor of tumor cell growth in a
variety of cancers, including melanoma, ovarian cancer,
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and glioblastoma carcinomas [41-43]. The splice variant
of oncostatin M receptor [ is overexpressed in human
esophageal squamous cell carcinoma [44]. Angiopoietin-
like protein 3(ANGPTL3) is indicative of EC prognosis
[45]. NR2F2 is involved in the progression of prostate
adenocarcinoma [46], and NR2F2 expression is a prog-
nostic factor for breast neoplasms [47]. High expression
of NR2F2 in certain gastric and esophageal adenocarcin-
omas is associated with abnormal expression of cadherin
11, suggesting that the NR2F2-related embryonic path-
ways in these tumors are reactivated [48]. Proteasome
dysregulation is implicated in the development of many
types of cancer [49]. The proteasome is involved in cell
cycle and transcription, two processes indispensable for
cancer development [50]. The spliceosome catalyzes pre-
mRNA splicing, a key regulatory step in gene expression
[51, 52]. Mutations in genes encoding splice proteins are

frequently found in cancer [53]. Small molecule inhibi-
tors that target splice components can be used to create
anti-cancer drugs [52]. RNA degradation is a key post-
transcriptional regulatory checkpoint to maintain proper
functions of organisms. Ribonuclease, a key enzyme re-
sponsible for RNA stability, can be used alone for RNA
degradation, and can bind to other proteins in the RNA
degradation complex [54].

Previous immunotherapies mainly rely on T cells in
tumor immune defense [55, 56]. In the present research,
the abundance of CD8 T cells and regulatory T cells in the
low-risk group increased. T cells are critical in host defense
against cancer [57]. The value of CD8 T cells for cancer
prognosis has been assessed [58—62]. In addition, CD8 T
cells also play a role in the progression of EC [63, 64].

Tregs are divided into two major subpopulations:
thymus-derived Tregs (nTregs) and inducible Tregs
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(iTregs) [65]. Tregs show significant versatility in their  cancers that share a common feature of prominent
inhibitory mechanisms by releasing cytokines to directly  chronic inflammation, such as colon, breast, bladder or
inhibit signal transduction of effector T cells [66]. Tregs head and neck cancers, intra-tumor accumulations of
can also inhibit and kill B cells by inducing programmed Treg appear to associate with favorable prognosis and
cell death [67]. Indeed, Treg infiltration into the tumor improved OS [71-73] .This association has been ex-
has been negatively correlated to OS in a majority of hu-  plained by the capability of Treg to suppress “tumor
man solid tumors [68, 69]. However, this correlation is  promoting inflammation” (TPI). Moreover, previous
highly variable, depending on the tumor type [70]. In  study found that regulatory T «cells are positively
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correlated with locoregional control may be through
down-regulation of harmful inflammatory reaction,
which could favor tumor progression in head and neck
squamous cell carcinoma [71]. So it can be explained
that why the abundance of regulatory T cells (Treg) in
the low-risk group was higher than in the high-risk
group in our finding. In high-risk group, we found that
macrophages M0, M2 and activated mast cells were also
significantly enriched. Tumor-associated macrophages
are the most abundant cancer immune cells. Studies

have found that the transcription factor forkhead box
protein O1 (FOXO1) can promote the polarization of
macrophages MO to M2 and the recruitment of macro-
phages M2 in ESCC through transcriptional regulation
[74]. Macrophage M2 can be transformed into macro-
phage M1, and can promote the proliferation, migration
and ring-forming ability of lymphatic endothelial cells
associated with EC [75]. In addition, macrophage M2
can promote the migration and invasion of ESCC cells,
enhance the epithelial-mesenchymal transition process,
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and promote tumor progression, resulting in poor prog-
nosis for ESCC patients [76]. Tissue kallikrein (TK1),
which is highly expressed in activated mast cells, can
participate in the formation of mitogenic kinin, which
can stimulate the proliferation of tumor cells and en-
hance metastasis by increasing vascular permeability
[77]. All these researches above can support the finding
of our study.

It is the first time that a prognostic nomogram is de-
veloped with nine immune related genes. This nomo-
gram can be routinely applied and is cost-effective in
practice, as it does not need whole-genome sequencing
for EC patients. When combined with clinical parame-
ters like TNM stage, the nomogram can show a greater
prognostic performance.

Although we constructed a novel nine-gene prognostic
signature in esophageal cancer, several limitations of this
study should also be acknowledged. Firstly, our prognos-
tic signature was only based on the data from TCGA
database, which is not validated in other databases or
other centers across different populations. The perform-
ance of this prognostic signature might be more reliable
if validation is performed with independent external data
sets with long-term follow up. Secondly, this study only
preliminary proposed a prognostic model and the valid-
ity of the five-gene signature model needs to be further
verified by clinical trials. Our study was designed on the
basis of a retrospective analysis and prospective research
should be performed to verify the outcomes. Thirdly, the
mechanisms underlying the nine immune-related genes
in the prognosis prediction of esophageal cancer needed

to be investigated through in vitro and in vivo
experiments.

Conclusions

We identified the IRGs associated with the prognosis of
EC and developed an IRGs-based prognostic signature
that stratify EC patients into two subgroups with statisti-
cally different survival outcomes.
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