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Different ODE models of tumor growth can

deliver similar results

James A. Koziol* , Theresa J. Falls and Jan E. Schnitzer
Abstract

Background: Simeoni and colleagues introduced a compartmental model for tumor growth that has proved quite
successful in modeling experimental therapeutic regimens in oncology. The model is based on a system of ordinary
differential equations (ODEs), and accommodates a lag in therapeutic action through delay compartments. There is
some ambiguity in the appropriate number of delay compartments, which we examine in this note.

Methods: We devised an explicit delay differential equation model that reflects the main features of the Simeoni
ODE model. We evaluated the original Simeoni model and this adaptation with a sample data set of mammary
tumor growth in the FVB/N-Tg(MMTVneu)202Mul/J mouse model.

Results: The experimental data evinced tumor growth heterogeneity and inter-individual diversity in response,
which could be accommodated statistically through mixed models. We found little difference in goodness of fit
between the original Simeoni model and the delay differential equation model relative to the sample data set.

Conclusions: One should exercise caution if asserting a particular mathematical model uniquely characterizes
tumor growth curve data. The Simeoni ODE model of tumor growth is not unique in that alternative models can
provide equivalent representations of tumor growth.

Keywords: Tumor growth, Cancer chemotherapy, Mathematical model, Ordinary differential equations, Delay
differential equations
Background
Simeoni and colleagues [1–3] introduced and developed a
pharmacokinetic/pharmacodynamic (PK/PD) model of
tumor growth from in vivo animal studies, which could be
summarized mathematically by a system of ordinary dif-
ferential equations (ODEs). The model, and adaptations,
have proved quite successful in predicting or modeling
tumor growth and efficacy of cancer treatments [4–9].
A distinguishing characteristic of the Simeoni tumor

growth model is that under chemotherapy, a drug’s action is
not instantaneous: rather, tumor cells pass through progres-
sive stages of damage because of the drug’s mechanism of ac-
tion. This delay in drug action is modeled through a series of
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delay compartments through which the cells transit before
elimination. In this note, we propose an alternative mathem-
atical formulation of the Simeoni model using delay differen-
tial equations, without recourse to a series of delay
compartments. We describe the two models in the next sec-
tion, and then compare their performances with experimen-
tal data relating to mammary tumor growth in a mouse
model. We conclude that one should be cautious if asserting
that a particular tumor growth model uniquely characterizes
experimental data.

Methods
The Simeoni model
The Simeoni model is depicted in Fig. 1. The central
compartment Z1 represents the actively growing tumor,
which increases according to a growth function TGF.
c(t) denotes the concentration of a chemotherapeutic or
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Fig. 1 Schematic representation of the Simeoni tumor growth model. The tumor resides in compartment Z1, with growth described by a tumor
growth function. c(t) denotes the plasma concentration of an anticancer agent if present. The drug elicits its effect decreasing the tumor growth
rate by a factor proportional to c(t)*Z1(t) through the constant parameter k1. Tumor cells cycle successively through transit compartments Z2, Z3,
Z4 before cell death. k2 is a first-order rate constant of transit. The number of transit compartments is arbitrary. The system of ordinary differential
equations describing this model is given in the text
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immunotherapeutic agent in the central compartment
Z1 at time t. In turn, c(t) induces a fraction of tumor
cells to commit to cell death with a killing constant k1.
Tumor cells damaged by pharmacological treatment are
shunted off successively into the peripheral compart-
ments Z2, Z3, Z4 with a rate constant k2, followed by
elimination representing cell death. The observed tumor
volume is the sum of cells in compartments Z1, Z2, Z3,
Z4. The system of differential equations prescribing the
Simeoni model is as follows:

dZ1 tð Þ
dt

¼ TGF tð Þ−k1c tð ÞZ1 tð Þ
dZ2 tð Þ
dt

¼ k1c tð ÞZ1 tð Þ−k2Z2 tð Þ
dZ3 tð Þ
dt

¼ k2Z2 tð Þ−k2Z3 tð Þ
dZ4 tð Þ
dt

¼ k2Z3 tð Þ−k2Z4 tð Þ

ð1Þ

with initial conditions Z1(0) =V0, Z2(0) = Z3(0) = Z4(0) =
0. Total tumor volume is

V tð Þ ¼ Z1 tð Þ þ Z2 tð Þ þ Z3 tð Þ þ Z4 tð Þ; ð2Þ

and the tumor growth function TGF(t) is given by
Fig. 2 Schematic representation of the Simeoni tumor growth model, with
tumor cell death is delayed relative to drug treatment. The delay is explicit
describing this model
TGF tð Þ ¼ λ0Z1 tð Þ
1þ λ0

λ1
V tð Þ

� �ψh i1=ψ ð3Þ

Although we have depicted the Simeoni model with 3
peripheral compartments, we note that the number of
peripheral compartments is in general arbitrary.
The model incorporating a delay differential equation

is conceptually similar to the Simeoni model, the only
difference being that the compartments Z2, Z3, and Z4

are replaced by a single compartment that incorporates
a delay in elimination (Fig. 2). The system of differential
equations describing this model is:

dZ1 tð Þ
dt

¼ TGF tð Þ−k1c tð ÞZ1 tð Þ ð4Þ

dZ2 tð Þ
dt

¼ k1c tð ÞZ1 tð Þ−k2delay Z2; t2ð Þ;

where

delay Z2; t2ð Þ ¼ Z2 t−t2ð Þ;

TGF(t) and c(t) are as before, V(t) = Z1(t) + Z2(t), and
initial conditions are Z1(0) = V0, Z2(0) = 0, and Z2(t) = 0
transit compartments replaced by a single compartment in which
ly incorporated into the system of ordinary differential equations
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for t < 0. The variable t2 represents the time delay before
elimination.
In the absence of chemotherapeutic or immunothera-

peutic intervention (i.e., c(t) = 0), tumor growth in the
Simeoni formulation reduces to the biphasic process
TGF(t), characterized by initial exponential growth
Fig. 3 a, b Time course of tumor growth in 21 untreated tumor-bearing m
and the Y-axis (volume) denotes mm3
followed by linear growth. In particular, in contrast to
more classic models of tumor growth, e.g. logistic, Gom-
pertz, Von Bertalanffy, there is no plateau or upper limit
of tumor size. One of these alternative models might cred-
ibly be more appropriate than TGF in certain experimen-
tal settings. The generalized logistic model is defined by
ice over the course of the experiment. The X-axis (time) denotes days,
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dV
dt

¼ aV 1−
V
K

� �ν� �

V 0ð Þ ¼ V 0;

ð5Þ

the Gompertz model is given by

dV
dt

¼ aV ln βVð Þ
V 0ð Þ ¼ V 0;

ð6Þ

and the Von Bertalanffy model is

dV
dt

¼ aV γ−bV

V 0ð Þ ¼ V 0:
ð7Þ

These three models have analytic solutions [10], which
might aid in nonlinear fitting to experimental data.

In vivo tumor growth experiments
A series of experiments was undertaken at PRISM, the goal
being to establish a viable and reproducible mouse model for
mammary tumors. The FVB/N-Tg(MMTVneu)202Mul/J
model was used for this purpose (Jackson stock #002376). All
mice were bred at PRISM, with female mice genotyped by
polymerase chain reaction to confirm transgene expression.
Focal mammary tumors appear in female mice at about 100
days, reset as day 0 to mark the onset of the experiment. Data
from one particular experiment are considered in the present
work. In this experiment, 40 mice were randomly assigned to
either no treatment (n = 21) or a single dose of cisplatin (5
mg/kg, n = 19) on day 0; all animals were relatively healthy
and functioning on day 0, with all tumors smaller than 700
mm3 at initiation. The primary experimental outcome con-
sisted of the series of tumor measurements from each animal,
which were taken daily (excepting weekends, holidays) by a
single individual (TJF) using digital calipers, and tumor vol-
umes were recorded using the approximating formula
V= (Length x Width2)/2, where L >W. [In this approximat-
ing formula, tumor shape is taken as an ellipsoid generated
from the rotation of a semi-ellipsis around its larger axis
(length), and a multiplicative constant involving p is ignored.]
Mice were euthanized when tumors reached a volume of ~
2500mm3 (or measured 17mm in length +width + height),
or for complications, e.g., interference, ulceration. The
Table 1 Summary statistics relating to growth curve models fit to th

model − 2*LL AIC w(AIC)

generalized logistic 5159.69 5179.69 .0037

Gompertz 5182.79 5198.79 2.66E-07

von
Bertalanffy

5189.97 5209.97 9.94E-10

Simeoni 5148.52 5168.52 .9963

Notes
LL log likelihood, AIC Akaike information criterion, w(AIC) weights derived from cand
weights derived from candidate model AICc values, BIC Bayesian information critero
method of euthanization was CO2 narcosis followed by cer-
vical dislocation, a method consistent with the 2013 recom-
mendations of the American Veterinary Medical Association
Panel on Euthanasia. The protocol for this study was ap-
proved by the Institutional Animal Care and Use Committee
of Prism, confirmed by the National Institutes of Health Of-
fice of Laboratory Animal Welfare Assurance, #D16–00819.
Animals were housed in Prism’s animal care facility.
All 40 animals initially randomized to the untreated

and the cisplatintreated groups were included in the
subsequent analyses. There were a total of 386 observa-
tions among the 21 control animals, and 545 observa-
tions among the 19 treated animals.

Statistical methods
A nonlinear mixed effects (NLME) model was used to fit
growth curves to the longitudinal tumor size data. In
our context, a general form for NLME models would be:

yij ¼ f tij;φi

� �þ g tij;φi; ζ
� �

εij;…:1≤ i≤N ;…1≤ j≤ni;

where N is the number of individuals, ni is the number
of observations for individual i, t is the regression vari-
able time, and y are the observations (tumor volumes).
The term f is the structural model, expressed from the
systems of ordinary differential equations shown earlier.
The residual error is g(tij, φi, ζ)εij, where εij ∼N(0, σ

2) In
our modeling,
we chose the function g to be a linear combination of a
constant term and a term proportional to the structural
model f with the additional parameters ζ = (a, b), that is,
y = f + (a + b ∗ f)e.
The individual parameters φi are defined as follows:

φi ¼ h μ; λið Þ;…:λi∼N 0;Ωð Þ;…:

i ¼ 1; :::;N ;

where m is a p-dimensional vector of fixed population
parameters, li is a p-vector of random effects, W is the p
x p variance-covariance matrix of the random effects,
and h is a fixed transformation. We assume that all of
the model parameters are log-normally distributed
e control data

AICc w(AICc) BIC w(BIC)

5180.07 .0038 5190.13 .0038

5199.01 2.88E-07 5207.15 7.72E-07

5210.35 9.95E-10 5226.42 5.05E-11

5168.90 .9963 5179.01 .9962

idate model AIC values, AICc corrected Akaike information criterion, w(AICc)
n, w(BIC) weights derived from candidate model BIC values



Fig. 4 Observed tumor sizes and fitted values of the 21 untreated tumor-bearing mice over the course of the experiment. The Simeoni tumor growth function
was fit to the tumor size data from the entire cohort of animals, and individual fits were then derived from the mixed model analysis undertaken in Monolix
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among the individuals in each cohort, so that h(x) =
exp(x).
Parameter estimation of the typical population values and

the interindividual variability of each model parameter were
estimated using Monolix 2019R1 (Lixoft, Antony, France).
Fig. 5 a, b Time course of tumor growth in 19 treated tumorbearing mice
dose of cisplatin (5 mg/kg) on day 0. The X-axis (time) denotes days, and th
The Monolix suite of programs implements a stochastic ap-
proximation expectation maximization (SAEM) algorithm
[11, 12] for maximum likelihood estimation of the model pa-
rameters. With the treated animals, following a single bolus
injection of cisplatin we took c(t) to represent first order
over the course of the experiment. Treatment consisted of a single
e Y-axis (volume) denotes mm3
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elimination, that is, a constant proportion of the drug is elim-
inated per unit time.
Model selection and comparison was based on the

Akaike information criterion (AIC), the corrected Akaike
information criterion (AICc), and the Bayesian informa-
tion criterion (BIC). AICc is a modified version of the
AIC, and includes a correction term for small sample
sizes [13–15]:

AICc ¼ AIC þ 2k k þ 1ð Þ
n−k−1

ð8Þ

where k denotes the number of free parameters, and n is
the number of observations. In our setting, we also in-
cluded variance components from the random effects in
the parameter count.
Given a set of candidate models, each with a specific

IC (AIC, AICc, BIC) value, we calculate IC model
weights [15–17] for comparative purposes. We first
compute for each model j the difference in IC relative to
the IC of the best candidate model: Dj = ICj - min IC.
We then obtain the model weights by transforming to
the likelihood scale and normalizing:

wj ¼
exp −Δ j=2

� �
XM
m¼1

exp −Δm=2ð Þ
ð9Þ

These weights are measures of the strength of evi-
dence. They sum to one, and reflect the probability of
each model j given the data and the M candidate models
[15, 17].

Results
In the experiment outlined above, a total of 21 tumor-
bearing mice were untreated. Tumor growth over time
in this group of animals is shown in Fig. 3.
We use this cohort of controls to investigate various

tumor growth functions, namely, generalized logistic,
Gompertz, Von Bertalanffny, and Simeoni. We present
summary data relative to these fits in Table 1. It turns
out that the Simeoni tumor growth function provides
the best fit to these data, with minimal AIC, AICc, and
Table 2 Summary statistics relating to growth curves models fit to t

model -2*LL AIC w(AIC)

Simeoni -1 6786.12 6818.12 .015

Simeoni - 2 6780.10 6812.10 .310

Simeoni - 3 6780.32 6812.32 .278

delay 6775.61 6811.61 .397

Notes
1, 2, and 3 in the Simeoni model designations refer to the number of delay compar
peripheral compartment, with an explicit delay in elimination (Fig. 2)
LL log likelihood, AIC Akaike information criterion, w(AIC) weights derived from cand
weights derived from candidate model AICc values, BIC Bayesian information critero
BIC. The weights convey the overwhelming preference
for the Simeoni tumor growth function among the can-
didate functions.
Plots of the individual fits with the Simeoni tumor

growth function are shown in Fig. 4. Although the individ-
ual growth curves are quite heterogeneous (Fig. 3), the fit-
ted curves quite nicely represent the observed data.
Nineteen tumor-bearing mice were treated with cisplatin.

Their individual growth patterns are shown in Fig. 5.
We used the Simeoni tumor growth function, and pro-

ceeded to fit the Simeoni model with varying numbers
of peripheral delay compartments as well as the delay
model to these data. Summary statistics are given in
Table 2. Among the candidate models, the delay
model evinces minimal AIC and AICc values, whereas
the Simeoni model with 2 delay compartments mini-
mizes the BIC. The weights reflect this model uncer-
tainty: one might deem the delay model preferable to
the Simeoni - 2 and Simeoni - 3 models relative to
AIC or AICc, but this order is reversed with BIC. Re-
gardless, the Simeoni - 1 model appears inferior to
the other candidate models.
Plots of the individual fits with the delay model are

shown in Fig. 6. Again, inter-animal variability is quite
high, especially in terms of tumor response to treatment,
with the individual fits modeling the observed data
appropriately.

Discussion
The Simeoni tumor growth function switches between
exponential and linear growth, but without a plateau
phase, in contrast to the classic tumor growth functions.
It works quite well in our experimental setting, in which
tumor-bearing mice were euthanized for ethical reasons
when tumor volume reached the maximum allowable
tumor mass, and this generally occurred before a plateau
phase was reached. We caution, however, that in other
experimental or clinical settings, the Simeoni tumor
growth function might be supplanted by a more bio-
logically realistic growth law [10, 18]. And, as a reviewer
has pointed out, even the classical growth curve models
logistic, Gompertz, and von Bertalanffy (our eqs. 5–7)
he treated data

AICc w(AICc) BIC w(BIC)

6818.91 .016 6833.23 .020

6812.89 .325 6827.21 .410

6813.11 .291 6827.44 .366

6812.64 .368 6828.61 .204

tments incorporated into these models (Fig. 1). The delay model has one

idate model AIC values, AICc corrected Akaike information criterion, w(AICc)
n, w(BIC) weights derived from candidate model BIC values



Fig. 6 Observed tumor sizes and fitted values of the 19 treated tumor-bearing mice over the course of the experiment. A system of delay differential
equations incorporating the Simeoni tumor growth function was fit to the tumor size data from the entire cohort of animals, and individual fits were
then derived from the mixed model analysis undertaken in Monolix
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enjoy many variations, specializations, and extensions,
which might be judiciously employed to good effect in
experimental settings.
The original Simeoni model essentially is a transit

compartment model: tumor cells pass through pro-
gressive stages of damage because of the drug’s mech-
anism of action. Dying tumor cells stop proliferating
and pass through several stages of dying (depicted by
n delay compartments) before eventual death. How-
ever, there is some ambiguity over the exact number
of delay compartments. With our experimental data,
the appropriate number of delay compartments re-
mains somewhat uncertain, relative to goodness of fit.
Moreover, we have found that the delay compart-
ments can effectively be replaced by a model incorp-
orating a single peripheral compartment with a delay
in elimination; that is, explicit incorporation of a
delay term in the Simeoni tumor growth model can
operationally replace the multiple transit compart-
ments originally proposed, and effectively model the
duration of the death process subsequent to drug ac-
tion. Delay differential equation models have often
been successfully investigated in tumor growth studies
[19–24], and seem especially applicable in settings
where tumor volume decrease appears delayed with
respect to observed drug concentrations. With agents
such as cisplatin, the delay in cell kill relative to the
time course of extracellular exposure likely reflects
the kinetics of cellular drug uptake and binding to
intracellular targets [25]. Alternatively, more physiolo-
gically based models can ameliorate the ambiguity in-
herent with an arbitrary number of transit
compartments [25–28].
With regard to model selection, we are more inter-

ested in the relative performances of the models ra-
ther than their absolute AIC, AICc, or BIC values. In
this regard, the weights derived from the information
criterion values quantify the probabilities of each
model being optimal, given the data and the set of
candidate models, hence provide useful criteria for
model comparisons. There is little uncertainty about
the suitability of the Simeoni growth function in
Table 1, whereas the identifiability of the best ap-
proximating model in Table 2 is not incontrovertible.
Regardless, the delay model is certainly competitive
with the Simeoni model, and does provide excellent
agreement with the experimental data, even with sub-
stantial tumor growth heterogeneity and inter-animal
diversity in response.

Conclusions
One should exercise caution if asserting a particular
mathematical model uniquely characterizes tumor
growth curve data. The Simeoni ODE model of tumor
growth is not unique in that alternative models can pro-
vide equivalent representations of tumor growth.
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