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Tumor mutational burden is associated
with poor outcomes in diffuse glioma
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Abstract

Background: Tumor mutational burden (TMB) is a potential biomarker for immune checkpoint therapy and prognosis.
The impact of TMB on clinical outcomes and the correlation coefficient between exome sequencing and targeted
sequencing in glioma have not yet been explored.

Methods: Somatic mutations in the coding regions of 897 primary gliomas and the clinical and RNA-seq data of 654
patients in The Cancer Genome Atlas (TCGA) database were analyzed as a training set, while another 286 patients in
the Chinese Glioma Genome Atlas (CGGA) database were used for validation. Descriptive and correlational analyses
were conducted with TMB. Enrichment map analysis and gene set enrichment analysis (GSEA) were also performed.

Results: TMB was higher for the group of mutant genes that are frequently mutated in glioblastomas (GBMs) and
lower for the group of mutant genes that are frequently mutated in lower-grade gliomas (LGGs). Patients with a higher
TMB exhibited shorter overall survival. TMB was associated with grade, age, subtype and mutations affecting genomic
structure. Moreover, univariate and multivariate analyses showed that TMB was an independent prognostic factor for
glioma. The signaling pathways of the cell cycle were enriched in the TMBHigh group. TMB was higher in the mismatch
repair (MMR) gene mutant group than in the wild-type group, but the MMR pathway was enriched in the TMBHigh

group of gliomas without mutations in classical MMR genes. The correlation between TMBs calculated through exome
sequencing and targeted sequencing was moderate, and panel-based TMB was not correlated with prognosis.

Conclusions: TMB is associated with poor outcomes in diffuse glioma. The high proliferative activity in the TMBHigh

group could account for the shorter survival of these patients. This association was not reflected by a pan-cancer
targeted sequencing panel.
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Background
Glioma is the most common malignant primary brain
tumor in adults. Molecular classification via genomics,
transcriptomics and methylomics has revealed the po-
tential value of diagnosis based on molecules [1–3].
With the publication of the 2016 WHO classification,

integrated diagnosis including mutational and histo-
logical phenotypes has been broadly applied in patho-
logical typing. In some cases, the genotype even trumps
the histological phenotype [4]. Tumor mutational bur-
den (or tumor mutational load) is a potential biomarker
of immune checkpoint inhibitors in many cancer types,
as neoantigens are generated by somatic tumor muta-
tions [5]. T cell-inflamed GEPs (gene expression profiles)
are used to predict the response to PD-1 blockade and
combined with TMB, they are used to predict the effects
of anti-PD-1 treatment [6]. TMB is also a poor
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prognostic marker for neuroblastoma but a good prog-
nostic marker for non-small-cell lung cancer [7, 8].
Furthermore, deficiency of the MMR complex leads to
the accumulation of mutations [9, 10]. Exome sequen-
cing or targeted sequencing is used to measure TMB. It
is reported that panel-based TMB is highly correlated
with TMB calculated by exome sequencing [9, 11]; thus,
panel-based TMB is commonly used in cancer patients
to predict survival after immunotherapy [5].
In glioma, the reports of TMB seem to be controver-

sial. TMB is higher in LGG than in GBM [12]; on the
other hand, the TMB of LGG is lower than that of GBM
[13]. It has also been reported that the correlation of
TMB and grade is not significant [14]. The prognostic
value and related signaling pathways of TMB in glioma
are still not known. In this study, using multi-omics data
from TCGA, we systematically analyzed the correlations
between TMB and mutational distribution, clinical
features and transcriptomic data, revealing potential
value for predicting prognosis and the related enrich-
ment pathways of TMB in glioma. With CGGA data, we
validated that TMB was an independent biomarker of
prognosis. Furthermore, we found that MMR pathways
were activated in high-TMB glioma patients without
mutations in MMR genes. Finally, we evaluated the cor-
relation between exome sequencing-based TMB and tar-
geted sequencing-based TMB as well as the prognostic
value of panel-based TMB, and the results indicated that
it was inappropriate to predict TMB and prognosis with
pan-cancer targeted sequencing in glioma.

Methods
Data source
The training set included the exome sequencing data
(level 2, n = 897), RNA-seq data (n = 669) and clinical
data (n = 1105) of patients with LGG and GBM from
TCGA. Mutational data including variant allele frequen-
cies of mutations were obtained from cBioPortal (http://
www.cbioportal.org) [15, 16]. RNA-seq data were ob-
tained from GlioVis (http://gliovis.bioinfo.cnio.es/) [17].
Clinical data were collected from GlioVis and cBioPortal.
The whole-exome sequencing data (n = 286), mRNA-seq
data (n = 1018) and indicated clinical data of the valid-
ation set were obtained from CGGA (http://www.cgga.
org.cn/index.jsp). Integrated diagnosis was performed
according to the World Health Organization (WHO)
classification (2016).

TMB (tumor mutational burden)
The size of the whole-exome genomic region has been
defined as 36Mb. The size of the pan-cancer panel gen-
omic region has been defined as 1.06Mb. For the esti-
mation of the TMB of the training set, we used the same
approach as was outlined in a recent study [9], i.e.,

counting all coding somatic base substitutions and indels
in the targeted regions, including “stop_/start_lost/
frameshift_/missense_/inframe_” alterations. The soft-
ware used to estimate TMB was Personal Cancer Gen-
ome Reporter software [18]. The TMB of the validation
set was calculated with somatic mutations (including
single nucleotide variations and short insertions/dele-
tions) identified by SAVI2 as previously described on the
CGGA website (http://www.cgga.org.cn/about.jsp).

Statistical analysis
The Mann-Whitney test was performed to compare the
TMBs of two different groups. The Kruskal-Wallis test
was used to compare the TMBs of more than two differ-
ent groups. Spearman’s rank correlation test was used to
examine the associations between TMB and age and
gene expression. The optimal cut-off value was deter-
mined by X-tile. Patient survival was analyzed by the
Kaplan-Meier method. The following covariates were
used in Cox regression analysis (univariate and multivar-
iable): TMB group, sex, WHO grade, histology, IDH
status and chromosome 1p/19q codeletion. p < 0.05 was
considered statistically significant (*p < 0.05, **p < 0.01,
***p < 0.001).

GSEA and enrichment map
GSEA (gene set enrichment analysis) was performed
with GSEA software (http://software.broadinstitute.org/
gsea/downloads.jsp) [19], and GO biological process
analysis including 4436 gene sets was performed (http://
software.broadinstitute.org/gsea/msigdb/genesets.jsp?coll
ection=BP). An enrichment map was used to visualize
the results of GSEA according to previously reported
methods [20].

Results
Mutational distribution according to the elevation in TMB
To study the value of TMB in glioma, we first analyzed
the types and distributions of nonsynonymous mutations
(Supplementary Table 1). As previously reported, the
mutation frequencies of IDH1 were higher in LGG than
in GBM, and the mutation rates of PTEN and EGFR
were higher in GBM than in LGG. We confirmed this
conclusion through the analysis of mutational frequen-
cies in LGG and GBM (IDH1, 77% vs 7%; PTEN, 5% vs
29%; EGFR, 5% vs 17%; Supplementary Figs. 1 and 2).
Tumors with elevated TMB are enriched for mutations
in PTEN or EGFR. Consistently, IDH mutations were
primarily found in tumors with low TMB (Fig. 1). We
further analyzed the statistical significance of TMB in
the mutant and wild-type groups of the 20 genes. With
correction for multiple hypotheses, we found that TMB
was higher in the PTEN mutant group than in the PTEN
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wild-type group but lower in the IDH1 mutant group
than in the IDH1 wild-type group (Table 1).

TMB is associated with worse outcomes in glioma
patients
We further analyzed the relationships between TMB and
clinical features (Supplementary Table 2, n = 654).
Patients without clinical or mutational information were
excluded (Fig. 2a). As we expected, TMB increased
according to grade (median TMB, 0.47 vs 0.64 vs 0.99
mutations/Mb; Supplementary Fig. 3A). Through ROC
analysis, the AUCs for TMB for 2-, 3-, and 5-year sur-
vival were 0.775, 0.797, and 0.806, respectively (Fig. 2b).
We determined the cut-off value (between 0.64 and 0.67

mutations/Mb) of TMB with X-tile software, and the pa-
tients were divided into TMBHigh and TMBLow groups.
Overall survival was decreased in patients with a high
TMB compared to those with a low TMB (hazard ratio
3.91, 95% confidence interval 3.33–5.70; p < 0.001, log-
rank; Fig. 2c, left). Patients in the TMBHigh group exhib-
ited a median overall survival of 23.0 months, whereas
those in the TMBLow group exhibited a median overall
survival of 105.2 months. We confirmed the prognostic
effect of TMB with the top 20% of patients as TMBHigh

group and the bottom 80% of patients as TMBLow group
(hazard ratio 3.27, 95% confidence interval 3.93–8.04;
p < 0.001, log-rank; Fig. 2c, right). To determine the
prognostic value in the context of established risk

Fig. 1 Heatmap showing the top 20 genes’ mutational frequencies and their types in glioma (n = 897)
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factors, we performed survival analysis in different sub-
groups (Fig. 2d-g). TMB was significantly associated with
poor outcomes in the indicated subgroups except for the
glioblastoma, WHO grade IV and IDH wildtype sub-
groups. To test whether TMB was an independent bio-
marker for prognosis, we performed Cox regression
analysis in an independent validation set. In the univari-
ate analysis, age, grade, histology, IDH status, chromo-
some 1p/19q codeletion and TMB were statistically
significantly associated with overall survival (p < 0.01)
(Table 1, Supplementary Table 3). In the multivariable
analysis, grade, chromosome 1p/19q codeletion and

TMB were independently associated with overall survival
(Table 2). Furthermore, we analyzed the distribution of
clinical features accompanied by an elevated TMB (Fig.
2g). TMB was significantly increased in older patients
but was not associated with sex (Supplementary Fig. 3B,
C). In the subgroup analysis of integrated diagnosis,
TMB was found to be elevated in the anaplastic astrocy-
toma IDH wild-type group compared to the other astro-
cytoma group (Supplementary Fig. 3D). TMB was also
increased for the classic-like and mesenchymal-like
subtypes compared to other IDH wild-type subtypes and
for the G-CIMP-low subtype compared to other IDH

Table 1 Statistical significance of TMB in mutant and wildtype group of indicated genes in gliomas(n = 897)

Number of mutant group Number of
wildtype group

Median TMB of
mutant group

Median TMB of
wildtype group

P value
(Mann-Whitney test)

False discovery rate
(FDR)

Adjust p-value
(bonferroni)

IDH1 413 484 0.53 0.97 2.3E-58 4.6E-57 4.6E-57

TP53 317 580 0.67 0.81 5.5E-02 5.5E-02 1.0E+ 00

ATRX 203 694 0.61 0.81 1.2E-05 1.6E-05 2.4E-04

TTN 149 748 1.11 0.69 3.9E-20 3.9E-19 7.9E-19

PTEN 136 761 1.045 0.67 1.7E-18 1.2E-17 3.5E-17

CIC 106 791 0.47 0.78 1.4E-11 3.4E-11 2.7E-10

EGFR 89 808 1.08 0.69 2.1E-14 1.1E-13 4.3E-13

MUC16 74 823 1.06 0.72 5.6E-10 1.0E-09 1.1E-08

PIK3CA 74 823 0.92 0.72 1.4E-03 1.8E-03 2.9E-02

NF1 70 827 0.9 0.72 1.2E-02 1.4E-02 2.4E-01

PIK3R1 60 837 0.89 0.72 2.7E-02 2.9E-02 5.5E-01

RYR2 58 839 0.985 0.72 2.7E-02 2.9E-02 5.5E-01

FLG 57 840 1.33 0.72 1.8E-13 5.9E-13 3.6E-12

FUBP1 46 851 0.5 0.75 1.8E-13 5.9E-13 3.6E-12

SYNE1 45 852 4 0.72 6.8E-11 1.5E-10 1.4E-09

HMCN1 43 854 1.08 0.72 2.0E-08 3.0E-08 3.9E-07

PKHD1 42 855 1.14 0.72 2.6E-07 3.7E-07 5.2E-06

LRP2 41 856 1.25 0.72 1.2E-10 2.4E-10 2.4E-09

RB1 41 856 1.22 0.72 9.9E-09 1.7E-08 2.0E-07

SPTA1 41 856 1.25 0.72 3.0E-12 8.7E-12 6.1E-11

Table 2 Univariate and multivariable Cox regression analyses of factors associated with overall survival in glioma patients

Variable Univariate analysis Multivariable analysis

HR (95% CI) P* HR (95% CI) P

Age 1.86(1.19 to 2.90) < 0.01 / /

Gender 1.31(0.87 to 1.98) 0.19 / /

Grade 2.61(1.95 to 3.49) < 0.01 2.08(1.53 to 2.82) < 0.01

Histology 1.45(1.12 to 1.86) < 0.01 / /

IDH.status 0.36(0.24 to 0.54) < 0.01 / /

Chr.1p/19q.codeletion 0.12(0.05 to 0.27) < 0.01 0.15(0.06 to 0.36) < 0.01

TMB group 2.58(1.67 to 3.97) < 0.01 1.90(1.21 to 2.98) < 0.01
*All statistical tests were two-sided. CI confidence interval, HR hazard ratio, TMB cut-off value = 0.655 mutations/Mb
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Fig. 2 (See legend on next page.)
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mutant subtypes (Supplementary Fig. 3E) [5]. Mutational
analysis revealed that the patients exhibiting an
unmethylated MGMT promoter, non-codeletion of 1p/
19q and Chr.7.gain/Chr.10.loss exhibited a higher TMB
(Supplementary Fig. 3F). Overall, these data indicated
that TMB could be an independent prognostic bio-
marker of glioma.

TMBHigh gliomas exhibit elevated proliferative activity
and immune responses
To clarify the mechanism of the association between the
TMB and poor outcomes of glioma patients, we ana-
lyzed the data from patients with TMB information and
RNA-seq data (n = 654). Gene set enrichment analysis
(GSEA) coupled with enrichment map analysis was per-
formed to visualize the enriched biological processes.
The TMBHigh group was enriched in transcriptional
programs related to the cell cycle, DNA replication and
immune effector processes. In contrast, the transcrip-
tional programs of adenylate cyclase activity and synap-
tic transmission were enriched in the TMBLow group
(Fig. 3a, b). These transcriptomics data indicated that
high-TMB gliomas exhibit intensive proliferative activity,
which might result in a worse prognosis. We performed
GSEA in different subgroups and found that the
TMBHigh group was enriched in transcriptional pro-
grams related to the cell cycle when we controlled for
age, WHO grade, histology and IDH status (Supplemen-
tary Fig. 4). GSEA of the validation set also confirmed
the results (Fig. 3c). Furthermore, TMB exhibited a
modest correlation with the inflammatory biomarkers of
checkpoint inhibitor-based immunotherapy (Fig. 3d),
which was consistent with the findings of previous re-
ports based on the pan-cancer dataset [6].

High TMB is associated with the mismatch repair pathway
in gliomas without mutations in classical MMR genes
It has been reported that MMR (mismatch repair) defi-
ciency is associated with a higher TMB in gliomas [14],
and we confirmed this finding in the TCGA dataset.
Only 3.6% of glioma patients harbored MMR gene
mutations (32 of 897 glioma patients). TMB was ele-
vated in patients exhibiting MLH1, MSH2, MSH6,
PMS2, POLD1 or POLE gene mutations (Fig. 4a). We
further performed GSEA in patients without mutations
in MMR genes to confirm whether high TMB was asso-
ciated with low mismatch repair function. Interestingly,

mismatch repair-associated transcriptional programs
were also enriched in the TMBHigh group but not in the
TMBLow group (Fig. 4b, c). The correlation analysis of
TMB and the expression of MMR genes further demon-
strated that a high TMB was associated with the expres-
sion of MLH1, MSH2, MSH6, POLD1 and POLE in
gliomas without MMR mutations (Fig. 4d). These data
indicated that when the MMR genes are not mutated,
TMB exhibits a positive correlation with MMR function.

Pan-cancer targeted sequencing cannot predict prognosis
in glioma
Considering the cost of exome sequencing, targeted se-
quencing is widely used to predict TMB in pan-cancer ana-
lyses. We calculated TMB using 468 genes (Supplementary
Table 4) from MSK-IMPACT [11] and analyzed the
Spearman correlation with TMB calculated on the basis of
exome sequencing (Fig. 5a, Supplementary Table 5). Inter-
estingly, unlike other cancer types, the correlation between
panel-based TMB and exome sequencing-based TMB was
moderate in glioma (r = 0.3105). This result was confirmed
with two other panels (Supplementary Table 4) that are
used in China (Supplementary Fig. 5, r = 0.2753/0.3461).
We further performed ROC analysis for panel-based TMB
(Fig. 5b), and the result was significantly different from the
ROC of exome sequencing-based TMB (Fig. 2b). We per-
formed survival analysis with different TMB cut-off values.
Only when the cut-off value was between 0.64 and 0.67 was
TMB negatively associated with overall survival (Fig. 5c),
which was not consistent with previous results (Fig. 2c).
With the other cut-off value, TMB was not correlated with
overall survival (Fig. 5c). These data indicated that, at least
in glioma, pan-cancer panel-based TMB cannot represent
exome sequencing-based TMB and is not suitable for
prognosis.

Discussion
In this study, to understand the value of TMB in glioma,
we first analyzed the relationship between TMB and the
mutation distribution. For most genes, TMB was ele-
vated in the individual gene mutant group compared to
the individual gene wild-type group. For example, TMB
was higher in the PTEN mutant group than in the PTEN
wild-type group. It is reasonable as TMB is an aggregate
of mutations that result in protein alterations. However,
for genes that were mutated in lower-grade glioma, such
as IDH1, TMB was lower in the IDH1 mutant group

(See figure on previous page.)
Fig. 2 TMB is associated with worse outcomes in glioma patients. a Venn diagram of the patients included in further analysis. b ROC analysis of
2-, 3-, and 5-year survival according to TMB. c Kaplan–Meier curves of the overall survival of glioma patients (n = 649, 5 patients lacked survival
information) with high TMB (TMBHigh) versus those with low TMB (TMBLow). The cut-off value of the left panel was between 0.64 and 0.67. The
right panel had the highest 20%. d-g Survival analysis was performed in the indicated subgroups. h Heatmap showing the distribution of clinical
features and genetic characteristics of the glioma specimens (n = 654)
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 TMBHigh gliomas exhibit increased proliferative activity and immune responses. a GO biological progress enriched by GSEA in the TMBHigh

group (n = 302) versus the TMBLow group (n = 352) using an enrichment map. Node size represents the number of genes in the gene sets. Line
width represents the number of overlapping genes. b Representative GSEA enrichment plots in (a). The NES (normalized enrichment score), p
value and FDR (false discovery rate) were calculated with GSEA software. c GSEA of the validation set (CGGA) in the indicated gene sets. d The
heatmap showing the distribution and correlation of the indicated gene set/genes in glioma specimens was visualized using Java Tree-view.
Spearman’s r value and significance were calculated

Fig. 4 The mismatch repair pathway is activated in the TMBHigh group in gliomas without mutations in classical MMR genes. a The TMB of
gliomas with/without mutations in 6 classical MMR genes. b-c DNA repair and mismatch repair functions were analyzed by GSEA in the TMBHigh

group versus the TMBLow group in the TCGA (b) and CGGA (c) datasets. d Heatmap analysis of the distribution and correlation of the indicated
genes was performed. Spearman’s r value and significance were calculated
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than in the IDH1 wild-type group. Through the analysis
of clinicopathological parameters, we found that TMB
was significantly elevated with an increasing grade and
was associated with the poor survival of patients. These
results were validated with the CGGA dataset through
multivariable Cox regression analysis. According to

enrichment map analysis with GSEA, the TMBHigh

group exhibited activation of cell proliferation. As re-
ported in pan-cancer studies, the correlation between
TMB and T cell immunity was moderate, and TMB was
elevated in the MMR gene mutant group. Interestingly,
in the MMR gene wild-type group, the transcriptional

Fig. 5 Pan-cancer targeted sequencing-based TMB cannot predict prognosis in glioma. a Correlation of TMB calculated on the basis of exome
sequencing and targeted genes. The list of genes is from the FDA-approved targeted next generation sequencing panel (MSK-IMPACT).
Spearman’s r value and significance were calculated. b AUC analysis with TMB calculated using the MSK-IMPACT panel. c Survival analysis was
performed with the indicated cut-off value
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programs of MMR enriched in the TMBHigh group and
TMB were positively correlated with the expression of
MMR genes. Finally, by analyzing pan-cancer targeted
sequencing, it was found that TMB based on panel
analysis was not highly correlated with TMB calculated
by exome sequencing in glioma. No prognostic value
existed for targeted sequencing-based TMB.
The limitations of this study include optimal cut-off

value and experimental validation. The conclusion could
be totally different with different cut-off values. To
address this concern, we analyzed the relative risk with
different cut-off values by X-tile software. The optimal
cut-off value was between 0.64 and 0.67, and we further
tested the prognostic value with an independent dataset
by multivariable analysis. GSEA is a promising method
to explore the relationship between risk factors and sig-
naling pathways with expression profiling data; however,
causal links still need experimental validation. Although
we confirmed the activation of cell proliferation in the
TMBHigh group with the CGGA dataset, it is essential to
test this conclusion with primary glioma cells in vitro
and in vivo.
With the development of large-scale sequencing, thou-

sands of somatic mutations have been revealed in cancer
samples. Different cancer types exhibit distinct muta-
tional signatures [12]. The mutational landscape is re-
ported to illustrate driver mutations and can be used to
develop individualized treatments [21]. In glioma, the re-
ported TMB is paradoxical. The mutational load calcu-
lated by exome sequencing is associated with the tumor
grade and age of patients [22]. However, in another co-
hort, targeted sequencing-based TMB was not correlated
with grade [14]. To study the application of targeted se-
quencing in the prediction of TMB in glioma, we ana-
lyzed the correlation between exome sequencing-based
TMB and targeted sequencing-based TMB in a TCGA
cohort. Although the correlation was significant, the co-
efficient was modest. For most gliomas with a TMB < 2,
the targeted sequencing-based calculation could not
exactly predict TMB. Although targeted sequencing is
more economical than exome sequencing, pan-cancer
targeted sequencing-based TMB may be inappropriate
for predicting the prognosis of glioma patients. Glioma-
customized panels should be designed to precisely pre-
dict the mutational load.
Emerging data imply that neoantigens resulting from

nonsynonymous mutations could serve as potential bio-
markers for checkpoint blockade therapy. The mutation
that results in tumor initiation could also be targeted by
the immune system [15]. In a mouse model, radiation
plus anti-PD-1 treatments improved survival compared
to radiation alone [23]. With immune checkpoint inhibi-
tor treatment, the tumor size of glioblastomas with
hypermutation was significantly reduced [24]. However,

the failure of CheckMate-143 indicates that nivolumab
does not improve the OS of patients with recurrent glio-
blastoma compared to bevacizumab treatment [25].
These data imply that the mutational state should be an-
alyzed before immune checkpoint inhibitor treatment.
We analyzed the relationship between TMB and other
biomarkers of immune checkpoint inhibitors and illus-
trated the possible mechanism by which TMB is associ-
ated with poor survival. Our work revealed potential
biomarkers for improving survival in glioma patients.
However, our data were mainly obtained from patients
treated with routine chemoradiotherapy. TMB should be
tested in patients treated with immune checkpoint
inhibitors.

Conclusions
1. TMB is associated with shorter overall survival in
glioma patients.
2. Proliferative activity and the immune response are

activated in TMBHigh gliomas.
3. TMB was higher in the MMR gene mutant group,

but the MMR pathway was enriched in the TMBHigh

group.
4. Pan-cancer targeted sequencing-based TMB cannot

predict prognosis in glioma.
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mutational burden; WHO: World Health Organization
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