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Multiple m6A RNA methylation modulators

promote the malignant progression of
hepatocellular carcinoma and affect its
clinical prognosis
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Abstract

Background: Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the
world. N6-methyladenosine (m6A) RNA methylation is dynamically regulated by m6A RNA methylation modulators
(“writer,” “eraser,” and “reader” proteins), which are associated with cancer occurrence and development. The
purpose of this study was to explore the relationships between m6A RNA methylation modulators and HCC.

Methods: First, using data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) databases, we compared the expression levels of 13 major m6A RNA methylation modulators between HCC
and normal tissues. Second, we applied consensus clustering to the expression data on the m6A RNA methylation
modulators to divide the HCC tissues into two subgroups (clusters 1 and 2), and we compared the clusters in terms
of overall survival (OS), World Health Organization (WHO) stage, and pathological grade. Third, using least absolute
shrinkage and selection operator (LASSO) regression, we constructed a risk signature involving the m6A RNA
methylation modulators that affected OS in TCGA and ICGC analyses.

Results: We found that the expression levels of 12 major m6A RNA methylation modulators were significantly
different between HCC and normal tissues. After dividing the HCC tissues into clusters 1 and 2, we found that
cluster 2 had poorer OS, higher WHO stage, and higher pathological grade. Four m6A RNA methylation
modulators (YTHDF1, YTHDF2, METTL3, and KIAA1429) affecting OS in the TCGA and ICGC analyses were selected
to construct a risk signature, which was significantly associated with WHO stage and was also an independent
prognostic marker of OS.

Conclusions: In summary, m6A RNA methylation modulators are key participants in the malignant progression of
HCC and have potential value in prognostication and treatment decisions.
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Background
According to the Cancer Statistics of China in 2015, hepa-
tocellular carcinoma (HCC) is the second and fifth most
common cause of cancer-related death in men and women,
respectively [1].Worldwide, HCC is the most common type
of primary liver cancer, ranking second among malignant
tumors, with more than 700,000 deaths each year [2].
Chronic liver inflammation caused by hepatitis B virus
(HBV), hepatitis C virus (HCV), or aflatoxin B1 is the main
cause of HCC [3]. A series of treatments have been devel-
oped for patients with HCC, including surgery, chemother-
apy, and radiotherapy. However, the mortality rate is still
very high [4–6]. Understanding the molecular mechanisms
underlying the development of HCC is essential to improve
diagnostic tools and treatments.
RNA methylation in mammalian cells is dynamic and re-

versible and has been suggested as another kind of epigen-
etic regulation analogous to DNA methylation or histone
modification [1, 7]. N6-methyladenosine (m6A) is consid-
ered the most frequent, abundant, and conserved internal
modification of eukaryotic messenger RNA (mRNA) [8],
microRNAs (miRNAs) [9], and long non-coding RNA [10].
The m6A modification occurs at a consistent motif,
RRm6ACH([G/A/U][G >A]m6AC[U >A >C]) [11]. In
addition, experiments using m6A-specific antibodies and
high-throughput sequencing (HTSeq) revealed that m6A
modifications mainly appear around termination codons, in
3′-untranslated regions, and in long internal exons [12].
These modifications play key roles in 3′-end processing,
pre-RNA splicing, translation regulation, nuclear output,
miRNA processing, and RNA attenuation [13].
The m6A modification can be reversed in a process coor-

dinated by methyltransferases (m6A “writers”), demethylases
(m6A “erasers”), and m6A “reader” proteins [14]. The m6A
“writer” complex is composed of METTL3, WTAP, RBM15,
METTL14, VIRMA (KIAA1429), and ZC3H13 [13, 15]. So
far, only FTO and ALKBH5 have been identified as m6A
“erasers” [16]. As for m6A “readers,” including YTHDF1–2,
YTHDC1–2, and HNRNPC, they can recognize m6A modi-
fications and consequently direct RNA alternative splicing,
localization, translation, and stability, among other processes
[17, 18]. Thus, m6A modifications direct mRNAs to different
destinies through differential processing, translation, and
decay during the stress response, embryonic development,
and cell differentiation [19]. Increasing evidence has shown
that genetic changes (e.g., copy number variation [CNV] and
single-nucleotide polymorphism [SNP] mutations) and ex-
pression disorders related to m6A RNA methylation modula-
tors are closely related to the malignant progression of
various cancers [20–24]. Many studies have pointed out that
abnormal m6A modification is associated with HCC progres-
sion [20, 25–29]. However, the role of m6A RNA methyla-
tion modulators in the malignant progression of HCC and
their impact on prognosis has not been fully analyzed.
In this study, the expression in HCC tissues of 13
widely reported m6A RNA methylation modulators was
systematically analyzed using RNA sequencing data
from The Cancer Genome Atlas (TCGA) and the Inter-
national Cancer Genome Consortium (ICGC). Add-
itionally, CNV and SNP mutations of these 13
modulators in the TCGA database were explored. Ac-
cording to the expression of m6A RNA modulators, the
HCC tissues were divided into clusters 1 and 2, and
there were differences in the clinicopathological factors
between the two groups. Furthermore, four m6A RNA
methylation modulators were selected to construct a
least absolute shrinkage and selection operator
(LASSO) risk regression model (a four-gene risk signa-
ture) to predict HCC prognosis in terms of survival.
Methods
Datasets
RNA sequencing transcriptome data and corresponding
clinicopathological data were acquired for 374 HCC and
50 normal tissues from TCGA (http://cancer.gov/) and
243 HCC and 202 normal tissues from ICGC (https://
dcc.icgc.org/releases/current/Projects/LIRI-JP). We used
Liver Cancer, RIKEN, Japan [LIRI-JP] data, because the
Chinese datasets are incomplete. For the TCGA tran-
scriptome analysis, we downloaded HTSeq-fragments
per kilobase of transcript per million mapped reads
(FPKM) data. Clinicopathological data from the TCGA
and ICGC datasets are presented in Table S1. We de-
leted the TCGA data on all samples with incomplete
data regarding age, sex, World Health Organization
(WHO) stage, and pathological grade in the analyses
exploring the relationships between clinicopathologi-
cal factors and HCC subtype (cluster 1 or 2) and
between clinicopathological factors and the risk score;
this led to n = 350 HCC samples in these TCGA ana-
lyses. In the survival analysis, we deleted the data on
samples with “futime” variable (survival or censoring
time) = 0; this led to n = 371 HCC samples in the
TCGA analysis.
Regarding the CNV and SNP analyses, we used TCGA

data. Using the official TCGA website, we entered the
Genomic Data Commons (GDC) Data Portal and selected
“Liver” as the Primary Site and “TCGA-LIHC” as the Pro-
ject. By downloading the Copy Number Variation in the
Masked Copy Number Segment data type from the TCGA
database, CNV data were obtained, comprising data on
379 HCC and 389 normal tissues. By downloading the
Simple Nucleotide Variation of Masked Somatic Mutation
data type from the TCGA database, SNP data were ob-
tained, and then we analyzed these data that included 364
HCC tissues (TCGA.LIHC.varscan.40fe9c1b-19d0-45cf-
898a-f7b0cbad783e.DR-10.0.somatic.maf file).

http://cancer.gov/
https://dcc.icgc.org/releases/current/Projects/LIRI-JP).We
https://dcc.icgc.org/releases/current/Projects/LIRI-JP).We
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Bioinformatics analysis
We used ActivePerl 5.24.3 Build 2404 (https://www.perl.
org), R v3.6.0 (https://www.r-project.org/), and SPSS v23.0
(IBM Corp., Armonk, NY, USA) to conduct data conver-
sion, statistical analysis, and calculations. All our R and
Perl packages were obtained from the Shengxin Self-
learning Network (https://www.biowolf.cn/).
To compare the expression of 13 genes encoding m6A

RNA methylation modulators between HCC and normal
tissues, we used the R package “pheatmap.”
To investigate the function of m6A RNA methylation

modulators in HCC, we clustered the HCC tissues in the
TCGA dataset into two groups using the “ConsensusClus-
terPlus” and “limma” packages. We used the principal
component analysis “PCA” package to explore the feasibil-
ity of tumor typing based on m6A-related gene expression.
To explore the prognostic value of m6A RNA methyla-

tion modulators, univariate Cox regression analyses were
performed using the expression levels of the 13 genes in
the TCGA dataset. Thus, we identified nine genes that
were significantly related to survival (P < 0.05), and further
we used a LASSO regression to narrow the range of target
genes because the predictor variable was much larger than
the sample content in the gene expression data [30]. Fi-
nally, five genes were obtained.We took the same approach
using ICGC data and obtained seven genes. We then se-
lected the four genes that were common to both analyses
for further analysis. We conducted another LASSO ana-
lysis of the four genes and selected the best penalty param-
eter (λ). We obtained the same results using the two
databases. Finally, the four genes were used to construct a
risk signature. The risk score based on the signature was
calculated using the following formula [31]:

Risk score ¼
X

ni ¼
X

Coefi� xið Þ

where Coefi is the coefficient and xi is the z-score-
transformed relative expression value of each selected
gene. We used this formula to calculate a risk score for
each patient in both the training (TCGA) and validation
(ICGC) datasets.
To explore the prognostic value of the four-gene risk

signature, first, we combined gene expression data with
survival status and time data. HCC patients in the TCGA
(n = 365) and ICGC (n = 232) datasets were divided into
low- and high-risk groups based on the median risk score,
and we compared the overall survival (OS) rate between
the two groups using the Kaplan–Meier method.We also
constructed nomograms based on the risk score and clini-
copathological factors to predict 1-, 3-, and 5-year survival
rates, using the R packages “Hmisc,” “lattice,” “Formula,”
“ggplot2,” “foreign,” and “rms,” Finally, we verified the
results sing the ICGC data.
Statistical analysis
To identify differential expression between HCC and
normal tissues, the homogeneity of variance assumption
was assessed and found not to be satisfied, so Wilcoxon
rank-sum tests were used rather than t tests. The chi-
square test was used to compare CNV variation rates be-
tween the normal and tumor groups. For comparison of
CNV among multiple groups (i.e., one copy lost, normal,
one copy gained, and two or more copies gained), the
homogeneity of variance assumption was assessed and
found not to be satisfied, so Kruskal–Wallis tests were
used rather than one-way analysis of variance.
After clustering the patients into two clusters based on

consensus expression of the m6A RNA methylation
modulators, we used chi-square tests to compare the
distribution of age, sex, WHO stage, and pathological
grade between clusters 1 and 2 [31].
The Kaplan–Meier method and bilateral log-rank test

were used to compare OS between HCC subtypes clus-
ter 1 and 2 and between high- and low-risk groups
(based on the median risk score calculated using the
four-gene risk signature). The prediction efficiency of
the risk score for 3-year survival was assessed using a
receiver operating characteristic (ROC) curve analysis.
Univariate Cox regression analyses were used to assess

the associations between the expression levels of the 13
genes and OS. Additionally, uni- and multivariate Cox
regression analyses were used to determine the prognostic
values of the risk score and various clinicopathologi-
cal factors.

Results
Most m6A RNA methylation modulators are upregulated
in HCC
TCGA transcriptome data showed that all 13 genes ex-
cept for ZC3H13 and METTL14 were differentially
highly expressed in HCC tissues compared with normal
tissues (Fig. 1A, Table S1). Further verification using
ICGC data showed that all 13 genes except for
METTL14 were differentially highly expressed in HCC
tissues compared with normal tissues (Fig. 1B, Table S1).

CNV and SNP analyses regarding m6A RNA methylation
modulators in HCC
To understand whether the differential expression of the
m6A RNA methylation modulators is caused by genetic
changes related to the corresponding genes, we analyzed
the CNV and SNP data from the TCGA database. First, we
found that the CNV of the 13 genes in HCC tissues was
significantly different from that in normal tissues. More
specifically, three genes (YTHDF1, YTHDC2, and
KIAA1429) mainly exhibited increased copy numbers in
HCC tissues, while the remaining 10 genes mainly exhib-
ited decreased copy numbers (Figure S1A, Table S1).

https://www.perl.org
https://www.perl.org
https://www.r-project.org/
https://www.biowolf.cn/


Fig. 1 Expression of m6A RNA methylation modulators in hepatocellular carcinoma. a Data from TCGA dataset; b Data from ICGC dataset; Wilcox
test was used to determine the differential gene expression between tumor group and normal group. * P < 0.05 and *** P < 0.001
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Second, we explored the relationships between mRNA ex-
pression and copy number and found that all 12 genes up-
regulated in the TCGA analysis except for HNRNPC
exhibited significantly increased copy numbers (Figure S2).
Furthermore, we observed that SNP mutations in the 13

genes were very low (all ≤1.9%) in HCC tissues (Figure
S1B). However, as mentioned earlier, the expression of
most m6A RNA methylation modulators was increased in
HCC tissues compared to normal tissues, indicating that
these changes in gene expression are not entirely caused
by CNV or SNP mutations in the corresponding genes.

Consensus clustering of m6A RNA methylation
modulators identified two clusters of HCC tissues which
were associated with clinicopathological factors
Based on the similarity of expression levels of the m6A
RNA methylation modulators, we observed the clustering
stability of the TCGA dataset from k = 2 to 9 (Figures
S3A–E). It can be seen that k = 2 seems to be an appropri-
ate choice. Subsequently, we analyzed the differential gene
expression of the two subgroups, designated as clusters 1
and 2, and found that the expression of m6A RNA methy-
lation modulators was higher in cluster 2 than in cluster 1
(Figure S3F). We then compared the clinicopathological
factors between the two clusters. Cluster 1 was signifi-
cantly associated with male sex (P < 0.05), lower patho-
logical grade (P < 0.001), and lower WHO stage (P <
0.05), while cluster 2 was significantly associated with
female sex, higher pathological grade, and higher WHO
stage (Fig. 2A). We further found that cluster 2 had
significantly shorter OS than cluster 1 (Fig. 2B). Next,
we used PCA to explore the feasibility of tumor typing
based on m6A-related gene expression. The results
showed that there were significant differences between



Fig. 2 Differential clinicopathological factors and overall survival of hepatocellular carcinoma in the cluster 1/2 subgroups. a Heatmap and
clinicopathological factors of the two clusters, Chi-square test was used for correlation between clinical and cluster, * P < 0.05 and *** P < 0.001. b
Kaplan–Meier overall survival (OS) curves for 374 TCGA hepatocellular carcinoma patients. The sample size of cluster 1 and cluster 2 is 257 and
117 respectively. c Principal component analysis of the m6A-related gene expression in the TCGA dataset, hepatocellular carcinoma in the
cluster1 subgroup are marked with red
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the two tumor subtypes and tumor typing was feasible
(Fig. 2C).

Prognostic value of m6A RNA methylation modulators
and risk signature
Next, we explored the prognostic value of m6A RNA
methylation modulators in HCC. Univariate Cox regression
analyses of TCGA data were performed to assess the asso-
ciations between the expression levels of the 13 genes and
OS (Fig. 3A). Nine genes were significantly associated with
OS (P < 0.05). Among these nine genes, all but ZC3H13
were high-risk genes with hazard ratios (HRs) > 1, while
ZC3H13 was a protective gene with HR < 1. We then used
LASSO Cox regression to analyze the prognostic value of
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the nine genes in the TCGA dataset, and selected five genes
based on the minimum criterion (Figs. 3B–D).
Additionally, univariate Cox regression analyses of

ICGC data were performed to assess the associations
between the expression levels of the 13 genes and OS
(Fig. 3E). Seven genes were significantly associated with
OS (P < 0.05). Among these seven genes, all but YTHDC2
were high-risk genes with HRs > 1, while YTHDC2 was a
protective gene with HR < 1. Additionally, we used
LASSO Cox regression to analyze the prognostic value of
the seven genes in the ICGC dataset, and selected seven
genes based on the minimum criterion (Figs. 3F–H).
Thereafter, we selected the common genes (YTHDF1,

YTHDF2, METTL3, and KIAA1429) in the two database
analyses to construct a four-gene risk signature based on
the minimum criterion. We used the coefficients obtained
using LASSO Cox regression to calculate prognostic risk
scores for cases in both the training TCGA dataset (Figure
S4A) and the validation ICGC dataset (Figure S4B).
Risk scores showed strong associations with survival and
clinicopathological factors in HCC
Patients with HCC in the TCGA datasets were divided
into low- and high-risk groups based on the median risk
score, and a significant difference in OS was found be-
tween the two groups (Figs. 4A–B). Additionally, ROC
curve analysis showed that the risk score could predict
the 3-year survival rate of HCC patients (Figs. 4C–D).
The heatmap of the expression levels of the four se-

lected m6A RNA methylation modulators in high- and
low-risk patients in the TCGA dataset shows that the
expression levels of the four genes were associated with
increased risk scores (Figure S5A). Notably, survival rate
and time were significantly reduced in the high-risk
group compared to the low-risk group (Figure S5B). We
constructed nomograms based on the risk score and
clinicopathological factors to predict 1-, 3-, and 5-year
survival rates (Figure S5C). Finally, we verified these
trends using the ICGC data (Figures S6A–C).Next, using
TCGA data, we conducted chi-square tests to determine
whether we could better predict HCC clinical outcomes
based on m6A RNA methylation modulators, and we
found significant differences between low- and high-risk
groups in WHO stage (P < 0.01), pathological grade (P <
0.001), and cluster 1/2 subgroups (P < 0.001, Fig. 5A).
Chi-square tests showed that four genes were highly
expressed in the high-risk group and decreased in the
low-risk group. We explored the relationship between
the risk score and each clinicopathological factor with
Wilcoxon rank-sum tests. In the TCGA dataset, the
higher the risk score, the higher the WHO stage and the
worse the pathological grade (Figs. 5B–D); the risk score
was higher in cluster 2 than in cluster 1.
Subsequently, univariate and multivariate Cox regres-
sion analyses of survival were performed using the risk
score and relevant clinicopathological factors (age, sex,
pathological grade, and WHO stage) in the TCGA dataset
to determine whether the risk score (based on the four-
gene risk signature) can be used as an independent prog-
nostic factor. Both univariate and multivariate analyses
showed that the risk score could be used as a prognostic
indicator (both P < 0.001, Figs. 5E–F). WHO stage was
also an independent prognostic indicator and the P value
for age was near 0.05 (0.073), but sex and pathological
grade were not independent prognostic indicators.
Additionally, we verified the results in the ICGC data-

base. Owing to the lack of data on pathological grade,
the relationships between the risk score and clinicopath-
ological factors could not be fully investigated. However,
the relationship between risk score and WHO stage was
consistent with the TCGA analysis (P < 0.01, Fig. 6A).
We also conducted univariate and multivariate regres-
sion analyses and, as in the TCGA analysis, the risk
score and WHO stage were significantly associated with
OS. Unlike in the TCGA analysis, there was a significant
difference in sex in the ICGC analysis, with male sex
leading to increased OS(P < 0.05 for both the univariate
and multivariate analyses, Figs. 6B–C).
Furthermore, we constructed nomograms (involving

risk score and clinicopathological factors) to predict 1-,
3-, and 5-year survival using TCGA (Figure S7A) and
ICGC (Figure S7B) data. Regarding the TCGA nomo-
grams, according to the above uni- and multivariate re-
gression analyses using TCGA data, pathological grade
was not an independent prognostic factor, so it was not
included in the nomograms, while the P value for age in
the multivariate regression analysis was 0.073 (close to
0.05), so it was included (Figure S7A). In the ICGC no-
mograms, age was included to be consistent with the
TCGA nomograms. Sex was also included because it
was a prognostic factor in the above uni- and multivari-
ate regression analyses using ICGC data (Figure S7B).

Discussion
HCC has been reported to be the second most common
cause of cancer-related death worldwide [1]. HBV and
HCV infections have resulted in a high rate of HCC in
China. Because of the current lack of effective interven-
tions, high metastasis rate, and high mortality rate, it is
crucial to develop a deeper understanding of the mo-
lecular mechanism of HCC development. A growing
body of evidence suggests that liver cancer is a multistep
process associated with complex interactions between
genetics, epigenetics, and transcriptional changes [32].
About 100 post-transcriptional chemical modifications

can occur in biological RNAs [33] and m6A, which was
discovered in the 1970s, is one of the most abundant



Fig. 3 (See legend on next page.)
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Fig. 3 The process of selecting target genes to construct lasso risk regression model by applying the least absolute shrinkage and selection
operator (LASSO) Cox regression algorithm. a Univariate Cox regression analysis of the 13 genes correlated with OS in TCGA dataset; the hazard
ratios (HR), 95% confidence intervals .c-d The process of selecting target genes in TCGA dataset. e-h The process of selecting target genes in
ICGC dataset
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endochemical modifications in eukaryotic mRNAs [8].
The biological significance of m6A RNA methylation has
been increasingly recognized; it has important and di-
verse biological functions in mammals, including sex de-
termination, tissue development, DNA damage response,
circadian rhythm, and tumorigenesis [34]. In this study,
we demonstrated that the expression of m6A RNA
methylation modulators, which relates to the field of epi-
genetics, is also closely related to HCC prognosis. Based
on the expression of m6A RNA methylation modulators,
two subgroups of HCC tissues were identified by con-
sensus clustering. These clusters had different prognoses
and clinicopathological characteristics. In addition, we
Fig. 4 The differences in OS between the low-and high- risk groups based
ICGC datasets. a-b significant differences in OS between the two categorie
3 years survival in the TCGA (c) and ICGC (d) datasets assigned to high- and
used four selected m6A RNA methylation modulators to
derive a prognostic risk score, which was used to classify
the HCC patients into high- and low-risk groups based
on the median risk score.
Several studies have pointed out that the occurrence

of liver cancer is related to the abnormal expression of
m6A RNA methylation modulators [20, 25, 27–29, 35–
37]. Zhao et al. [36] reported that increased YTHDF1 is
related to poor prognosis of liver cancer patients, and
YTHDF1 plays an important role in regulating liver can-
cer cell metabolism and cell cycle progression. Cheng
and colleagues [27] reported that KIAA1429 facilitated
HCC migration and invasion by inhibiting ID2 via
on the median risk score and ROC curve predict survival in TCGA and
s (c-d) Kaplan–Meier overall survival (OS) curves for patients predicting
low-risk groups based on the risk score



Fig. 5 Relationship between the risk score, clinicopathological factors and cluster1/2 subgroups in TCGA dataset. a The heatmap shows the
distribution of clinicopathological factors and four genes expression compared between the low- and high- risk groups. ** P < 0.01, *** P < 0.001.
(b–d) Distribution of risk scores in the TCGA dataset stratified by WHO grade (b) pathological grade (c) and cluster1/2 subgroups (d). e-f
Univariate and multivariate analyses of the association between clinicopathological factors (including the risk score) and overall survival of
patients in the TCGA datasets, the hazard ratios (HR), 95% confidence intervals
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Fig. 6 Relationship between the risk score and clinicopathological factors in ICGC dataset. a Distribution of risk scores in the TCGA dataset
stratified by WHO grade. b-c Univariate and multivariate Cox regression analyses of the association between clinicopathological factors (including
the risk score) and overall survival of patients in the ICGC dataset, the hazard ratios (HR), 95% confidence intervals
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increasing m6A modification of ID2 mRNA. Further-
more, Tanabe et al. [37] reported that YTHDC2 plays an
important role in the growth of liver cancer cells.
The functions of METTL14, METTL3, and YTHDF2 in

HCC are controversial. Ma et al. [20] demonstrated that
METTL14 positively regulates the primary miRNA 126
(miR126) in an m6A-dependent manner by interacting with
microprocessor complex subunit DiGeorge syndrome
critical region 8 (DGCR8), and Ma et al. concluded that
METTL14 can inhibit liver cancer metastasis. Ma et al. [20]
also reported that METTL14 and m6A levels were
decreased in HCC tissues compared with normal tissues or
tissues adjacent to HCC tissues, while METTL3 and
WTAP levels were basically unchanged, In contrast, Chen
et al. [29] reported that METTL14 levels were slightly
higher in liver cancer tissues than in normal tissues, and
METTL3 levels were considerably higher. Based on this,
Chen and colleagues concluded that both METTL14 and
METTL3 play carcinogenic roles in HCC, and they are
necessary for HCC growth and metastasis. Zhong et al. [25]
reported that YTHDF2 may play an anti-tumor role in
HCC because its overexpression inhibited cell proliferation
and growth and promoted the apoptosis of HCC cells. In
contrast, Yang et al. [28] and Chen et al. [29] found
that YTHDF2 played a pro-cancer role in HCC.
These studies indicate that abnormal expression of
m6A RNA methylation modulators is closely related
to HCC occurrence and development.
In this study, we comprehensively analyzed the expres-

sion of the 13 most common m6A RNA methylation mod-
ulators in HCC tissues. There was no difference in the
expression of METTL14 between HCC and normal tissues
from either database, which is consistent with the results
reported by Zhou et al. [35]. Additionally, we analyzed the
CNV data of these 13 genes using the TCGA database. The
HCC tissues were significantly different from the normal
tissues in terms of CNV. The expression of all 13 genes
except HNRNPC was related to CNV. Only three genes
(YTHDF1, YTHDC2, and KIAA1429) mainly exhibited in-
creased copy numbers in the HCC tissues compared to the
normal tissues, while the other 10 genes mainly exhibited
reduced copy numbers. Furthermore, we analyzed data on
SNP mutations in the 13 genes in HCC tissues and found
very low mutation rates. These data indicate that abnormal
expression of m6A RNA methylation modulators in HCC
tissues is not entirely caused by genetic changes (CNV or
SNP mutations) [38].
Whether the expression of m6A RNA methylation modu-

lators can be used to predict cancer prognosis is an import-
ant research subject [7]. In this study, we used a risk
signature constructed with four m6A RNA methylation
modulators (YTHDF1, YTHDF2, KIAA1429, and METTL3)
to predict OS among HCC patients. In the TCGA database,
patients with high risk scores were more likely to have a
higher WHO stage and higher pathological grade and be in
HCC subtype cluster 2. Also, in the ICGC database, high
risk scores were associated with higher WHO stage. It
should be noted that the risk score was independently asso-
ciated with OS among HCC patients in both the TCGA
and ICGC analyses. However, unlike in the TCGA analysis,
sex was also an independent prognostic factor for HCC in
the ICGC analysis, which may have been due to ethnic
differences between the two datasets.
The METTL3 RNA methyltransferase is a “writer” pro-

tein responsible for m6A modification and is involved in
mRNA biogenesis, decay, and translation. METTL3 may
play a carcinogenic role in lung cancer [39], bladder cancer
[23, 40], gastric cancer [41], osteosarcoma [42], cutaneous
squamous cell carcinoma [43], and acute myeloid leukemia
(AML) [44]. Li et al. [45] reported that METTL3 promoted
colorectal cancer progression through an m6A-IGF2BP2-
dependent mechanism, while Deng et al. [46] reported that
METTL3 inhibited the proliferation and migration of
colorectal cancer cells through the p38/ERK pathway. Add-
itionally, Cui and colleagues [47] reported that METTL3
downregulation significantly promoted the growth, self-
renewal, and tumorigenesis of human glioblastoma stem
cells, while METTL3 overexpression inhibited the growth
and self-renewal of these cells. However, Visvanathan et al.
[48] reported that METTL3 transcription was increased in
glioblastoma, while METTL3 silencing inhibited tumor
growth and prolonged the survival of mice. These results
suggest that METTL3 may play varied roles in different
types of cancer, and the study of METTL3 in colorectal
cancer and glioblastoma remains controversial.
As a component of the m6A “writer” complex, KIAA1429

is reported to be an RNA-binding protein involved in m6A
modification and RNA splicing and processing. At present,
its role as an m6A “writer” in tumorigenesis and its mech-
anism have not been fully reported. However, Cheng et al.
[27] reported that KIAA1429 inhibits ID2 by increasing the
m6A modification of ID2 mRNA, thus promoting HCC
migration and invasion. Additionally, Qian and colleagues
[24] reported that KIAA1429 can regulate CDK1 in breast
cancer in an m6A-independent manner, and act as a car-
cinogenic factor. These studies suggest that KIAA1429 pro-
motes tumorigenesis and development.
YTH N6-methyladenosine RNA binding protein 1

(YTHDF1) is a member of the YTH domain family, which
includes YTHDF1, 2, and 3 and YTHDC1 and 2. As a
“reader” of m6A-modified mRNA, cytoplasmic YTHDF1
interacts with binding sites on m6A-modified mRNA to
promote the initiation of translation [49]. However, the link
between YTHDF1 and cancer is largely unknown. Han
et al. [50] reported that m6A RNA modification, involving
YTHDF1, modulates the anti-tumor immune response.
Zhao et al. [36] and Zhou et al. [35] reported that YTHDF1
is highly expressed in liver cancer and is significantly
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associated with poor prognosis. Furthermore, Nishizawa
et al. [51] and Bai et al. [22] reported that YTHDF1 is
highly expressed in colorectal cancer and plays an import-
ant role in carcinogenesis.
The main role of YTHDF2 is to regulate the degradation

of m6A-modified mRNAs [24]. However, the relationship
between YTHDF2 and cancer is largely unknown. Yang
et al. [28] reported that miR-145 regulates m6A by target-
ing the 3′-untranslated region of YTHDF2 in HCC cells,
and YTHDF2 expression is closely related to the malig-
nant degree of HCC. Thereafter, Chen and colleagues [52]
reported that YTHDF2 was highly expressed in pancreatic
cancer, which promoted the proliferation and inhibited
the migration and invasion of pancreatic cancer cells. Fur-
thermore, many studies have focused on the relationship
between YTHDF2 and AML, indicating that YTHDF2 is
increased in the broad spectrum of human AML tissues.
Targeting YTHDF2 to inhibit its expression can enlarge
hematopoietic stem cells, enhance bone marrow recon-
struction, and selectively impair AML [53–55], suggesting
that it may be useful in the treatment of hematological
malignant tumors.
Conclusions
Our results systematically demonstrate the expression of
13 m6A RNA methylation modulators in HCC, reveal
the CNV and SNP mutations of these genes in HCC,
and clarify the prognostic value of the m6A RNA methy-
lation modulators. Our study provides important infor-
mation for further exploration of the role of m6A RNA
methylation in HCC.
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