Kalecky et al. BMC Cancer (2020) 20:141
https://doi.org/10.1186/s12885-020-6600-6

BMC Cancer

RESEARCH ARTICLE Open Access

Integrative analysis of breast cancer profiles
in TCGA by TNBC subgrouping reveals

Check for
updates

novel microRNA-specific clusters, including
miR-17-92a, distinguishing basal-like 1 and
basal-like 2 TNBC subtypes

Karel Kalecky'? Rebecca Modisette®, Samantha Pena®, Young-Rae Cho'* and Joseph Taube®*"

Abstract

data but also expression data for microRNAs.

inositol polyphosphate 4-phosphatase type II, INPP4B.

Background: The term triple-negative breast cancer (TNBC) is used to describe breast cancers without expression
of estrogen receptor, progesterone receptor or HER2 amplification. To advance targeted treatment options for
TNBCG, it is critical that the subtypes within this classification be described in regard to their characteristic biology
and gene expression. The Cancer Genome Atlas (TCGA) dataset provides not only clinical and mRNA expression

Results: In this study, we applied the Lehmann classifier to TCGA-derived TNBC cases which also contained
microRNA expression data and derived subtype-specific microRNA expression patterns. Subsequent analyses
integrated known and predicted microRNA-mRNA regulatory nodes as well as patient survival data to identify key
networks. Notably, basal-like 1 (BL1) TNBCs were distinguished from basal-like 2 TNBCs through up-regulation of
members of the miR-17-92 cluster of microRNAs and suppression of several known miR-17-92 targets including

Conclusions: These data demonstrate TNBC subtype-specific microRNA and target mRNA expression which may be
applied to future biomarker and therapeutic development studies.
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Background

Breast cancer is a heterogeneous group of diseases, each
with characteristic etiologies and optimal treatments. Ex-
pression of hormone receptors, estrogen receptor (ER)
and progesterone receptor (PR), or human epidermal
growth factor receptor 2 (HER2) indicates responsiveness
to therapies targeted at these proteins. However, for the
approximately 20% of breast cancer patients with tumors
negative for such markers, termed triple-negative breast
cancer (TNBC), there is presently a lack of effective tar-
geted treatment options [1]. Furthermore, patients with
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TNBC are presented with worse overall prognoses, neces-
sitating an improved understanding of this disease [2].
Intertumoral heterogeneity within TNBC has been re-
vealed by recent studies [3—5], which show that intrinsic
molecular subtyping may be used to separate TNBCs
into between four and six subtypes variously labeled as
basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M),
mesenchymal stem-like (MSL), immunomodulatory
(IM), and luminal androgen receptor (LAR). Further
work has revealed that an abundance of either infiltrat-
ing lymphocytes or tumor-associated stromal cells
within the sample was the primary determinant specify-
ing the IM or MSL subtype, respectively, resulting in a
consensus of four intrinsically-defined TNBC subtypes
(BL1, BL2, M and LAR) [4]. Indicating the significant
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distinctions within TNBC, segregation into these cat-
egories yields distinctions in progression with BL1 pa-
tients showing significantly greater rates of pathological
complete response (pCR) and BL2 patients showing sig-
nificantly higher rates of distant relapse [4]. Further ana-
lysis of the molecular basis for these differences will help
to uncover actionable targets to improve outcome.
microRNAs (miRNAs), single-stranded RNA molecules
capable of suppressing target gene expression by binding
to the 3'UTRs of complementary mRNAs, have emerged
as key regulators of cell phenotype and as a potential
therapeutic modality in breast cancer [6, 7]. Breast cancer
imposes significant disruptions to the expression of many
miRNAs and dozens of specific regulatory links between
microRNAs and tumor suppressing or oncogenic mRNAs
have been identified [7, 8]. In order to explore the molecu-
lar determinants separating TNBC subtypes, we con-
ducted an independent analysis of breast cancer datasets
with the aim of characterizing microRNAs that signifi-
cantly contribute to differences in gene expression be-
tween TNBC subtypes. Herein we show that 1) BL1, BL2,
M, and LAR tumors display individually distinct micro-
RNA expression profiles, 2) the set of predicted micro-
RNA targets corresponds to the set of altered genes
between each subtypes and 3) validation in vitro that
miRNA, including miR-17-92 cluster members, expression
differences predicted between BL1 and BL2 subtypes are
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validated in a set of breast cancer cell lines, contributing
to the distinct expression of known target genes. Overall
these results highlight the power of integrated bioinfor-
matics analysis to predict molecular functions associated
with disease, pointing the way towards the application of
these targets in microRNA-replacement or inhibition
therapy to potentially modulate tumor phenotype, with
the aim of improving patient outcomes.

Methods

Breast cancer data acquisition and TNBC subtyping
Human breast cancer expression data and their demo-
graphic information were obtained from NIH NCI Gen-
omic Data Commons public database [9], originally
acquired in the scope of TCGA-BRCA program and proc-
essed using the same pipeline. Only samples with both
mRNA and miRNA expression profiling were considered.
Selection of TNBC cases and their classification into
TNBC subtypes was adopted from results of 4-subtype
schema of Lehmann et al. [4].

Expression data pre-processing and normalization

All analyses were based on raw expression counts down-
loaded from Genomic Data Commons database. First,
mRNAs/miRNAs entries that were not expressed in at least
half of samples of any of the TNBC subtypes were filtered
out. Next, the default processing pipeline from R package

A

Analyzed in Lehmann et al. (2016)

1098 1059
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BL1/BL2/M/LAR

miRNA data
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Fig. 1 Schematic for selection of cases within TCGA. a Data cases from TCGA-BRCA project were filtered for those analyzed and reliably subtyped
in Lehmann et al. [4] for those with both mMRNA and miRNA expression profiles available. b Distribution of TNBC subtypes
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DESeq2 (v.1.20) [10] was applied to normalize the counts
and correct outlying values. This includes a size factor esti-
mation using the standard median ratio method, a disper-
sion estimation using parametric fitting, expression data
fitting using negative binomial generalized linear model
with the minimum of 7 replicates for outlier replacement
and the lower bound of 0.5 on estimated counts.

Differential expression analysis

Selected TNBC subtypes were compared using DESeq2
differential expression pipeline, performing two-tailed
Wald test of the fitted models using the normal distribu-
tion as null distribution. For multiple group comparison,
one-way ANOVA test with Tukey’s HSD correction was
applied over log2-transformed data. FDR was controlled
with Benjamini—Hochberg procedure and comparisons
with adjusted p-value <0.05 were considered as statisti-
cally significant. The differences in expression between
groups of interest were quantified with log2 fold change.
Note that DESeq2 reports shrunken log2 fold change to
avoid possible bias in low-expressed entries. Tables with
complete results are attached. The most significant dif-
ferences — with respect to their adjusted p-values — are
illustrated with heatmaps conveniently exported via
MetaboAnalyst (v4.0) [11], using an appropriate size of
top RNAs and Ward’s method for hierarchical cluster-
ing. Up-regulated and down-regulated mRNAs are
shown separately, since a vast majority of all top mRNAs
falls into only one of these directions.

Correlation analysis

Correlation between statistically significantly differentially
expressed mRNAs and miRNAs was quantified with Pear-
son’s product moment correlation coefficient and tested
for statistical significance in R programming environment.
FDR was controlled with Benjamini—Hochberg procedure
and correlation coefficients with adjusted p-value <0.05
were considered as statistically significant.

Functional and target analysis

Differentially expressed miRNAs were analyzed with
mirPATH (v3.0) [12], miTALOS (v2) [13], and miR-
Net (v2.0) [14] for target gene pathway enrichment.
These multiple tools were used for their application
of multiple pathway databases (e.g. KEGG, Gene
Ontology, and Reactome) and different target data-
bases (including TarBase, microT-CDS, and TargetS-
can) encompassing both experimentally validated and
computationally predicted targets. Some of these tools
allow only a limited number of miRNAs on input, in
which case the top miRNAs were selected with re-
spect to their statistical significance. Up-regulated and
down-regulated miRNAs were analyzed separately in
attempt to distinguish which functional results are a
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subject of up-regulation and down-regulation. All pro-
duced results with p-value <0.05 are attached.

Top 1000 up-regulated and top 1000 down-regulated
mRNAs with respect to their adjusted p-value were ana-
lyzed with DAVID functional annotation tool (v6.8) [15]
to produce clusters of functional annotations. The
default parameters with medium stringency were used,
computing over the background of the whole human
genome. Again, up-regulated and down-regulated
mRNAs were analyzed separately. Clusters with enrich-
ment score >1 containing at least one annotation with
adjusted p-value <0.05 are listed.

miRNet was further utilized to construct core networks
of differentially expressed miRNAs and their targets with
highest connectivity, setting up the degree threshold ap-
propriately to obtain a network of a reasonable size.

Table 1 Demographic overview

BL1 BL2 LAR M

Gender

Female 100% 100% 100% 100%
Age at Diagnosis

20-29 2% 3% 13% 5%

30-39 7% 6% 8% 30%

40-49 39% 24% 39% 34%

50-59 21% 41% 21% 20%

60-69 18% 12% 13% 7%

70-79 9% 9% 3% 5%

80+ 5% 6% 3% 0%
Ethnicity

Not Hispanic or Latino 82% 88% 87% 89%

Hispanic or Latino 2% 12% 5% 2%

Not reported 16% 0% 8% 9%
Race

White 51% 65% 66% 64%

Black/African American 32% 32% 26% 32%

Asian 7% 3% 8% 5%

Not reported 11% 0% 0% 0%
Vital Status

Alive 89% 85% 71% 86%

Dead 11% 15% 29% 14%

Disease Type

Ductal or Lobular Neoplasm 100% 85% 97% 86%

Complex Epithelial Neoplasm 0% 15% 0% 7%
Epithelial Neoplasm, NOS 0% 0% 0% 5%
Fibroepithelial Neoplasm 0% 0% 3% 0%
Basal Cell Neoplasm 0% 0% 0% 2%

Distribution of available cases among demographic categories according to
TNBC subtypes
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Selection of candidate pairs in integrative analysis
MicroRNA-mRNA pairs identified during correlation
analysis as significantly correlated were filtered for those
with correlation coefficient < - 0.5 and with RNAs differ-
entially expressed between BL1 and BL2 with abs (log2
fold change) > 0.5. Next, candidate pairs checked against
microT-CDS (v5.0) [16] and TargetScan (v7.2) [17] tar-
get prediction databases with the default parameter set-
tings, selecting pairs present in either database directly
or indirectly with a closely related paralogous mRNA.
Furthermore, candidate pairs were also narrowed to
RNAs, the expression profiles of which showed a pos-
sible effect on survival rate of TNBC cases in METAB-
RIC cohort based on visualization by Kaplan-Maier
Plotter web tool [18] with trichotomization of samples.
Since the low number of TNBC cases is not sufficient to
achieve a high statistical power in survival analysis, the
RNAs with the largest impact on survival outcome were
selected even though the difference might not be statisti-
cally significant.
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Cell culture

Cells were obtained from ATCC and cultured according
to the provided recommendations: RPMI with 10% fetal
bovine serum and 1% penicillin/streptomycin (HCC70)
or DMEM with 10% fetal bovine serum and 1% penicil-
lin/streptomycin (MDA MB 468).

RNA expression

RNA was extracted from cultured cells using Trizol
(Invitrogen) according to the manufacturer’s protocol.
For detection of microRNA species, purified RNA (250
ng) was subjected to microRNA-specific RT-PCR using
the Tagman primer/probe system (Applied Biosystems)
and the High-capacity reverse transcription kits (Applied
Biosystems) followed by qPCR on the QuantStudio 5
(Applied Biosystems). For detection of mRNA, purified
RNA (500ng) was subjected to reverse transcription
using random primers (Applied Biosystems), followed by
qPCR using mRNA-specific primers and SYBR Green
Universal Master Mix (Applied Biosystems). Expression

hsa-mir-522
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subtypes. Values are log-transformed and normalized

Fig. 2 TNBC-subtype specific miRNA expression. Heatmap with expression profiles of top 70 differentially expressed microRNAs across TNBC
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was quantified using the delta-delta Ct method, normal-
ized to either small nucleolar U6 (microRNAs) or
GAPDH (mRNAs) and plotted in reference to the aver-
age of all control samples using Prism version 6 (Graph-
Pad Software). Students t-test was used for comparing
expression values between two samples.

Results

Breast cancer dataset and TNBC subtypes

The NIH NCI Genomic Data Commons (GDC) database
[9] contains mRNA expression profiles of 1098 cases of
human breast cancer from TCGA-BRCA project [19].
Lehmann et al. [4] analyzed expression data of 1059 of
these cases, identified 180 TNBC cases and 176 of them
assigned among the subtypes BL1, BL2, M, and LAR.
Adopting this subtyping, we next selected cases for
which microRNA expression data were also available,
resulting in 173 cases (Fig. 1a; list of case IDs and corre-
sponding subtypes are in Additional file 1) with 60,483
quantified mRNAs and 1881 quantified microRNAs
using RNA-Seq and miRNA-Seq technologies. The
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distribution of individual subtypes is shown in Fig. 1b.
These groups are approximately balanced and each of
them contains more than 30 samples.

Demographic details for individuals with TNBC
grouped by the subtypes are listed in Table 1. All per-
sons are female, approximately one-third black or Afri-
can American, and predominantly diagnosed with ductal
or lobular neoplasms. The most frequent age at diagno-
sis is in the 40’s although this trend is shifted to the 50’s
for BL2 subtype, whereas M and LAR subtypes have a
notable proportion of cases diagnosed in the 20’s and
30’s. Based on the monitored vital status, reported mor-
tality for the LAR subtype is almost double the rate for
other subtypes.

TNBC subtypes express specific patterns of microRNAs

Exploration of the expression landscape of all TNBC
subtypes reveals over 200 microRNAs as differentially
expressed with statistical significance. Hierarchical
clustering reveals several clusters of 10 or more micro-
RNAs, often with a strong co-expression pattern, that

class
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Fig. 3 Basal-like 1 and basal-like 2 TNBC-subtype specific mRNA expression. Heatmap with expression profiles of top 60 differentially expressed
mRNAs between BLT and BL2 TNBC subtypes, balanced in each expression direction (30 + 30). Values are log-transformed and normalized
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Table 2 mRNA functional analysis

Down-regulated in BL1 vs BL2

Up-regulated in BL1 vs
BL2

Extracellular matrix organization and

adhesion

EGF domains

Collagen processing and catabolism

Transmembrane components
TSP domains

Cadherin domains

Cell junctions

Leucine-rich repeats
Fibronectin domains

Sushi domains

MRNA processing

cell division
nuclear export
mitochondria
DNA repair

viral processing

Most distinct functional areas of mRNAs differentially expressed between BL1

and BL2 subtypes
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are distinct among the subtypes (Fig. 2). These data sup-
port the idea that microRNA expression is tightly linked
to intrinsic subtypes within TNBC.

BL1 and BL2 subtypes shows differential expression in
cancer-related groups of genes

Given the disparity in patient outcomes between BL1 and
BL2 [4], we further focused on gene expression signature
differences between these subtypes. Differential analysis of
gene expression identified over 8000 differentially expressed
mRNAs, as shown on a selected example in Fig. 3
(complete list in Additional file 2). Gene ontology analysis
of the top mRNAs revealed multiple functional areas
relevant to cancer pathology (Table 2, complete list in Add-
itional file 3). Transcripts up-regulated in BL1 are con-
nected with mRNA synthesis and processing, nuclear
export, cell division as well as DNA repair and viral pro-
cessing, whereas transcripts up-regulated in BL2 are related
to extracellular matrix, collagen, cell junctions, and cellular
membrane components. These differences suggest a role
for gene expression in altering interactions with the extra-
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Fig. 4 Basal-like 1 and basal-like 2 TNBC-subtype specific miRNA expression. Heatmap with expression profiles of top 50 differentially expressed
microRNAs between BL1 and BL2 TNBC subtypes. Values are log-transformed and normalized
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tumor cells, which would be consistent with more frequent
distant relapses clinically observed for the BL2 TNBC sub-
type [4]. Given the critical nature of these cellular functions,
we sought to identify microRNAs with a strong likelihood
to regulate mRNA expression differences between BL1 and
BL2 subtypes.

BL1 and BL2 subtypes show differential expression in

microRNAs targeting cancer-related groups of genes

Differential expression analysis identified 159 micro-
RNAs expressed with statistical significance. Top 50
microRNAs are presented in Fig. 4 (complete list in
Additional file 4). Subsequent functional analysis of tar-
gets of these microRNAs was performed over various
gene annotation databases and microRNA target data-
bases, encompassing databases for experimentally vali-
dated targets as well as algorithmically predicted targets.
In general, many biological functions, each with hun-
dreds of mRNAs differentially expressed, were predicted
to be targeted by several dozen microRNAs (Add-
itional file 5). The detected functions are often cancer-
related, but also extend to many other biological pro-
cesses, and frequently are linked to both up-regulated
and down-regulated microRNAs, illustrating the regula-
tory complexity of microRNAs. Although these results
do not identify any particular microRNA-mRNA pairs
relevant for BL1 and BL2 subtype distinction, it affirms
the role of microRNAs in the etiology of the subtypes.
Separate network analysis of differentially expressed up-
regulated and down-regulated microRNAs and their tar-
gets confirms that mRNA targets in the network inter-
action core are strongly linked to cancer biology,
including functions such as cell growth and cell cycle,
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apoptosis regulation, vasodilation, glucose metabolism,
and inflammation (Fig. 5).

Integrating differential expression, correlation, target and
survival analysis identifies candidate microRNA-mRNA
pairs relevant to BL1 and BL2 subtype distinction

In order to identify nodes likely to underlie biological
differences between BL1 and BL2 tumors we conducted
network analysis, combining predicted miRNA-mRNA
pairs with BL1-BL2 differential expression data. Fur-
ther, we sought to find suitable pairs of microRNAs
and their targets for experimental validation of their
expression and regulation in BL1 and BL2 TNBC cell
lines. Expression patterns of microRNAs should exhibit
significant anti-correlational tendency with the expres-
sion levels of their targeted mRNAs. Therefore, we
compared expression profiles of all differentially
expressed RNAs and all significantly non-zero correla-
tions were selected as outlined in Fig. 6 (complete table
with values in Additional file 6).

To identify mRNA-miRNA pairs likely to exhibit a
biological relationship, we considered only pairs with
correlation coefficient below - 0.5, consisting of RNAs
with absolute log2 fold change above 0.5. As a result,
280 candidate pairs remained, consisting of 27 unique
microRNAs and 168 unique mRNAs. To refine our se-
lection, we chose only pairs identified by target predic-
tion databases and further, only considered mRNAs with
a possible impact on survival outcomes, resulting in 10
candidate pairs of 3 unique microRNAs and 8 unique
mRNAs (Table 3). Their correlations and a heatmap of
expression within BL1 and BL2 TNBC subgroups are
shown in Fig. 7, as well as an example of survival charts.
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Fig. 5 Network of mRNA targets of TNBC-subtype specific miRNA clusters. mRNA-microRNA target networks for differentially expressed up-
regulated (a) and down-regulated (b) microRNAs in BL1 group as compared to BL2 group. The cores for visualization were selected according on
node degrees in the graph. The larger the node, the higher node degree
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Color Key and Histogram

fold change (BL1 vs BL2)

Fig. 6 Correlation between BL1 and BL2 differentially expressed miRNAs and mRNAs. Heatmap with Pearson’s coefficients of correlation between
expression profiles of differentially expressed mRNAs and microRNAs. Side bars denote log2 fold change of respective RNAs; green — positive log

Predicted difference in miRNA and target expression is
recapitulated in breast cancer cell lines

We next sought to validate the predicted expression differ-
ences of microRNAs and their targets that were shown to
be distinct between the BL1, BL2, and M subtypes of TNBC,
as recapitulated in breast cancer cell lines. For this, we chose
cells lines previously identified as corresponding to specific
TNBC subtypes (HCC70 = basal-like 1; MDA-MB-468 =
basal-like2; and MDA-MB-231, SUM159 and Hs578t = M)
[3]. We focused on the network of miRNAs and mRNAs
identified as distinct between BL1 and BL2 tumors (Fig. 5b,
Table 3). Expression of miR-17 and miR-19a was elevated in
MDA-MB-468 (BL1) cells as compared to HCC70 (BL2)
cells while miR-18a was not statistically significant (Fig. 8a).
miR-17, miR-18a, and miR-19a are co-expressed from the
MIR17-92a cluster of microRNAs and are predicted to tar-
get mRNAs regulating cell cycle, apoptosis, and signal trans-
duction (Fig. 5 and Table 3). We examined the expression
of these predicted targets in HCC70 and MDA-MB-468
cells as representative of the BL1 and BL2 TNBC subtypes.
Intriguingly, of the fourteen miR-17-, miR-18a-, and miR-

19a- targets tested, only four showed elevated expression in
HCC70 (BL2) cells compared to MDA-MB-468 (BL1) cells.
Remarkably however, predicted targets of miR-17 and miR-
19a, IL1R1 and INPP4B (Table 3), were expressed more
strongly in HCC70 (BL2) cells, while the predicted targets of
miR-18a were not differentially expressed (Fig. 8b). Thus,
TNBC cell lines showed similar anti-correlation between
miRNA (miR-17, miR-19a) and mRNA target (IL1R1,
INPP4B) as the TCGA-based segregation of TNBC tumors
into BL1 and BL2 subtypes (Table 3). In addition, CDKN1A
(miR-17 target that did not anti-correlate in the TCGA data)
and FAM214A (miR-18a target) also showed elevated ex-
pression in the HCC70 (BL2) cells (Fig. 8b).

Discussion

The significance of microRNAs in cancer cell regulation is
still a widely unexplored area. The Genomic Data Com-
mons database is a monumental collection of genetic data
for cancer research, encompassing The Cancer Genome
Atlas (TCGA) and other projects, creating an opportunity
for revealing new microRNA-mRNA pairs impacting cell
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Table 3 Selected candidate mRNA-microRNA pairs
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microRNA MRNA Correlation Log2 Fold Change B1 vs B2 TNBC Pro-Survival Direction Predicted Binding

PCC adj. p-value  miRNA mMRNA miRNA mRNA Orientation mMRNA
hsa-mir-17 ILTR1 -0.56 1.17e-12 1.04 -1.09 Down up 3p ILTR1
hsa-mir-17 INPP4B —-0.55 421e-12 1.04 -1.31 Down upP 3p INPP4B
hsa-mir-18a  APH1B -052  146e-10 0.98 —0.55 Down up 3p (APH1A)
hsa-mir-18a  CPEB4 -050  6.02e-10 0.98 -0.83 Down up 3p (CPEB1/3)
hsa-mir-18a FAM214A -052 1.00e-10 0.98 -0.54 Down upP 3p (FAM214B)
hsa-mir-18a INPP4B -052 1.62e-10 0.98 -1.31 Down up 3p INPP4B
hsa-mir-18a KCNMA1 —0.50 6.79e-10 0.98 -1.04 Down up 5p KCNMA1
hsa-mir-18a MAN2B2 -0.54 1.17e-11 0.98 —0.52 Down up 3p (MAN2BT)
hsa-mir-18a  THSD4 -052  7.80e-11 0.98 -092 Down uP 3p THSD4
hsa-mir-19a ILTR1 -0.52 9.24e-11 0.87 -1.09 Down up 3p+5p ILTR1

mMRNA-microRNA pairs computed by the integrative analysis combining correlation, differential expression, survival and target analysis. PCC Pearson correlation
coefficient. Target mRNAs in parenthesis are paralogs of the investigated mRNAs

analysis between differentially expressed mRNAs and
microRNAs followed by a network analysis might not be a
satisfactory approach. Expression analysis frequently pro-
duces thousands of differentially expressed mRNA and cor-
relation analysis yields tens of thousands of candidate pairs.
The constructed network then can be unfeasibly large while

proliferation. Indeed, there have been attempts to build
tools that could, to a certain degree, automatize the search
and were applied to TCGA datasets [20, 21]. However,
identification of the candidate pairs is a challenging task
due to the regulatory complexity and inter-dependence of
mRNAs and microRNAs and performing only correlation
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Fig. 7 Expression profiles and correlation of selected mRNAs and microRNAs. Heatmap with expression profiles in BL1 and BL2 (a) and their
Pearson’s correlation coefficients (b) of MRNAs and microRNAs selected in integrative analysis. Expression values were log-transformed and
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Fig. 8 miR-17 and miR-19a and targets are differentially expressed between BL1 and BL2. a Expression of miRNAs was determined in the
indicated cell lines via miR-specific PCR. b Expression of mRNAs was determined in the indicated cell lines via gPCR. Values are normalized to
the mean of three replicates for MDA-MB-468. The mean and standard deviation of three replicates are plotted. Student's t-test was applied to
determine statistical significance between MDA-MB-468 and HCC70

reducing the network to its most dense core can omit im-
portant parts. It is worthwhile to note that the mRNA-
microRNA pairs of therapeutic interest are not necessarily
the most differentially expressed ones or the ones with
highest anti-correlation or the ones in the center of the tar-
get network. Reducing the number of candidate pairs based
on these criteria solely may not be revealing.

In this study, we have combined correlation analysis
and target analysis together with survival analysis, thus
integrating statistical and biological relevance with prac-
tical relevance (see Fig. 9 for the analytical pipeline).
This approach allowed us to perform the final selection
of candidate pairs based on less stringent thresholds in
each factor while still achieving a reasonable count of
the candidates, which are additionally interesting from
the therapeutic perspective for their possible impact on
survival rates. A very recent publication analyzing TCGA
data [22] also performs survival analysis for selection of

candidate mRNA-microRNA pairs although differentially
expressed mRNAs were pre-filtered and only around 1%
of statistically significant ones were analyzed.

Applying the described approach, we have analyzed
publicly available triple-negative breast cancer expression
data from the GDC database, subtyped into basal-like 1,
basal-like 2, luminal androgen-enriched, and mesenchy-
mal cases, where we have focused on differences between
BL1 and BL2 groups. Notably, we have found pairs
involving several members of the miR-17-92a cluster as
more abundantly expressed in BL1 tumors. Importantly,
restricting our analysis to TNBC tumors revealed this as-
sociation which was not apparent in a similar study ana-
lyzing all breast cancer cases [23]. Using representative
breast cancer cell lines, we also demonstrated elevated
expression of miR-17 and miR-19a in BL1, coincident
with suppressed expression of CDKN1A, FAM214A, and
INPP4B, validating the patient-derived association.
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The miR-17-92 cluster, located in an intron of
MIR17HG, encodes miRs-17, —18a, —19a, —20a, —19b and
-92a. These microRNAs are frequently upregulated in
breast cancer [24] and suppress growth control proteins
such as E2F1 [25] and PTEN [26]. Despite a predominant
view of these miRNAs as oncogenic, several lines of evi-
dence complicate their role in cancer progression. The
miR-17-92 cluster is deleted in 21.9% of breast cancer [27]
and forced overexpression of miR-17 in breast cancer cell
lines reduces their proliferative capacity [28]. Further-
more, the miR-17-92 cluster is suppressed in cancer stem
cells (CSCs) in a pancreatic cancer model, facilitating per-
sistent quiescence of this population [29]. Thus, the cellu-
lar context is paramount in dictating the function of
miRNAs, including miR-17-92.

We observed a consistent anti-correlation pattern be-
tween miR-17, miR-19a and Inositol polyphosphate 4-
phosphatase II (INPP4B), an inhibitor of PI3 kinase signal-
ing. Indeed, negativity for INPP4B has been identified as a
marker for basal-like breast cancer with protein loss in
84% of basal-like breast cancers and loss-of-heterozygosity
in 55% of triple-negative, basal-like cancers [30, 31]. Its

function as a tumor suppressor was shown through de-
creased proliferation and Akt activation upon restoration
of INPP4B expression in the ER-negative breast cancer
cell line, MDA-MB-231 [31, 32]. Consistent with these re-
ports, we observed a lack of INPP4B expression in triple
negative, BL1, MDA-MB-468 cells. However, the triple-
negative, BL2, cell line HCC70 expressed detectable
INPP4 mRNA. In the analyzed TCGA dataset, copy-
number variation and mutation data are available only for
a fraction of TNBC cases, affecting around 30% cases and
suggesting no differences between BL1 and BL2 subtypes.

Conclusions

Triple-negative breast cancer is a heterogenous disease.
Refining the biological distinctions among subtypes
within TNBC is critical for improving prognostic infor-
mation and therapeutic opportunities for patients with
these diseases. Here we show that TNBC subtypes ex-
press distinct microRNA profiles which are linked to
cancer-associated mRNAs. In particular basal-like 1 and
basal-like 2 tumors show distinct expression patterns of
miR-17-92 cluster microRNAs and targets.
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