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Abstract

Background: Interrogation of site-specific CoG methylation in circulating tumor DNAs (ctDNAs) has been

employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers
were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a
technique involving bisulfite conversion, PCR, and gPCR.

Methods: In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR)
which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction
(LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of
primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific
CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31
types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood.

Results: Our results indicate that the PCR-LDR-gPCR assay is capable of detecting ~ 30 methylated copies of each
of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each),
which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA)
when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of

receptor, PTEN, p53, pRB, and p27).

NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of £FNA3). Additional bioinformatic
analyses would reveal that these methylation markers are independent of patient race and age, and positively
associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear

Conclusion: This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with
bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
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Background

In 2019, the projected number of new cases of and
deaths due to breast cancer (BrCa) in the United States,
are 271,270, and 42,260 respectively [1]. Worldwide, the
corresponding numbers (2018 estimate) are 2,088,849,
and 626,679 respectively [2]. It is the second-leading
cause of cancer death in women, one in 8 of whom will
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acquire the disease in her lifetime. Although genetic pre-
disposition (i.e. BRCA1/2 mutations) is an important
contributing factor (5-10%) [3, 4], most BrCa cases are
those without clear genetic link (it may still be due to
unknown genetic risk, thus considered familial). While
Stage I cases have close to 100% 5-year survival rate,
those diagnosed at Stage IV have a 5-year relative sur-
vival rate of only 22%, accounting for 6-10% of new
BrCa cases and 20-30% all of recurrent disease [5]. The
early detection of BrCa saves lives and reduces the mor-
bidity associated with the aggressive treatments required
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for treating late-stage cancers. Nevertheless, the primary
diagnostic screening method, mammography, has high
rates of false positive and false negatives, can result in
over-diagnosis,, uses harmful radiation, and is an un-
comfortable process for patients [6, 7]. This necessitates
the pursuit of molecular markers more indicative of a
tumor’s biological characteristics translatable to a reli-
able, non-invasive diagnostic assay. Over the years, there
have been numerous reports indicating that either blood
serum, plasma, or whole blood can harbor molecular
biomarkers indicative of a progressing BrCa [3, 8, 9].
These markers include: secreted proteins (e.g. CA15-3,
trefoil factors 1, 2, and 3), auto-antibodies (e.g. anti-
bodies against human endogenous retrovirus-K(HML-2)
and heterogeneous nuclear ribonucleoprotein F), lipids
(e.g. Cl6:1, C18:3, C18:2), and microRNAs (e.g. miR-21,
miR-221, miR-145). In addition to the blood-based
markers mentioned above, there is growing field explor-
ing the use of DNA fragments released by cancer cells
(referred to as circulating tumor DNAs or ctDNAs) into
the patient’s bloodstream as an indicator of cancer [10,
11]. Previous studies proved that genomic signatures
(e.g. mutation, copy number variation, CpG methylation)
found in cancer tissues are largely concordant with those
identified in ctDNAs [12-18]. Already marketed are
early cancer diagnostic tests based on interrogating site-
specific CpG hypermethylation in ctDNAs isolated from
patient plasma. These include: a) Epi proColon, Colo-
Vantage, Realtime mS9, all of which detect methylation
in the SEPT9 gene for colon cancer detection [19]; b)
Epi proLung which detects methylation of SHOX2 for
lung cancer detection [20], and c) Colvera, which detects
methylation at BCAT1 and IKZFI for colon cancer re-
currence [21].

There are important considerations in the develop-
ment of methylation-based early detection assays for
BrCa (or any other cancer type). Although the levels
of plasma-derived cell free DNA (cfDNA) in serum
from cancer patients are indeed abnormally high in
early- to late-stage cancers [22-24], only a small per-
centage are ctDNAs (most cfDNAs are hematological
in origin). Another important concern is the selection
of appropriate markers. At the very least, the selected
CpG sites should be highly methylated in breast pri-
mary tumors (PTs) and practically unmethylated in
peripheral blood. However, for a marker to be highly
specific to BrCa PTs, it needs to have very low levels
of methylation in normal breast tissues, and many
other tumor types. In this report, we demonstrate a
new and more sensitive assay for methylated CpG de-
tection (incorporating various steps including ligase
detection reaction), and a comprehensive approach to
biomarker discovery using integrated public genomic
datasets.
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Methods

Public genomic datasets

Analyzed for this study are various publicly available
genomic datasets (Additional file 1: Supplement 1) such
as those released by the TCGA project (https://www.
cancer.gov/about-nci/organization/ccg/research/struc-
tural-genomics/tcga) [25] and those deposited in the
Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/). The primarily Illumina 450 K methylation
array-generated TCGA datasets were previously com-
piled (and processed) in the UCSC Cancer Genomics
website (https://genome-cancer.ucsc.edu/) [26, 27]. The
TCGA cohorts included in our analyses are: breast inva-
sive carcinoma [BRCA], adrenocortical carcinoma
[ACC], bladder urothelial carcinoma [BLCA], cervical
squamous cell carcinoma and endocervical adenocarcin-
oma [CESC], cholangiocarcinoma [CHOL], colon adeno-
carcinoma [COAD], lymphoid neoplasm diffuse large b-
cell lymphoma [DLBC], esophageal carcinoma [ESCA],
glioblastoma multiforme [GBM], head and neck squa-
mous cell carcinoma [HNSC], kidney chromophobe car-
cinoma [KICH], kidney renal clear cell carcinoma
[KIRC], kidney renal papillary cell carcinoma [KIRP],
brain lower grade glioma [LGG], liver hepatocellular car-
cinoma [LIHC], lung adenocarcinoma [LUAD], lung
squamous cell carcinoma [LUSC], mesothelioma
[MESQ], pancreatic adenocarcinoma [PAAD], pheochro-
mocytoma and paraganglioma [PCPG], prostate adeno-
carcinoma [PRAD], rectum adenocarcinoma [READ],
sarcoma [SARC], skin cutaneous melanoma [SKCM],
stomach adenocarcinoma [STAD], testicular germ cell
tumors [TGCT], thymoma [THYM], thyroid carcinoma
[THCA], uterine corpus endometrial carcinoma [UCEC],
uterine carcinosarcoma [UCS], and uveal melanoma
[UVM]. Also crucial to our biomarker identification is
the integration of various GEO datasets such as:
GSE65820 (ovarian cancer PTs and matching normals)
[28], GSE46306 (normal tissues of the cervix) [29],
GSE99553 (gastric mucosa), GSE74104 (testis) [30],
GSE77871 (adrenal tissues), GSE51954 (dermis and epi-
dermis) [31], GSE64509 (various brain tissues) [32],
GSE42861 (peripheral blood) [33], and GSE59250 (vari-
ous immune cells from healthy individuals) [34]. The
methylation data for BrCa cell lines were extracted from
the GEO datasets GSE57342 [35], GSE68379 [36],
GSE78875 [37], and GSE94943.

Bioinformatic and statistical analyses

Programs and other tools All statistical analyses (com-
parative statistics, normalization, correlation and regres-
sion analyses, multivariate analyses, hierarchical
clustering) were performed using JMP Pro 11/ JMP Gen-
omics software (SAS, Cary, NC), and Gene-E (Broad
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Institute, Cambridge, MA). Genomic sequence extrac-
tion and alignment were performed through the UCSC
Genome Browser (https://genome.ucsc.edu/) [38]. The
OligoAnalyzer Tool from IDT (https://www.idtdna.com/
pages/tools/oligoanalyzer) aided in our primer designs.

Prediction of blood-based, breast cancer-specific
methylation markers The primary task was to identify
CpG markers whose high degree of methylation in blood
cfDNA may be indicative of primary BrCa, but (as much
as possible) not of normal breast cells, peripheral blood,
and many other cancer types. There are multiple ap-
proaches which can be employed to accomplish this
task. Our approach started with simplifying each sub-
group (e.g. PTs, solid normals) of a given cohort (e.g.
TCGA-BRCA, TCGA-COADREAD), into arbitrarily de-
fined metrics. In this case, the CpG marker P for a given
cohort C, and cohort subset S was associated with spe-
cific statistical value V, such as %UM, %IM, %LM,
%HM, %UM + %IM, and %LM + %HM, wherein UM,
IM, LM, HM respectively refer to UnMethylated (Bp <
0.15; B = fraction of methylation at marker P), Indeter-
minately Methylated (0.15 < fp <0.3), Lowly Methylated
(0.3 < Pp<0.6), and Highly Methylated (Bp>0.6) at the
marker P. The candidate markers (P’s) were dynamically
identified by isolating CpG sites which satisfied multiple
criteria in the general form: Vp(cs) = n; {0 <7 <100}.

Assessment of methylation markers’ relationship
with various clinico-pathological data The accompany-
ing clinico-pathological (such as pathological stage, PAM50
molecular subtype, age, race, and ethnicity) were used to as-
sess their influence in the CpG markers’ 3 values.

Assessment of methylation markers’ roles in
epigenetic regulation and other functionalities The
genome-wide transcriptional data (RNASeq-generated)
for the BRCA cohort was also integrated into the ana-
lyses. First, the combined transcriptional and methyla-
tion data enabled us to predict if the CpG sites can
potentially influence the transcription of their respective
genes. Second, Gene Set Enrichment Analysis [39] was
employed to predict the genes or pathways (http://soft-
ware.broadinstitute.org/gsea/msigdb/genesets.jsp)  that
tend to be enriched (or upregulated) when a particular
CpG site is highly methylated (such as some of the CpG
sites which will eventually be verified experimentally).

Cell lines and genomic DNAs

The BrCa cell lines SKBr3, MDA-MB-134VI, and MCF?7,
which would serve as sources of cancer genomic DNAs
(gDNAs), were grown according to culture conditions
recommended by ATCC (https://www.atcc.org/). At 80—
90% confluence, the cells were washed with Phosphate

Page 3 of 15

Buffered Saline (x 3), and collected by centrifugation
(500 x g). gDNAs were isolated using the DNeasy Blood
& Tissue Kit (Qiagen; Valencia, CA). gDNA (>50kb
size) isolated from blood (buffy coat) of healthy individ-
uals was purchased from Roche (Indianapolis, IN) (also
referred to as “Roche DNA”). Quant-iT Picogreen Assay
(Life Technologies/Thermo Fisher; Waltham, MA) was
used to determine gDNA concentration. The isolated
gDNAs were then fragmented (50 bp to 1kb size) using
an ultra-sonicator from Covaris (Woburn, Massachu-
setts). The fragmentation size was assessed using the
Agilent Bioanalyzer System.

Enrichment of methylated genomic DNA

The gDNA fragments containing CpG methylated frag-
ments were enriched using the EpiMark® Methylated
DNA Enrichment Kit (New England BioLabs, Ipswich,
MA). This approach uses selective binding of double-
stranded methyl-CpG DNA to the methyl-CpG binding
domain of human MBD2 protein fused to the Fc tail of
human IgGl. The fused IgGl (MBD2-Fc) antibody is
coupled to paramagnetic hydrophilic protein A magnetic
beads. The enrichment procedure was carried out ac-
cording to the manufacturer’s instructions.

Bisulfite conversion of digested genomic DNA

Bisulfite conversion of cytosine bases was accomplished
using the EZ DNA Methylation-Lightning kit from
Zymo Research Corporation (Irvine, CA). In brief, 130 pl
of Lightning Conversion Reagent was added to 20 ul of
previously enriched gDNA fragments. Subsequent proto-
col steps (according to the manufacturer’s instructions)
led to elution of bisulfite converted DNA fragments in
10 pl of elution buffer.

PCR-LDR-qPCR

The assay we developed for detection of plasma-based
BrCa methylation markers is divided into several steps
described in following subsections. All primers (Add-
itional file 1: Supplement 2) were purchased from Inte-
grated DNA Technologies Inc. (Coralville, IA).

Linear amplification

In a 25l of reaction volume, the linear amplification
step was carried out by mixing: 5.0 ul of corresponding
bisulfite converted DNA template (out of 50 pl of eluted
DNA after bisulfite conversion), 5 ul of 5x GoTaq Flexi
buffer (no Magnesium) (Promega, Madison, WI), 2.5 ul
of 25 mM MgCl, (Promega, Madison, WI), 0.5 pul of 10
mM dNTPs (dATP, dCTP, dGTP and dTTP) (Promega,
Madison, WI), 2.5 pl of the reverse primer (or primers in
case of multiplex reaction) (1 uM), 0.625 pl of 20 mU/pl
RNAseH2 (diluted in RNAseH2 dilution buffer from
IDT) (IDT), and 0.55 pl of KlenTaql polymerase (DNA
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Polymerase Technology, St. Louis, MO) mixed with Plat-
inum Taq Antibody (Invitrogen/Thermo Fisher, Wal-
tham, MA). The reactions were run in a ProFlex PCR
system thermocycler (Applied Biosystems/ Thermo-
Fisher, Waltham, MA) with the following program: 2
min at 94°C, 40 cycles of (20s at 94°C, 40s at 60 °C,
and 30s at 72°C.), and a final hold at 4 °C. After the re-
action, Platinum Taq antibodies were added in the reac-
tion mixture to inhibit the KlenTaq DNA polymerase.
The KlenTaql/Platinum Taq Antibody mixture was pre-
pared by adding 0.02 pl of Klentaqgl polymerase at 50 U/
ul to 0.2 ul of Platinum Taq Antibody at 5 U/pl.

PCR

For the PCR reaction, 10 pl of linear amplification prod-
uct (previous step) was mixed with 2 pl of 5X GoTaq
Flexi buffer without Magnesium, 1 pl of 25 mM MgCl,,
0.4 pul of ANTPs (10 mM each of dATP, dCTP, dGTP
and dUTP), 2 ul of 0.5 uM forward primer (or primers in
case of multiplex reaction), 0.4 ul of Antarctic Thermo-
labile UDG (1U/ul) (New England Biolabs, Ipswich,
MA), 0.25 pl of 20 mU/pl RNAseH2, 0.44 pl of KlenTaql
polymerase mixed with Platinum Taq Antibody (Invitro-
gen/Thermo Fisher, Waltham, MA). The KlenTaql /
Platinum Taq Antibody mixture was prepared by adding
0.02 pl of 50 U/ul Klentaql polymerase to 0.2 pl of 5 U/l
Platinum Taq Antibody. The 20 pl-volume reactions
were run in a ProFlex PCR system thermocycler, using
the following program: 10 min at 37 °C, 40 cycles of (20 s
at 94°C, 40s at 60°C. and 30s at 72°C), 10 min at
99.5°C, and a final hold at 4 °C.

LDR

The LDR step was performed in a 20 pl reaction pre-
pared by combining: 5.82pl of nuclease-free water
(IDT), 2 pul of 10X AK16D ligase reaction buffer 0.5 pl of
40 mM DTT (Sigma-Aldrich, St. Louis, MO), 0.25 pl of
40 mM NAD+ (Sigma-Aldrich, St. Louis, MO), 0.5 pl of
20 mU/pl RNAseH2, 0.4 pl of 500nM LDR upstream
probes, 0.4 ul of 500nM LDR downstream probes,
0.57 ul of purified AK16D ligase (at 0.88 uM), and 4 pl of
PCR reaction products from previous step. The AK16D
ligase reaction buffer (at 1X) contains the following: 20
mM Tris-HCI at pH 8.5, 5mM MgCl,, 50 mM KCl, 10
mM DTT, and 20 pg/ml of BSA (all components pur-
chased from Sigma Aldrich, St. Louis, MO). LDR reac-
tions were run in a ProFlex PCR system thermocycler
using the following program: 20 cycles of (10s at 94°C,
and 4 min at 60 °C) followed by a final hold at 4 °C.

Tagman real-time qPCR

The qPCR reaction was performed in a 10 pl of reaction
mixture prepared by mixing: 1.5ul of nuclease-free
water (IDT), 5pul of 2X TaqMan® Fast Universal PCR
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Master Mix (Fast AmpliTaq, UDG and dUTP)(Applied
Biosystems/ThermoFisher; Waltham, MA), 1l 2.5uM
forward primer at, 1 pl of 2.5 uM reverse primer, 0.5 pl
of 5uM probe, and 1 pl of LDR reaction products from
the previous step. All qPCR reactions were run in a
ViiA7 real-time thermo-cycler from Applied Biosystems
(Applied Biosystems/ThermoFisher; Waltham, MA),
using MicroAmp® Fast-96-Well Reaction 0.1 ml plates
sealed with MicroAmp™ Optical adhesive film (Applied
Biosystems/ThermoFisher; Waltham, MA). The run set-
tings were as follows: fast block, Standard curve as ex-
periment type, ROX as passive reference, TAMRA as
reporter, and NFQ-MGB as quencher; program at 2 min
at 50 °C, and 40 cycles of (1 s at 95°C, and 20 s at 60 °C).

Tagman digital gPCR

For each digital PCR reaction, a 20 pl mixture was pre-
pared in each of the 96 well digital PCR microplate. The
mixture included 2 pl of diluted LDR product (Step 3),
1X Luna Universal ProbeqPCR master mixture, 0.1%
tween 20, 0.4 mU RNAseH2, 0.025 U Antarctic Thermo-
labile UDG, 5 uM each of forward and reverse primers,
and Tagman probe. 12 pl of reaction mixture was loaded
into the Constellation Digital PCR System (originally
Formulatrix, Bedford, MA; currently Qiagen), and run
with the following conditions: 37 °C for 10 min, 95 °C for
20's, and 45 cycles of 55 (94.°C), and 20 s (60 °C).

Results

Identification of potential blood-based breast cancer
(BrCa) methylation markers

The BrCa methylation markers were identified (See Fig. 1)
by applying the following filters: a) %HM (grca, p1) 2 30; b)
% UM (BRCA, SN) 2 40, C) Average (%UM) C 82 40; C= any
cancer cohort = BRCA, S =PTs, d) Ave. (%UM) (¢, s) = 40;
C = any cancer cohort # BRCA; S = Solid normals; and e) %
UM (GsEa2861,blood) = 98. A total of 229 CpG sites passed
these filters. Among these are located in the loci of CPXM1,
RASSFIA, and SC3BGA1, which have been reported in the
literature to be indicative of BrCa [3]. Selected for further
studies are the CpG sites located in the promoter regions of
NRS5A2 (nuclear receptor subfamily 5 group A member) (re-
ferred to as “m_NR5A2) and PRKCB (protein kinase C
beta)(m_PRKCB), as well as a CpG site in a non-coding re-
gion of chromosome 1 (m_ncrl) (Additional file 1: Supple-
ment 3). The 3 aforementioned CpG sites were selected
after further statistical inspections (i.e. the ones most likely
to differentiate BrCa with other major cancer types), and
assessment of surrounding sequences (i.e. to make sure
assay can be designed around the target CpG sites). Of the
3 markers, m_ncrl appears to be most highly specific to
BrCa PTs (Fig. 2, Additional file 1: Supplement 4). The

average methylation () of m_ncrl, among BRCA PTs is
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Integrated Datasets Count

TCGA datasets 32

GEO datasets 9

Cancer types represented 33
Primary Tumors 8136
Metastasis 368
Solid normals 1271

Healthy blood 902

Step 1 (Stat Filter) l

BrCa-specific markers
n=229

Step 2 (Additional
inspections)

Representative CpG

sites for assay design
m_NR5A2
m_PRKCB
m_ncrl

Fig. 1 The scheme employed to identify potential site-specific
methylation markers for blood-based early detection of
breast cancer

0.536 (on the scale 0 to 1, with 1 being 100% methylated).
For other major cancer types such as ovarian cancer (OV),
endometrial cancer (UCEC), colorectal cancer (COAD-
READ), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), and pancreatic cancer (PAAD), the B
values for PTs (or B pr) range from 0.030 to 0.093. In con-
trast, the [_3 for normal tissues (or B sn) is 0.206 for normal
breast, and ranged from 0.028 to 0.066 in other tissue types.
As shown in Fig. 2 and Additional file 1: Supplement 4, m_
NR5A2 is very highly methylated in BRCA PTs (B pr=
0.604). However, it also exhibits a high level of methylation
in lung cancer ([_3 pr equals 0.454 and 0.436 for LUAD and
LUSC PTs respectively). Among the major cancer types,
the marker m_PRKCB exhibits the highest degree of
methylation (B pr equals 0.561). Nonetheless, this particular
marker may also test positive for LUAD (B pr = 0.446),
PAAD (B pr=0498), UCEC (B pr=0.328), and COAD-
READ (B pr = 0.362).

Relationship of select CpG markers with other
clinicopathological profiles

It is also possible to examine the various clinico-
pathological information which may be associated with
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the methylation markers’ B values. As expected, more
progressive tumors tend to have higher § pr values. For
example, the m_ncrl B pr values for Stage I, II, and III
are 0.499, 0.534, and 0.590 respectively (Additional file
1: Supplement 5). For m_NR5A2, these respective values
are 0.552, 0.610, and 0.662. For the m_PRKCB marker,
while Stage III PTs registered the highest B pr (0.611),
the B pr value for Stage I (0.562) is slightly higher than
that of Stage II (0.548). Nonetheless, the most statisti-
cally significant difference, across all markers, is between
Stage I and Stage III PTs. Another noteworthy observa-
tion is that in all 3 markers, the Basal subtype registered
the lowest B pr values. For example, the m_ncrl [_3 PT
values for Basal, Luminal A (LumA), Luminal B (LumB),
and HER2 tumors are 0.440, 0.532, 0.628, and 0.630 re-
spectively (Additional file 1: Supplement 6). We did not
find a substantial correlation (R* values range from 0.0
to 0.04) between patient age and methylation at each
marker (irrespective of whether the tissue sample is a
that of PT or solid normal) (See Additional file 1: Sup-
plement 7). In addition, the methylation at each of the
marker is independent of the racial (whether Asian, Afri-
can American, or White) or ethnic (whether Hispanic or
non-Hispanic) classification of the patient (Additional
file 1: Supplements 8 and 9).

The predicted biological roles of BrCa-specific
methylation markers

The methylation level of either m_NR5A2 or m_PRKCB,
apparently does not correlate with its transcript level
(the respective R values are —0.198 and — 0.123) (Add-
itional file 1: Supplement 10). Nonetheless, it is still pos-
sible to bioinformatically demonstrate the association of
these two CpG sites (along with m_ncrl, which is not
part of the transcribed gene) with BrCa progression. It
was accomplished in several ways. The first approach
(See Fig. 3) was to identify the genes whose expression
levels are most highly correlated with the methylation of
the select markers. Indeed, a number of genes whose
transcription positively and negatively correlated with
each of the markers are known oncogenes and transcrip-
tion factors respectively. For example, the expression of
the transcription factor FOXA1, is highly (and positively)
correlated with the methylation levels at m_PRKCB and
m_NR5A2 (Fig. 3a and b). This transcription factor is
needed for the transactivation of p27P* [40], which
alone or in conjunction with BRCA1 may control gene
expression pattern in luminal subtypes of BrCa [41].
Similarly, the expression of SPDEF has a high positive
correlation with m_PRKCB and m_ncrl(Fig. 3a and c).
Previous studies indicated that SPDEF (also a transcrip-
tion factor) is upregulated in all al subtypes of BrCa (ex-
cept basal), and is especially associated with HR
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Fig. 2 Comparative methylation levels (3 values) of the 3 CpG sites (interrogated in the multiplex assay) in breast (BRCA) and other major cancer
types among women: colorectal (COADREAD), ovarian (OV), endometrial (UCEC), lung (LUAD, LUSC), and pancreatic (PAAD). The {3 values range
from — 0.5 (0%methyaltion) to + 0.5 (100% methylation)

phenotype and nodal metastasis [42]. ERBB3 expression,
which is positively correlated with methylation at m_
PRKCB and m_NR5A2 (Fig. 3a and b), can form a het-
erodimer with ERBB2, and subsequently activates down-
stream signaling leading to cell cycle progression [43].
Another transcription factor, GATA3 is positively corre-
lated with both m_PRKCB and m_NR5A2 (Fig. 3a and
b). Upregulated in all BrCA subtypes (except basal),
GATAS3 is associated with ER positive BrCa (shown to
regulate the expression of ER gene itself) [44]. In con-
trast, many of the genes whose transcript levels are
negatively correlated with the methylation at the 3 CpG
sites are known tumor suppressor genes. These include
the genes CDCI4B and SPRY2. CDCI14B is a protein
tyrosine phosphatase which can regulate RNA Pol II and
repress cell cycle transcription [45]. SPRY2 acts as tumor
suppressor in BrCa by inhibiting the Ras/Mitogen-Acti-
vated Protein Kinase Pathway [46], and in ovarian can-
cer, through inhibition of Amphiregulin (AREG)-
induced cell invasion [47].

Another approach to bioinformatically justify the po-
tential of methylation markers in cancer detection is
through genome-wide transcriptional comparison be-
tween two BrCa PT subsets: those highly methylated
(H), and those lowly methylated (L) at a particular CpG
site p. The two subsets are defined as the follows: a) H

subset includes PTs with B, values higher by at least 1 ¢
from the mean (B p)» and b) L subset includes BrCa PTs

with 8, values lower by at least 1 ¢ from the mean B )
Gene Set Enrichment Analysis (GSEA) [39] was then
employed to identify the molecular pathways, as defined
in Biocarta (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp?collection=CP:BIOCARTA) or Reactome
(https://reactome.org/) [48] databases, most likely
enriched in H over L subsets. Results from this analysis
would indicate that gene sets associated with retinoid
nuclear receptor signaling, are highly enriched in H over
L subsets. These include: RARRXR (Nuclear receptors
coordinate the activities of chromatin remodeling com-
plexes and coactivators to facilitate initiation of tran-
scription in carcinoma cells), VDR (Control of Gene
Expression by Vitamin D Receptor), and CARM1 (Tran-
scription Regulation by Methyltransferase of CARMI). In
the RARRXR pathway, the binding of retinoids to
RARA/RXRA nuclear receptor heterodimer initiates the
transcriptional activation of cell proliferation-associated
phosphatidylinositol 3-kinase (PI3K) [49]. Other studies
point to RARRXR pathway’s association with estrogen
signaling [50, 51]. RARA/RXRA nuclear receptor plays a
role in epigenetic regulation of Vitamin D Receptor
(VDR). Previous studies have demonstrated VDR path-
way’s association with BrCa proliferation [52]. The
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Fig. 3 Heatmaps depicting the genes whose transcript levels in breast cancer samples are most highly correlated (negative or positive) with the
methylation at the 3 select CpG sites: @) m_PRKCB, b) m_NR5A2, ¢) m_ncr]

positive association between the methylation markers
and CARM1 pathway is consistent with previous studies
indicating that CARM1 (which codes for arginine methyl-
transferase) is involved in epigenetic transactivation of
many nuclear receptors (NRs) including ERa [53]. CARM1
is also associated with poor prognosis in BrCa [54].

Also positively associated with at least one of the 3
methylation markers is the upregulation of cancer prolif-
eration signaling pathways including: PTEN (PTEN
dependent cell cycle arrest and apoptosis), P53 (p53 Sig-
naling Pathway), P27 (Regulation of p27 Phosphorylation
during Cell Cycle Progression), RB (RB Tumor Suppres-
sor/Checkpoint Signaling in response to DNA damage),
ATRBRCA (Role of BRCA1, BRCA2 and ATR in Cancer
Susceptibility), and MTOR (mTOR Signaling Pathway).
The enrichment of the aforementioned cancer pathways
(in H over L PT subsets) may be explained by the upreg-
ulated expression of genes comprising these gene sets.
These genes include: a) MAPK3, PDK2, and PTEN, of
the PTEN gene set; b) BCL2, CCND1, RBI1, TIMP3, and
MDM?2 of the P53 gene set; ¢) E2F1 and CKSIB, of the

P27 gene set; d) CDC25C, MYT1, CDKI, and CD25B of
the RB gene set; e) RAD51, BRCAI, FANCD2, and
BRCA2, of the ATRBRCA gene set; and f) EIF4EBPI of
the MTOR gene set.

Multiplex bisulfite PCR-LDR-qPCR assay to validate the 3
breast cancer methylation markers

In essence, the analyses described above rationalized that
the methylation level at 3 CpG sites (m_ncR1, mNR5A2,
and m_PRKCB) can serve as serum markers for progres-
sing BrCa. With the aim of translating these findings to
clinical use, we tested a homegrown procedure (bisulfite
PCR-LDR-qPCR assay) (Fig. 4) designed to interrogate
these methylated markers present in minuscule amount
(i.e. down to less than 50 copies), as it is expected in
cfDNA isolated from ~ 10-ml patient blood. The assay
was tested on simulated c¢fDNA sample consisting of a
mixture of gDNA fragments from BrCa cell line and per-
ipheral blood from healthy patients, with the fragments
from the latter present at ~ 100-fold relative to the
former. It is a fair assumption that many of the BrCa cell
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lines will be highly methylated at the 3 CpG sites. None-
theless, given the availability of genome-wide methyla-
tion datasets for many of the commonly used cancer cell
lines, this assumption can easily be verified. According
to the datasets GSE57342, GSE68379, GSE78875, and
GSE94943, the average [} values for the CpG markers
m_NR5A2, m_PRKCB, and m_ncrl in the BrCa cell line

MCEF?7 are 0.96, 0.97, and 0.98 respectively (Fig. 5). For
the cell line MDA-MB-134-VI, the respective numbers
are 0.98, 0.74, and 0.99. With this information, the
gDNAs from these cell lines were isolated, fragmented,
and enriched for methylation (through the use of fusion
protein with the methyl-CpG binding domain, which

can selectively bind DNA fragments containing
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Fig. 5 a. Panels 1 and 2 refer to the resulting Ct plots (from ViiA7 run) for multiplex detection of the CpG markers m_ncr1, m_NR5A2, and
m_PRKCB using as initial template fragmented and bisulfite-converted mixture of 30, and 3000 genomic copies of DNA from breast cancer cell
line (MCF7 or MDA-MB-134-VI) and normal human blood (Roche human genomic DNA) respectively. The DNA fragment mixture simulates the
likely constitution of patient cfDNA (i.e. majority of which are released by peripheral blood cells). Panel 3 serves as a negative control (3000
copies of genomic DNA from normal human blood). b. The Ct values for the plots depicted in A. Also shown are results from no template
controls (NTCs) in various steps of the assay (PCR, LDR, gPCR). “No Ct" means no amplification was detected after 45 cycles of real time PCR. c.
The fraction of methylation at a specific CpG site for the 3 CpG sites in the genomes of MCF7 and MDA-MB-134-VI cell lines, as extracted from
lllumina 450 K array-generated datasets deposited in Gene Expression Omnibus (GEO). * Average values extracted from datasets GSE57342,
GSE68379, GSE78875, and GSE94943. **Value extracted from dataset GSE68379

methylated CpG sites). As shown in the scheme (Fig. 4),
the simulated cfDNA (~ 30 and 3000 copies of cell line
and peripheral DNA fragments respectively), was
bisulfite-converted, then subjected to two-step PCR. The
resulting amplicon would then serve as template for lig-
ase detection reaction (LDR). The final step to detect the
methylation signal was Tagman-based real time PCR,
using the LDR products (from the previous step) as tem-
plates. The Ct values for m_NR5A2, m_PRKCB, and m_
ncrl were 8.96, 11.38, and 14.75 respectively for MCF7,
and 7.81, 11.73, 12.70 respectively for MDA-MB-134-VI.
No Ct values registered for the unmixed peripheral
blood for each of the marker. Indeed, the designed as-
says were capable of detecting minute amount of the
BrCa methylation markers. These assays were designed
to reduce false positive signals by minimizing non-
specific amplifications Among the important features are
the 811 base tails in the reverse PCR primers, meant to
reduce the possibility of primer dimer formation. Also
present were the ribose bases at the 3’ end of the PCR
and LDR primers. These sequences were removed by

RNaseH2 when the primers were bound to their targets,
ensuring highly specific extension (for PCR) and ligation
(for LDR). Carryover prevention was the objective of the
timely addition of UDG, dUTP, or dTTP in the dNTP mix-
ture [55]. Also, the tags in LDR primers (Ai, Ci’) allowed
for uniformity (in terms of Tm) in qPCR reactions.

Digital PCR as the final detection step

Instead of Tagman PCR, digital PCR may also be used
as detection step. For this experiment, we performed the
2-step PCR and LDR reactions as described above, using
the primers for the detection of methylation at the CpG
site located in the promoter region of the gene GRK7
(m_GRK7 or cgl8768784; Chr3:_141516271-141,516,
272), although highly methylated in the BrCa cohort, has
low BRCA-specificity. Nonetheless, there is a high de-
gree of concordance between detection based in qPCR
(Fig. 6a) and detection using the Constellation (Formula-
trix) digital PCR System (Fig. 6b). The bisulfite con-
verted DNA fragments consisting of ~ 3000 copies of
unmethylated m_GRK7 (from peripheral blood) and ~
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Fig. 6 a. Panels 1 and 2 refer to the resulting Ct plots (from ViiA7 run) for multiplex detection of the CpG marker m_GRK?7, using as template 30
copies of bisulfite-converted and fragmented genomic DNA from breast cancer cell line (MCF7 or MDA-MB-134-VI) mixed with 3000 copies of
genomic DNA from human blood (Roche human genomic DNA). Panel 3 refers to negative control, with just the normal blood genomic DNA as
a template. b. A digital PCR readout (using Formulatrix Constellation dPCR System) for similar experiments depicted in A. NTC refers to “No
template control”. ¢. The fraction of methylation at a specific CpG site for m_GRK7 CpG site in the genomes of MCF7 and MDA-MB-134-VI cell
lines. This information was extracted from Illumina 450 K array-generated datasets deposited in Gene Expression Omnibus (GEO). * Average value
extracted from datasets GSE57342, GSE68379, GSE78875, and GSE94943. **Value extracted from dataset GSE68379

30 copies of methylated m_GRK7 yielded Ct values of
7.8 and 9.4 for MCF7 and MDA-MB-134VI respectively.
The unmixed template (DNA fragments from peripheral
blood only) did not register readable Ct. In the digital
PCR detection system, the corresponding readings are
8164, 4986, and 805 for the MCF7, MDA-MB-134VI,
and control (peripheral blood only) respectively.

Discussion
The limitations of mammography are what drives the
persistent efforts towards developing non-invasive
screening approaches for early BrCa detection. Falling
under the term “liquid biopsy”, many of the methods
under investigation are technologies which aim to detect
blood-based molecular markers originating from BrCa
cells. The molecular markers can include cfDNA frag-
ments, exosome-enclosed or naked RNA molecules, se-
creted proteins and metabolites [8, 9].

Of particular interest in the early-cancer detection
field are circulating tumor DNAs (ctDNAs), which

apoptotic and necrotic cancer cells release into patient
plasma [56]. As expected, ctDNA fragments possess the
same molecular signatures (somatic mutations, methyla-
tion, copy number variation/aberration, SNPs) present in
gDNAs isolated from the tumor tissue samples. Hence,
molecular characterization tools normally used to inves-
tigate cancer gDNAs (such as exome or genome-wide
sequencing, PCR, DNA arrays, methylation arrays) have
also been applied in ctDNA analysis [57]. What makes
ctDNA analysis especially challenging is the fact that
when isolated from patient plasma, ctDNAs are mixed
with an overwhelming amount of DNA fragments that
are hematopoietic in origin [58—60]. All of the fragments
are collectively referred to as cell-free DNAs (or
cfDNAs). According to a recent study, the ctDNAs ori-
ginating from BrCa cells is just a small fraction of total
cfDNAs [24]. This is based on the observation that the
mutant allele fraction (MAF; from sequencing 58
cancer-related genes) of cfDNAs isolated from BrCa pa-
tients is less than 1% [24]. It is imperative that the assay
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employed to analyze cfDNAs is capable of distinguishing
between the positive (several copies of ctDNAs) and
mostly negative (from non-cancer cfDNAs) signals. This
limitation of ctDNA analyses can be circumvented
through the identification of more appropriate molecular
biomarkers, along with the modification of assay bio-
chemistry towards higher sensitivity and specificity. Al-
though plasma-based ctDNA markers may include
markers for mutations, methylation states, or copy num-
ber variations (most reports interrogate methylation and
mutation markers), methylation markers have several in-
herent advantages. First, methylation changes are tissue-
specific [61], thus as markers, would make them highly
capable of distinguishing one cancer type from another.
Another advantage of CpG methylation over mutation is
that oftentimes the methylation changes adjacent CpG
sites in promoter regions, are concordant. Methylation-
dependent procedures (such as the use of methyl DNA-
binding antibodies) would then be more effective in
enriching the fragments containing the highly methyl-
ated markers.

Identification of appropriate methylation markers (ie.
particular CpG sites) is very crucial. To pinpoint the
specific CpG sites that can easily distinguish BrCa tissues
from peripheral blood and other types of cancer, we
took advantage of the availability of various genome-
wide methylation datasets. As previously pointed out,
these calculations resulted in identification of 229 poten-
tial CpG markers which included CpG sites at the locus
of RASSFIA (Ras association domain-containing protein
1), which happens to be the most highly reported blood-
based methylation markers for breast cancer [62-69].
Additional statistical inspections and assay design con-
siderations would then point to the selection of the 3
CpG markers we focused on for this manuscript. Two of
the CpG sites (m_NR5A2 and m_PRKCB) are located in
promoter regions of genes, with reported link to breast
cancer. NR5A2 (or LRH1) is a zinc finger transcription
factor which can regulate CDKN1A expression in BrCa
[70], and has been positively associated with BrCa prolif-
eration [71], drug resistance [72], aggressiveness [73],
high grade, and poor outcome [74]. On the other hand,
the role of PRKCB in breast cancer progression is still
not clearly defined. While there are reports indicating
that PRKCB can promote mammary tumorigenesis [75],
enhance breast cancer cells growth and cyclin Dlexpres-
sion [76], and has the potential as therapeutic target
[77], there is also a report indicating it may inhibit
tumor growth and metastasis [78]. The third CpG site
interrogated by our assay (m_ncrl) is located less than
8000 bp upstream of the exon 1 (according to GEN-
CODE v31 annotation) of the protein coding gene
EFNA3, a member of the ephrin (EPH) family. Whether
this particular CpG site influences the expression of
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EENA3 protein, or the hypoxia-related EFNA3 IncRNA
[79, 80] is not clear at this point.

Interestingly, the methylation level at m_NR5A2 and
m_PRKCB did not correlate with the transcription of the
corresponding genes (Additional file 1: Supplement 10).
However, it is important to note that CpG methylation
(at the promoter region) is not the only factor that influ-
ences gene transcription. It is quite possible that histone
modification [81], regulatory miRNA or ncRNAs [82], as
well as transcription factors can supersede CpG methy-
lation in influencing transcription. The competition be-
tween mRNA transcription and mRNA degradation is a
dynamic process that can determine the transcript level
of a gene at any given time [83]. Regardless of m_
NR5A2 and m_PRKCB CpG sites’ influence on their re-
spective transcript levels, their association with BrCa
progression is quite clear. This is further demonstrated
through comparative genome-wide transcription ana-
lyses (which is essentially what GSEA is) of BrCa sam-
ples that are highly and lowly methylated at each CpG
site. As shown in our analyses, the methylation level at
each of the three methylation markers (m_ncrl, m_
NR5A2, and m_PRKCB), is positively associated with
genes, processes, and pathways indicative of BrCa progres-
sion. These include processes (and much of the compo-
nent genes) associated with the retinoid nuclear receptor,
PTEN, p53, p27, RB, and MTOR signaling pathways.

A great majority of reports on the interrogation of
CpG methylation in cfDNA for BrCa detection
employed the methylation-specific PCR (MSP) approach.
Aside from RASSF1, other genes whose CpG sites were
observed to be hypermethylated in BrCa patient-derived
cfDNAs (through MSP approach) are: AKRIB1, ARH-
GEF7, BRCAI, BRMSI, COL6A2, CST6, CDKN2A,
CCND2, DKK3, ESR1, GATA3, GPX7, GSTP1, HOXD13,
HISTIH3C, HOXB4, ITIHS, KLK10, MSH2, MLHI,
NBPF1, P16, PCDHGB7, RARB, RASGRF2, SOX17,
SLIT2, SFN, SFRP1, SOX17, TM6SF1, TMEFF2, TRIMY,
and WNT5A [84] [62, 64—69, 85-92]. The aforemen-
tioned CpG markers were selected because the genes
have known roles in BrCa progression (primarily as
tumor suppressors), or were previously identified from
the use of earlier, much less dense version of Illumina
methylation array (27 K).

Bisulfite conversion is perhaps the most crucial step in
MSP. However, bisulfite conversion can cause the deg-
radation of around 84-96% of the input cfDNA, and is
thus a significant contributing factor to MSP’s limita-
tions in liquid biopsy [93]. This is not an issue in analyz-
ing gDNAs extracted from tissues and cell lines, which
the MSP assay was originally intended for. In some re-
ports, BrCa patient cfDNAs were analyzed through
methylated CpG digestion (e.g. BstUI enzyme), followed
by qPCR, with no bisulfite conversion step in the
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protocols [94—96]. However, results using this approach
are not reliable (higher rates of false positives) if there is
incomplete digestion of unmethylated CpG sites.

The assay we are proposing incorporated several fea-
tures which can collectively improve the MSP approach.
These include the following: a) selective enrichment of
methylated DNA, through the methylated CpG capture
by using methyl-DNA binding protein, b) signal amplifi-
cation of the targeted CpQG site through successive steps
of bisulfite PCR and LDR, (c) prevention of non-specific
primer extension by incorporating RNaseH2-targeted ri-
bose bases at the 3’ end of PCR and LDR primers, d)
prevention of carryover-contamination by PCR products
originating from previous positive samples, through the
use UDG enzyme, e) multiple primer binding regions for
orthogonal amplification of a region containing the tar-
geted CpQG site, and f) multiplex format of the assays.

Bisulfite sequencing is capable of interrogating more
CpG markers compared to site-specific bisulfite conversion
assays [97—102]. However, we can only assume that the pri-
mary problems in MSP assays (the low abundance of
cfDNAs and of target methylated CpG markers) are also
encountered in bisulfite sequencing approaches. These fac-
tors, along with high cost, limits the recovery of informa-
tion from bisulfite sequencing of cfDNA fragments [103].

Conclusion

This report demonstrates the steps which can be utilized
to improve blood-based early detection assays for BrCa
detection, including bioinformatic identification and
characterization of the biomarkers and improvements in
assay biochemistry. Understandably, the assays were only
tested on simulated cfDNA samples. However, in future
studies, we will evaluate the non-invasive BrCa diagnos-
tic capability of our multiplex PCR-LDR-qPCR assay
through analysis of patient-derived cfDNAs.
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