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Abstract

Background: Cancer subtyping has mainly relied on pathological and molecular means. Massively parallel
sequencing-enabled subtyping requires genomic markers to be developed based on global features rather than
individual mutations for effective implementation.

Methods: In the present study, the whole genome sequences (WGS) of 110 liver cancers of Japanese patients
published with different pathologies were analyzed with respect to their single nucleotide variations (SNVs)
comprising both gain-of-heterozygosity (GOH) and loss-of-heterozygosity (LOH) mutations, the signatures of
combined GOH and LOH mutations, along with recurrent copy number variations (CNVs).

Results: The results, obtained based on the WGS sequences as well as the Exome subset within the WGSs that
covered ~ 2.0% of the WGS and the AluScan-subset within the WGSs that were amplifiable by Alu element-
consensus primers and covered ~ 2.1% of the WGS, indicated that the WGS samples could be employed with the
mutational parameters of SNV load, LOH%, the Signature α%, and survival-associated recurrent CNVs (srCNVs) as
genomic markers for subtyping to stratify liver cancer patients prognostically into the long and short survival
subgroups. The usage of the AluScan-subset data, which could be implemented with sub-micrograms of DNA
samples and vastly reduced sequencing analysis task, outperformed the usage of WGS data when LOH% was
employed as stratifying criterion.

Conclusions: Thus genomic subtyping performed with novel genomic markers identified in this study was effective
in predicting patient-survival duration, with cohorts of hepatocellular carcinomas alone and those including
intrahepatic cholangiocarcinomas. Such relatively heterogeneity-insensitive genomic subtyping merits further
studies with a broader spectrum of cancers.
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Background
Primary liver cancer is the fifth most frequently diag-
nosed cancer, the second leading cause of cancer-related
deaths in men and the sixth in women worldwide [1].
The major form of liver cancer is hepatocellular carcin-
oma (HCC), which accounts for ~ 75–90% of primary
liver cancer cases, with intrahepatic cholangiocarcinoma
(ICC) accounting for most of the remaining cases [2]. A
relatively rare subtype of combined HCC and ICC (viz.

HCC/ICC) that harbors both hepatocellular and biliary
epithelial cancer pathologies is associated with poorer
prognosis than either HCC or ICC. The main overall
risk factor for liver cancers is virus infection: both hepa-
titis B virus (HBV) and hepatitis C virus (HCV) infec-
tions lead to chronic liver disease and possible
subsequent cancer. HBV infection is associated with
about half, and HCV infection with about 25%, of the
HCC cases with considerable regional variations [3, 4].
There are also a range of non-viral risk factors for liver
cancers, including alcohol intake, tobacco use and envir-
onmental exposures, which are consistent with varia-
tions in etiological and progression mechanisms.
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Currently there are a number of staging systems and
models with the goal of guiding the prognosis and treat-
ment of HCC [5, 6]. Patient survival following diagnosis is
mainly influenced by the three major interacting factors of
tumor biology, patient’s underlying health and treatment
program. Prognosis is commonly based on pathological
presentations such as tumor size, number of tumor foci,
vascular invasion, the presence or absence of metastasis,
and the Child-Pugh scoring system. Liver cancer genomes
have been investigated using WGS and whole exome se-
quencing (WES) [7, 8], and recurrent mutations have been
found in such genes as TP53, CTNNB1, PIK3CA and
ARID1A in HCC genomes [9, 10]. The GOH/CNV ratio
among somatic mutations provides a parameter for classi-
fying between different types of cancers [11]. Cancer-
associated somatic copy number alterations (SCNAs) have
been observed in cancers [12, 13] and applied to cancer
prognosis [14, 15]. Recurrent germline CNVs identified by
machine learning could also provide a basis to predict sus-
ceptibility to cancers including HCC [16].
Although SNV analyses of cancer genomes have long fo-

cused solely on GOH mutations, AluScan sequencing en-
abled the simultaneous amplification of myriads of inter-
Alu sequences in the human genome through polymerase
chain reaction (PCR) using Alu retrotransposon-
consensus sequences as PCR primers, and revealed that a
variety of tumors including HCCs and leukemia were
massively burdened with interstitial copy-number neutral
LOHs arising from a defective DNA-damage response [17,
18]. Examination of LOHs along with GOHs and CNVs
also furnished support for a sequential model of cancer
development [19]. In view of the importance of LOHs in
cancer development, in the present study genomic param-
eters based on SNV, LOH, GOH and CNV contents, as
well as SNV mutational signatures, of liver cancers have
been analyzed regarding their utility for the prognosis of
patient survival. For this purpose, the WGS sequence data
on paired tumor-blood samples from liver cancer patients
were analyzed, employing different mutational parameters
as diagnostic criteria for stratifying the cancer samples
into long and short patient-survival subgroups. The effect-
iveness of each criterion was assessed based on the statis-
tical difference attained between the two subgroups in
terms of their patient-survival periods. As well, because of
the large costs in terms of expense and time required by
WGS analysis, WGS sequences were compared to their
Exome-subset and AluScan-subset sequences, in order to
determine whether these much simpler subsets could be
employed as for prognostic analysis in place of WGS.

Methods
Sequencing data and clinical information
The paired blood-tumor WGS data from the 110 Japanese
liver cancers and their blood cell controls determined by

Fujimoto et al [20] were downloaded from ICGC dataset
version 18 Feb 2015 release (https://dcc.icgc.org), and allo-
cated to three separate sets for analysis: the ‘110-Liver’ co-
hort comprising 85 HCC, 18 ICC and 7 HCC/ICC
samples; the ‘85-HCC’ cohort comprising only the 85
HCC samples; and the ‘25-ICCG’ cohort comprising only
the 18 ICC samples and the 7 HCC/ICC samples (Add-
itional File 1: Table S1). White blood cell genomic DNA
samples from the same patients were used as the controls
in sequencing analyses for somatic variations in forms of
SNVs and CNVs. This choice of blood over normal tissue
as control was based on previous reports by us [19] and
others [21, 22] that phenotypically normal tissue cells
often contain many mutations, while blood cells even
under cancerous situation, such as leukemia, bear minimal
mutations [19]. Therefore, blood-tumor pairing could be a
better design than normal-tumor pairing in somatic muta-
tion analysis of genomic DNA, where tissue specific ex-
pression is not a major concern as in the case of RNA
analyses. The SNV mutations, and their constituent GOH
and LOH mutations, were called using the ‘UnifiedGen-
otyper’ module in GATK and filtered as described [17,
18]. Only the filtered segments that were present in both
of the paired tumor and blood DNA samples were ana-
lyzed. Massive inter-pair variations were observed among
the 110 liver blood-tumor pairs (ranging from 735 to 126,
965 total SNVs, 445 to 21,139 GOHs, and 212 to 116,399
LOHs, Additional File 1: Tables S2).
Localized CNV calling was performed using 350-kb

windows with the AluScanCNV algorithm [23] devel-
oped for improved CNV-calling from AluScan data and
other types of MPS sequence data. Recurrent CNVs
were defined by the cut-off frequency in the Poisson dis-
tribution of CNVs based on p < 0.05. Every recurrent
CNV was used to define two patient groups, one in
which the recurrent CNV was present and the other in
which it was absent, and the Kaplan-Meier survival
curves for the two groups were compared; any recurrent
CNV that gave rise to statistically dissimilar survival
curves in the log rank test (p < 0.01) was defined as a
survival-associated recurrent CNV (srCNV).
To examine the potential utility of mutational signa-

tures for cancer prognosis, the somatic SNVs in the
WGS data of 110-Liver cohort were processed using the
WTSI framework downloaded from http://www.math-
works.com/matlabcentral/fileexchange/38724 developed
by Alexandrov et al. [24]; and 1000 iterations were per-
formed setting the “total Signatures” parameter equal to
2 to generate two mutational signatures, α and β, from
the input SNVs. In so doing, the major signature recog-
nized by the WTSI framework was designated as Signa-
ture α. The SNVs not so designated were collectively
designated as Signature β. Thus the percentage of SNVs
assigned to the first signature yielded Signature α%, and

Wu et al. BMC Cancer           (2020) 20:84 Page 2 of 13

https://dcc.icgc.org
http://www.mathworks.com/matlabcentral/fileexchange/38724
http://www.mathworks.com/matlabcentral/fileexchange/38724


the remaining SNVs assigned to the second signature
yielded Signature β%. Signature α% represented the diag-
nostically useful signature parameter.

Patient stratification for survival-duration prognosis
To stratify the tumor samples into the long and short
patient-survival subgroups based on the genomic param-
eter of SNV burden (viz. total SNVs), LOH% or Signa-
ture α%, the tumor samples were arranged in a
descending order according to the magnitude of the par-
ameter, and the surv-cutpoint function in the ‘survmi-
ner’ R-package was performed under R environment to
divide the tumors into two subgroups at different cut-
points. The lengths of survival of the patients in the two
subgroups were compared using the log-rank test, and
the cut-point that yielded the lowest p-value between
the two subgroups with respect to the lengths of patient
survival was adopted as the optimal cut-point for divid-
ing the two subgroups. To stratify the patients into the
long survival and short survival subgroups based on
srCNVs, the tumor samples were segregated into the
low-srCNV and high-srCNV clusters using the pvclust
R-package for hierarchical clustering with bootstrapping
(n = 1000) [25]. The low-srCNV cluster corresponded to
the long-suvival subgroup, and the high-srCNV cluster
corresponded to the short-survival subgroup.
To correlate between patient survival and each of the

13 clinical parameters (top 13 rows in Additional File 1:
Table S3), Kaplan-Meier analysis was conducted as de-
scribed in the preceding section, in which the surv-
cutpoint function was used to determine the optimal
cut-point that yielded the minimum p-value in the log-
rank test between the high-risk and low-risk subgroups.
For Cox proportional hazards regression, the hazard ra-
tio, viz. the exp. (coef) in Additional File 1: Table S3, of
the age parameter was calculated in 1-year increments,
and that of the SNV load parameter in increments of
1000. Each of the remaining parameters was normalized
from 0 to 100%, and the hazard ratio was calculated in
1% increments (Additional File 1: Table S3). All correl-
ation analyses were performed for one parameter at a
time, i.e., single variant analyses.

Experimental AluScan sequencing
Ten HBV-positive and five HBV-negative HCC samples
and their respective blood cell controls were collected
from Chinese Han patients with subject’s approval and
institutional approval from the Eastern Hepatobiliary
Surgery Hospital, Shanghai, China. Written informed
consent was obtained from each patient who partici-
pated in this study. Subject recruitment and sample col-
lection were approved by the institutional ethics review
boards of National Center for Liver Cancer Research
and the Eastern Hepatobiliary Surgery Hospital of

Shanghai. Our research complied with the Declaration
of Helsinki. Patient information including gender, age,
virus status etc. are given in Additional File 1: Table S4.
White blood cell DNA was prepared by phenol-
chloroform extraction, and HCC tumor DNA was pre-
pared using DNAzol Reagent (Life Technologies, USA).
Experimental AluScan analysis was carried out as previ-
ously described [17–19]. In brief, multiplex inter-Alu
PCR amplification was performed for each sample of
0.1 μg genomic DNA, using the four Alu consensus
sequence-based primers AluY278T18 (5′-GAGCGA
GACTCGTCTCA-3′), R12A/267 (5′-AGCGAGACTC
CG-3′), AluY66H21 5′-TGGTCTCGATCTCC
TGACCTC-3′) and L12A/8 (5′-TGAGCCACCGCG-3′),
followed by sequencing library construction before sub-
jected to next generation sequencing on the Illumina
platform [17]. Illumina sequencing reads were mapped
by BWA (Burrows-Wheeler Aligner, version 0.6.1) [26]
to reference human genome hg19 downloaded from
UCSC, followed by base recalibration and local realign-
ment by GATK (Genome Analysis Tool-Kit, version
Lite-2.1-8-gbb7f038) [27] according to the standard
framework [28].

The exome-subset and the AluScan-subset
The Exome-subset sequences within each WGS were
identified based on the regions targeted in the Illumina
TruSeq Exome kit, which covered ~ 2.01% of the human
hg19 genome. The region information was listed in Add-
itional File 3: Data S1. The AluScan-subset sequences
within each WGS were identified based on the merged
experimental AluScan sequences of fifteen HCC patients
of Chinese origin from genomic regions that were cov-
ered by at least four reads with gaps less than 80 bp long
in each of the fifteen samples, which covered ~ 2.14% of
the human hg19 genome. The region information was
listed in Additional File 4: Data S2. Three columns in
Data S1 and S2 is the chromosome, the start site and
the end site of the region respectively.

Results
Increased SNV load as stratifying criterion for survival
When the WGS data of the tumor and blood pairwise
samples of the 110-Liver cohort were subjected to SNV
analysis, SNV load and its constituent GOH and LOH
mutation numbers varied substantially between samples
(ranging from 735 to 126,965 SNVs, 445 to 21,139
GOHs and 212 to 116,399 LOHs, Additional File 1:
Table S5), and there was no significant correlation be-
tween SNV load, i.e., the total number of SNVs in each
tumor genome, with the clinical parameters of age at op-
eration, viral status or tumor grade (Additional File 2:
Figure S1). The average level of per genome SNV se of
110 liver cancers was 17,953 as detected by WGS. These

Wu et al. BMC Cancer           (2020) 20:84 Page 3 of 13



loads of the 110 liver cancers fell into three categories,
i.e., the low (below 6000; dominated by GOH as shown
in Fig. 1b), the high (above 20,000; dominated by LOH
as illustrated in Fig. 1c), and the medium (between 6000
and 20,000; not obviously dominated by either GOH or
LOH) categories.
With the Exome-subset, the average per genome SNV

load was 257 per genome, which was limited by the
small genome regions occupied by exomes. However,
with the AluScan subset, because only 2.14% of the
whole genome was sampled in depth by AluScan, the

445 SNVs obtained had to be multiplied by 100/2.14,
which equaled 20,794 per genome, on account of the
extra density of SNVs in the AluScan-sampled regions.
The results therefore showed that the AluScan-subset
usefully captured genomic regions with higher mutation
density than the genome average measured based on
WGS (Fig. 1e and f).
There were more GOHs than LOHs in tumor ge-

nomes with low SNV loads, but more LOHs than GOHs
in tumor genomes with high SNV loads (Fig. 1a). GOHs
were dominant over LOHs when SNV load was equal to

Fig. 1 Relative numbers of GOH and LOH identified from mapped WGS data for 110 tumor-blood paired samples from Japanese liver cancer
patients including 85 HCC, 18 ICC and 7 HCC/ICC, and survival analysis based on the SNV load. Numbers of GOH (green) and LOH (orange) were
shown for (a) all 110 samples; (b) 49 samples with total SNV less than 6000; and (c) 35 samples with total SNV more than 20,000. Linear
regression lines with respective coefficient of determination (r2) calculated from Pearson’s r statistic were shown for GOH in (B) and for LOH in (C).
The relative numbers of GOH and LOH in the Exome-subset and AluScan-subset are given in Additional File 1: Table S2. (d) Comparison of the
numbers of SNVs in the WGSs of 85-HCC and 25-ICCG (18 ICC + 7 HCC/ICC) using student’s t-test. Kaplan-Meier survival plots for two survival-
probability subgroups in 110 liver cancer patients (e) and 85 HCC patients (f) stratified based on the numbers of SNVs in their WGSs (upper
panels), Exome-subset (middle panels), and AluScan-subset (lower panels). Number of death out of the total number of patients in each group
was shown in the parentheses. Censored patients were indicated by the tic marks on the survival curves. The optimal cut-point of SNV load
employed to divide the patients into two subgroups was identified as the cut-point yielding the lowest p-value in the log-rank test (see ‘Patient
stratification for survival analysis’ in Methods)
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or below ~ 6000 (Fig. 1b), and LOHs were dominant
over GOHs when SNV load exceeded ~ 20,000 (Fig. 1c).
A large proportion of the LOHs were copy neutral (aver-
age = 69.5%), and over 90% of the LOHs were copy neu-
tral in thirty of the tumor genomes (Additional File 2:
Figure S2). For the 85 HCC cases, likewise GOHs were
dominant in the low-SNV genomes, and LOHs were
dominant in the high-SNV genomes (Additional File 2:
Figure S3 A-C). The SNV loads in the 85 HCC tumor
genomes were higher than those in the 25 ICCG tumor
genomes (p < 10− 6, Fig. 1d).
When the SNV load of each tumor genome was

employed as a criterion for stratifying the 110 liver cancer
cases into a low-SNV subgroup (containing ≤36,725 SNVs
per sample) and a high-SNV subgroup (containing > 36,
725 SNVs per sample), survival analysis by means of the
log rank test indicated that the low-SNV subgroup was as-
sociated with longer patient survival compared to the
high-SNV subgroup with respect to liver cancer-specific
deaths (12 deaths among 110 patients) with p = 4.22e-4
(i.e. 4.22 × 10− 4) between the two subgroups (Fig. 1e top
panel). This was similarly the case with respect to the liver
cancer-specific deaths in the 85-HCC cohort (9 deaths
among 85 patients) with p = 6.76e-5 (Fig. 1f top panel).
When total deaths instead of liver cancer-specific deaths
were considered, the p-values were somewhat higher, i.e.
4.50e-3 for the 110-Liver cohort with 15 deaths among
110 patients, and 2.12e-4 for the 85-HCC cohort with 10
deaths among 85 patients (Additional File 2: Figure S4).
When the Exome-subset and AluScan-subset sequences
were stratified into long and short survival subgroups
using SNV load as the stratifying criterion, the results
shown in Fig. 1e and f. Compared to WGS, AluScan and
Exome subsets each yielded higher, or less significant, p-
values between the two subgroups stratified based on
SNV load (for 110-Liver cohort, p = 4.22e-4 with WGS,
5.42e-3 with Exome-subset, 2.02e-3 with AluScan-subset).
The two subsets (Data S1 and S2) each involved about 50
times less sequencing data than WGS, nonetheless still
giving rise to significant results in survival prognosis, with
SNV load as the stratifying parameter. That the optimal
cut-point for stratifying the patients into two subgroups of
significantly different survival durations was identical for
both the 110-Liver cohort (Fig. 1e) and the 85-HCC co-
hort (Fig. 1f) suggests that the method of SNV load-based
stratification for survival duration prognosis was robust
and resistant to sample heterogeneity.

Association of high LOH% with poor prognosis
To determine whether SNV-based prognosis could be
usefully performed with a sequence subset instead of the
entire WGS sequence, all the Exome sequences repre-
sented in the Illumina TruSeq Exome kit and covering ~
2.0% of the genome (data S1) were extracted from the

WGS and analyzed as the Exome-subset sequences. Simi-
larly, the experimental AluScan sequences obtained from
the 15 Chinese HCC patients as described in Materials
and Methods (data S2) defined the AluScan amplifiable
sequences in the WGS that covered ~ 2.1% of the genome,
and extraction of these sequences from each WGS of the
110 Liver tumor samples yielded the AluScan-subset se-
quences. In this regard, it may be noted that DNA se-
quences in the human genome are classified into Genic
zones enriched with gene sequences, Proximal zones adja-
cent to genes and enriched with enhancers, and Distal
zones relatively depleted in genes [29]; into different cell-
cycle phases regarding the timing of DNA duplication;
and into exonic regions containing coding sequences
(CDS), their adjoining untranslated regions (UTRs), and
nonCDS segments on the RNA transcripts. Since the
WGS sequence, the Exome-subset sequences and the
AluScan-subset sequences differ from one another in
terms of (i) the proportions of Genic zones, Proximal
zones and Distal zones they contain; (ii) the profile of du-
plication times of their DNAs in the cell cycle; and (iii) the
abundance of exonic regions found in them (Fig. 2a), it
follows that the WGS, Exome-subset and AluScan-subset
sequences within any tumor would contain nonidentical
SNV profiles, as illustrated by their dissimilar percentages
of transitional SNVs (Fig. 2b and c) and dissimilar SNV
violin-plots of LOH% (Fig. 2d and e). Interestingly, the six
violin plots all exhibited upper and lower bulges, which
would be consistent with the presence of at least two dif-
ferent underlying mechanisms for SNV production.
Since high SNV loads were associated with increased

death rate in the 110-Liver or 85-HCC cohorts (Fig. 1e
and f), and with high fractions of LOH among the SNVs
(Fig. 1a-c), the LOH% in the observed SNVs might be
expected to furnish an alternative criterion for stratifying
tumor samples in terms of patient survival times. When
LOH% was employed as a stratifying criterion to divide
patient samples in the 110-Liver cohort into high-LOH%
and low-LOH% subgroups using the WGS, Exome-
subset or AluScan-subset sequences based on liver
cancer-specific deaths, the log rank test indicated that
the low-LOH% subgroup was in each instance longer
surviving than the high-LOH% subgroup, with p = 2.12e-
3, 1.33e-2 or 5.65e-4 based on WGS, Exome-subset or
AluScan-subset sequences respectively for the 110-Liver
cohort (Fig. 3a); and p = 1.86e-3, 1.14e-3 or 2.29e-5
based on WGS, Exome-subset or AluScan-subset se-
quences respectively for the 85-HCC cohort (Fig. 3b).
Therefore, the AluScan-subset sequences outperformed
prognostically the WGS and Exome-subset sequences.

Prognostic application of mutational signatures
There are multiple chemical pathways for SNV produc-
tion in cells, and different pathways have been correlated
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with distinctive SNV mutational signatures, with de-
creased accuracy of deciphering the signatures for an in-
creased number of resolved signatures [24, 30]. In the
mutation profiles displayed by the 110-Liver cohort
(Fig. 4a), mutations of C to T in the C > T box, and mu-
tations of T to C in the T > C box, were dominant in the
LOH and SNV profiles but not in the GOH profile.
Upon resolution of the SNV profile into Signatures α
and β, the Signature α resembled the LOH profile: both
of them were marked by the signature comprising four
inverted arrows pointing to the enhanced mutations at
the NCG triplets in the C > T box, and NTG triplets in
the T > C box. The SNV profiles of the Exome-subset
and AluScan-subset could be resolved similarly (Fig. 4b
and c). To determine whether these mutational signa-
tures might be useful for prognostic purpose, the SNVs
in the 110-Liver and 85-HCC cohorts were each re-
solved into Signatures α and β. Signature α resembled
the LOH profile, no matter the SNVs were obtained
from WGS (Fig. 4a), Exome-subset (Fig. 4b), or
AluScan-subset (Fig. 4c). However, the less characteristic
Signature β was apparently a mixture of GOHs and

LOHs. The estimated Signature α% for each sample was
employed as a stratifying criterion to divide patient sam-
ples in the 110-Liver or 85-HCC cohorts into high-α%
and low-α% subgroups using the WGS, Exome-subset or
AluScan-subset sequencing data. Based on liver cancer-
specific deaths, the log rank test indicated that the low-
α% subgroups were longer surviving than the high-α%
ones for both the 110-Liver and 85-HCC cohorts, with
p = 4.61e-5, 3.86e-2 or 5.61e-4 for the WGS, Exome-
subset or AluScan-subset sequences of the 110 liver can-
cer samples respectively (Fig. 3c); and p = 6.57e-4, 8.59e-
2 or 3.40e-3 based on the WGS, Exome-subset or
AluScan-subset sequences of the 85-HCC cohort re-
spectively (Fig. 3d). Therefore, the WGS sequences were
the most useful prognostically followed by the AluScan-
subset and the Exome-subset for both the 110-Liver co-
hort and the 85-HCC cohort.

Nature of somatic mutations in AluScan-subset sequences
Based on the p-values distinguishing between the strati-
fied subgroups based on SNV load, LOH% or Signature
α%, the Exome-subset yielded generally higher p-values

Fig. 2 Comparison of the properties of WGS sequences of the 110-Liver cohort with the Exome-subset and the AluScan-subset. (a) Distribution of
WGS, Exome-subset and AluScan sequences (in % of sequence regions) among the Genic, Proximal and Distal zones, with p values denoting the
difference between GOHs and LOHs. among different cell cycle phases; and among different exonic regions. (b, c) Violin plots of LOH%
(percentages of somatic LOHs relative to SNV load) in the 110-Liver and 85- HCC cohorts for three types of sequence data. (d, e) The percentages
of transitional somatic GOHs and LOHs relative to total somatic GOHs and LOHs (red and blue boxes) for three types of sequence data, with the
significant difference between GOHs and LOHs from paired t-tests expressed by the p-values for the 110-Liver and 85-HCC cohorts
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than WGS and AluScan-subset sequences, and were thus
the least useful. However, although WGS outperformed
AluScan-subset in the stratifications based on SNV load
or Signature α% (Fig. 1e, f, 3c and d), the AluScan-
subset covering only ~ 2.1% of the genome outper-
formed WGS in the stratifications based on LOH% for
both the 110-Liver and 85-HCC cohorts (Fig. 3a and b).
The reason for this unexpected prognostic utility of
LOH% in the AluScan-subset is that the AluScan se-
quences were enriched in genic regions and regulatory
elements [17, 18], resulting in a greater concentration of
cancer SNVs in the AluScan-subset DNA compared to
WGS DNA regardless of the duplication-phase (G1b to
G2) of the DNA (Fig. 5a). There were also more LOHs
relative to GOHs in the short-survival 85-HCC (HCC-S)
cases compared to the long-survival (HCC-L) cases (Fig.
5b).

Usage of recurrent somatic CNVs for survival prognosis
For the 110-Liver cohort, 1175 recurrent somatic CNVs
were identified from the WGS data. Of these, 109 were
significantly associated with survival (p < 0.01), and
thereby designated as survival-related ‘srCNVs’: five were
srCN-losses in the long arm of chromosome 6 at 6q16,
one an srCN-loss in the short arm of chromosome 8 at
8p11.21, and 103 were srCN-gains located in the long
arm of chromosome 8 from 8q21.3 to 8q24.3 (Fig. 6a).
To divide the tumor samples into two subgroups with
unequal survival probabilities, the patient-survival status

for each of the 110 samples are plotted in Fig. 6b along
the x-axis at the top of the square, with a short vertical
bar showing the survival status of each patient at the 50-
month time point as alive (green) or deceased (black).
The different srCNVs are plotted along the y-axis, with
the six srCN-losses in the form of red horizontal bars,
and the 103 srCN-gains in the form of vertically-merged
blue horizontal bars. The presence of any particular
srCNV in a sample is represented by a small pink
square, and the absence by a small grey square. Hier-
archical clustering was employed to stratify the tumor
samples into a cluster high in srCNV content (Group H,
n = 33) from a cluster low in srCNV content (Group L,
n = 77), as indicated on top of the diagram. When the
Kaplan-Meier survival curves for Groups H and L (Fig.
6c) were analyzed, patient survival in Group L was sig-
nificantly longer compared to Group H (p = 1.56e-4),
thereby establishing the srCNV parameter as a useful
stratifying criterion for survival prognosis.
Since either srCNV (Fig. 6c) or LOH% (Fig. 3a) could

be employed as a stratifying criterion for prognostic pur-
pose, the question arose whether the effectiveness of
LOH% as stratifying criterion might be dependent en-
tirely on the elimination of heterozygous residues in the
genome by CN-losses. To examine this possibility, all
the CN-gains and CN-losses in the WGSs of 110-Liver
cohort were deleted prior to stratifying the 110-Liver co-
hort based on the remaining CN-neutral LOH%. The re-
sults obtained (Fig. 6d) enabled nonetheless a significant

Fig. 3 Kaplan-Meier survival plots of two survival-probability subgroups of the 110-Liver and 85-HCC cohorts estimated from WGS, Exome-subset
or AluScan-subset sequences, each stratified based on (a) LOH% in 110-Liver cohort; (b) LOH% in 85-HCC cohort; (c) Signature α% in 110-Liver
cohort; and (d) Signature α% in 85-HCC cohort. Low LOH% or Signature α% curve represented in blue, and high LOH% or Signature α% curve in
red. Sample sizes of the two stratified groups were indicated in parentheses, and censored patients indicated by tic marks on the curves
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distinction between a long-survival (upper curve) and a
short-survival (lower curve) subgroups with p = 1.20e-3,
demonstrating that the LOH% and srCNV stratifying
criteria were based on overlapping but non-identical
genomic elements. As well, when LOH% and srCNV
were jointly applied to the 110-Liver cohort to divide
them into the low CNV-low LOH (ClLl), low CNV-high
LOH (ClLh), high CNV-low LOH (ChLl) and high
CNV-high LOH (ChLh) subgroups, the four subgroups
were distinguishable from one another with an overall
p = 2.24e-5 (Fig. 6e).

When srCNV analysis was performed on the 85-HCC
cohort, 70 srCNVs were obtained including one srCN-
loss in the long arm of chromosome 6 at 6q16, seven
srCV-loss in the short arm of chromosome 8 at 8p11.21,
and 62 srCN-gains in the long arm of chromosome 8
from 8q21.3 to 8q24.3 (Additional File 2: Figure S5).
Hierarchical clustering of the 85 samples into a high-
srCNV group (Group H) and a low srCNV group
(Group L) gave rise to different prognosis curves for the
two groups with p = 1.03e-3 (Additional File 2: Figure
S5B).

Fig. 4 Mutational profiles of total SNVs, GOH or LOH in 110-Liver cohorts, along with Signatures α and β resolved from the total SNV profile. (a)
WGS SNV mutations; (b) Exome-subset mutations; and (c) AluScan-subset mutations. All profiles were displayed using the 96-trinucleotide
contexts where the mutated base was flanked by the 3′ and 5′ neighboring bases. The frequency bars represent the numbers of six types of
substitution mutations, viz. C > A, C > G, C > T, T > A, T > C and T > G. Inverted arrows above the bars were typical of Signature α where mutations
at NCG trinucleotides constituted the tallest peaks in the C > T or T > C boxes
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Regarding the stratification of patient samples into the
long and short-survival subgroups employing SNV load,
LOH%, α% or srCNV as stratifying criterion, the ques-
tion also arose with respect to the extent such stratifica-
tion could be influenced by a biased enrichment of
metastasis in the short-survival subgroup. Accordingly,
Fisher’s exact test was employed to assess the possible
correlation between total SNV load, LOH% or Signature
α% on the one hand, and the presence of hepatic vein
and/or portal vein metastasis on the other in the 85-
HCC cohort, which included a higher percentage of me-
tastasis than the 110-Liver cohort. The results indicated
only marginal positive correlation between them (Add-
itional File 1: Table S5). However, the 25-ICCG cohort
was heavily enriched with portal vein metastasis (14 out
of 25 cases), hepatic vein metastasis (10 out of 25) or
both (8 out of 25). When the associations of various
clinical and mutational parameters with the length of pa-
tient survival were analyzed using Kaplan-Meier log rank
test and Cox regression, significant associations were
found with moderate p-values for the clinical parameters
of gender, portal vein invasion, hepatic vein invasion and
tumor size, and with lower p-values for the mutational
parameters of SNV load, LOH% and Signature α% (Add-
itional File 1: Table S3).

Experimental AluScan-captured sequences
When experimental AluScan sequencing was performed
on fifteen Chinese HCC patients, analysis revealed 1106
somatic SNVs in the AluScan sequences that were amp-
lified from all the paired blood-tumor paired samples
(average capture of 13.8 Mb at read depth ≥ 8, Additional
File 1: Table S6) without any significant correlation

between somatic SNV density and the clinical parame-
ters of age at operation, viral status, or tumor grade.
When these experimental AluScan-sequence pairs were
compared with both the blood-tumor WGS pairs from
the 110-Liver cohort, and the blood-tumor AluScan-
subset pairs extracted from the WGS pairs, the three
sets of sequences displayed similar SNV profiles inclu-
sive of both GOHs and LOHs. The main dissimilarity
between these profiles was that the SNVs in the C > T
and T > C boxes of the WGS profile were marked by
altogether five inverted arrows, those in the AluScan-
subset profile were marked by eight inverted arrows, and
those in the experimental AluScan profile were marked
by seven inverted arrows (Fig. 7a). The Signature α% was
linearly correlated with LOH% in all three cases (Fig.
7b), and chromosome 8q in all three cases showed an
abundance of CN-gains whereas chromosome 8p
showed an abundance of CN-losses (Fig. 7c). That the
peaks of CN-losses on chromosome 8q were distinctly
shorter in the WGS and AluScan-subset from the Japa-
nese liver cancer samples compared to the experimental
AluScans from the Chinese liver cancer samples could
be attributed at least in part to ethnic genomic
differences.

Discussion
Prognostic models are important to the treatment of can-
cers by providing information that facilitates the selection
and monitoring of treatment modalities. Gene-specific
markers such as estrogen/progesterone receptors (ER/PR)
and human epidermal growth factor receptor 2 (HER2) in
breast cancer [31], carcinoembryonic antigen (CEA) in
colorectal cancer [32], MYCN in neuroblastoma [33],

Fig. 5 (a) Comparison of the SNV profiles in the 110-Liver cohort that belonged to the six different cell cycle phases. (b) Comparison of the LOH/
GOH ratios observed in the short-survival (HCC-S) or long-survival (HCC-L) subgroups within DNA regions duplicated in the different cell cycle
phases. The red triangles indicate significant difference of the LOH/GOH ratio in the G2 phase relative to the earlier five phases. The blue asterisks
indicate significant difference of the LOH/GOH ratio between the HCC-S and HCC-L groups (two arrows or asterisks, p < 0.01; three arrows or
asterisks, p < 0.001)
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KRAS in pancreatic ductal carcinoma [34], BRAF in mel-
anoma [35], and EGFR in lung adenocarcimona [36] have
found valuable prognostic applications. The present study
showed that the generalized, non-gene specific mutational
parameters SNV load, LOH%, Signature α% and srCNV
content (and expectedly their closely related parameters
such as GOH%, LOH/GOH ratio, Signature β%, srCN-
gains and srCN-losses) provide stratifying criteria for sep-
arating tumors into the long patient survival and short pa-
tient survival subgroups. Since the recurrent CNVs useful
for predicting a subject’s propensity to cancer vary with
the ethnic group [16], it would be necessary, in employing
SNV load, LOH%, Signature α% or srCNV content to
stratify prognostically a test patient’s tumor sample, to
compare the test sample to standard stratified subgroups

of the same type of cancer and from the same ethnic
group as the test patient until indicated otherwise by avail-
able data.
In stratifying the 110-Liver and 85-HCC cohorts

employing SNV load, LOH%, Signature α% or srCNV
content as stratifying criterion, the results obtained from
WGS data, AluScan-subset data and Exome-subset data
indicated that the Exome-subset largely did not provide
statistical distinction with sufficiently low p-values be-
tween the long-survival and short-survival subgroups,
possibly on account of the relative paucity of cancer
SNVs in the exomic regions. In the case of WGS and
the AluScan-subset, low p-value were obtained based on
WGS for all four stratifying criteria tested. On the other
hand, the AluScan-subset surpassed the WGS data only

Fig. 6 Analysis of srCNVs in the 110 Liver samples. (a) Chromosomal distribution of recurrent CNVs and srCNVs. Recurrent CN-gains are
represented by yellow upward bars, recurrent CN-losses by yellow downward bars, srCN-gains by upward blue bars, and srCN-losses by
downward red bars. The green horizontal lines mark the frequency thresholds for significant recurrence (0.19 for CN-gain and 0.15 for CN-loss;
p < 0.05), and CN-gains and losses that fell below these thresholds were represented by light blue columns. All srCNVs were located on
chromosomes 6 and 8. (b) The srCNVs were employed for hierarchical clustering of the 110 liver cancer samples. The approximately unbiased p-
values after 1000 times bootstrapping for the high-srCNV group (Group H) and low-srCNV group (Group L) were given at the respective nodes.
(c) Kaplan-Meier survival plots for Groups H (orange) and Group L (blue). (d) Kaplan-Meier survival plots stratified based on LOH% comprising only
copy- neutral LOHs. (E) Kaplan-Meier survival plots based on LOH% and srCNV. LOH% and srCNV were jointly applied to the 110-Liver cohort to
stratified them into the four subgroups according to Kaplan-Meier survival plots. Censored patients were indicated by tic marks on the
survival curves
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when LOH% served as the stratifying criterion. Accord-
ingly, where the performance of WGS sequence deter-
mination on a pair of blood-tumor paired samples per
prognosis is unaffordable in terms of the time and labor
costs needed, use of experimental AluScan data and
LOH% as stratifying criterion would enable cost reduc-
tion compared to WGS, with the advantage that the
method requires only submicrograms of DNA sample
per analysis compared to the larger DNA sample size
needed for WGS.
Previously, it was found that the nonsynonymous

GOH type of SNV mutations were correlated with sensi-
tivity to PD-1 blockade in cancer immunotherapy, with
an association between increased GOH load and im-
proved objective response, durable clinical benefit and
progression-free survival [37–39]. While these findings
might appear to depart from the present findings that
increased SNV load or LOH% was correlated with

decreased survival in the 110-Liver and 85-HCC cohorts
(Fig. 1a-1b and 3a-3b), the difference was only an appar-
ent one insofar that the effectiveness of PD-1 blockade
depends on the failure of the cancer cell under onslaught
by a specific therapeutic protein, whereas the shortened
length of patient survival is the outcome of the preva-
lence of cancer cell over the host.

Conclusions
In conclusion, because different types of cancers are
caused by dissimilar oncogenic factors and mutational
pathways, it was surprising that the generalized genomic
variables of SNV load, LOH% and Signature α%, and
srCNV could be significant correlates of the probability of
survival against clinical cancers. A possible explanation
might be that, while a cancer may be initiated by a small
number of somatic mutations, its progression to outright
malignancy often requires the continual accumulation of a

Fig. 7 AluScan analysis of HCC patients. Comparison of (a) SNV profiles in WGS, AluScan-subset and Experimental AluScan sequences. (b)
Correlations between Signature α%. (c) CN-gains and losses in WGS, AluScan-subset and experimental AluScan sequences on chromosome 8. The
CNV frequencies in 350-kb windows were shown as bars above and below the chromosome ideogram for CN-gains (blue) and CN-losses
(red), respectively.
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large number of SNV, LOH and CNV mutations [18, 19],
which is in accord with the large number of cancer-
related genes discovered. Moreover, extensive double-
strand DNA break repair by gene conversion may result
in global genomic changes [18], and impact the genomic
parameters as measured in this study. Consequently, these
generalized genomic parameters represent significant de-
terminants of the course of cancer, provide important
stratifying criteria for prognosis, and may be generally use-
ful as genomic markers in cancer subtyping. Further ana-
lysis of different types of cancers will indicate whether the
prognostic utility of these genomic parameters may be ex-
tended to cancers besides hepatocellular carcinomas, and
how their prognostic accuracy may vary with the stage of
cancer when the prognosis is made.
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