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Abstract

Background: Although the pancreatic ductal adenocarcinoma (PDAC) presents high mortality and metastatic
potential, there is a lack of effective therapies and a low survival rate for this disease. This PDAC scenario urges new
strategies for diagnosis, drug targets, and treatment.

Methods: We performed a gene expression microarray meta-analysis of the tumor against normal tissues in order
to identify differentially expressed genes (DEG) shared among all datasets, named core-genes (CG). We confirmed
the CG protein expression in pancreatic tissue through The Human Protein Atlas. It was selected five genes with
the highest area under the curve (AUC) among these proteins with expression confirmed in the tumor group to
train an artificial neural network (ANN) to classify samples.

Results: This microarray included 461 tumor and 187 normal samples. We identified a CG composed of 40 genes,
39 upregulated, and one downregulated. The upregulated CG included proteins and extracellular matrix receptors
linked to actin cytoskeleton reorganization. With the Human Protein Atlas, we verified that fourteen genes of the
CG are translated, with high or medium expression in most of the pancreatic tumor samples. To train our ANN, we
selected the best genes (AHNAK2, KRT19, LAMB3, LAMC2, and S100P) to classify the samples based on AUC using
mRNA expression. The network classified tumor samples with an f1-score of 0.83 for the normal samples and 0.88
for the PDAC samples, with an average of 0.86. The PDAC-ANN could classify the test samples with a sensitivity of
87.6 and specificity of 83.1.

Conclusion: The gene expression meta-analysis and confirmation of the protein expression allow us to select five
genes highly expressed PDAC samples. We could build a python script to classify the samples based on RNA
expression. This software can be useful in the PDAC diagnosis.
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Background
The pancreatic ductal adenocarcinoma (PDAC) is the
most common pancreatic cancer histological subtype
with high mortality due to the lack of symptoms in the
initial phase of the disease and its aggressive progression
[1, 2]. PDAC development is directly related to KRAS
overexpression [2, 3], along with the inactivation of the
tumor-suppressor genes CDKN2A/p16 [4], SMAD4/
DPC4 [5] and TP53 [6, 7]. The KRAS activation is

considered significant in PDAC progression, and many
efforts were made to inhibit its activity [8]; nevertheless,
it seems to be undruggable [9]. Data have been pre-
sented in the literature over integrated analysis about
PDAC genes and proteins, classifying PDAC in different
molecular subtypes among patients [10], and through in-
tegrated genome analyses that reinforce the participation
of KRAS, TP53, SMAD4, and CDKN2A in a subset of
PDAC tumors [11].
Since there is a lack of effective therapies and a low

survival rate, the research for new biomarkers and ther-
apies targets in PDAC remains active [12–14]. There are
some gene expression changes in pancreatic cancer
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already described and presented as biological markers.
The genes in the ribosome and the spliceosome pathway
(ribosomal protein genes Nup170, Nup160, and
HNRNPU) were described as potential biomarkers [15].
The meta-analysis of PDAC microarray data could iden-
tify five biomarkers (TMPRSS4, AHNAK2, POSTN,
ECT2, and SERPINB5) that classified the PDAC and
normal samples with sensitivity of 94%, and specificity of
89.6% [16].
Advances in high-performance computing, such as

system biology and artificial intelligence (AI) allows inte-
gration of data and pattern recognition that generates
not only new understating about diseases, but support
new targets discovery and biomarkers development for
future treatments [17]. The potential to classify the can-
cer samples using gene expression, methylation informa-
tion, and AI has been used in other types of cancer
studies with promising results. The application of these
studies would improve the classification of the samples
in tumor diagnosis and subtyping [18–20]. The studies
using automatic technics to predict risk/diagnosis had
demonstrated a high classification performance, present-
ing sensitivity > 90% [21–24].
The high number of features coming from microarray

gene expression and methylation genomic information
used to train AI tumor diagnosis models can give good
results in the classification of samples [18, 19], lowering
the false-negative rate in training and validation samples.
However, the high number of features can make the
diagnosis available only for samples with thousands of
gene expression values [18]. It has been shown that re-
ducing the number of features can give the same or bet-
ter results than using thousands of features [25, 26].
The application of AI in pancreatic tumor must im-

prove the early diagnostic and, consequently, the treat-
ment and patient survival. The AI has been used to
predict risk/diagnosis using pancreatic image and per-
sonal health features [27]. The prediction of pancreatic
cancer risk in patients with type 2 diabetes was com-
pared using logistic regression and ANN, again using
personal health features and presenting the performance
of models predicting the cancer risk factor [24]. There
are also AI models to diagnose pancreatic cancer-based
in four plasma proteins selected in mass spectra, show-
ing the potential of AI in predicting the status of a sam-
ple based on biological markers with high sensitivity
(90.9%) and specificity (91.1%) [22]. The Lustgarten
Foundation, created to pancreatic cancer research,
pointed out the importance of including the AI in the
PDAC diagnosis based on MRI and CT scans [28]. The
use of new technologies to help pancreatic cancer risk/
diagnosis must be pursued, and it would improve pa-
tients’ survival. The gene expression changes in pancre-
atic cancer could be used as biological markers and help

in the diagnosis and be used to build a computational
model using AI to predict sample status.
In this paper, we performed a meta-analysis of gene

expression of public microarray data. We identified a
core-gene (CG) group and accessed the protein expres-
sion through the Protein Atlas database based on immu-
nohistochemical (IHC) staining images. Clusterization
methods were applied to distinguish between normal
and PDAC samples. It was selected five genes combining
microarray expression and Protein Atlas information.
The gene expression information from PDAC and nor-
mal samples were used to build an ANN (PDAC-ANN).
The PDAC-ANN uses gene expression information to
predict the sample status (normal or PDAC) and give
the probability of the sample be PDAC. This is the first
time gene expression is used to build an ANN model to
predict PDAC diagnosis. The results showed here must
be verified in a large sample and could be used in the
discrimination of samples using these markers. This
PDAC-ANN is free software and could be used to im-
prove the diagnosis and help PDAC patients.

Methods
Dataset acquisition
The microarray expression data of human healthy and
pancreatic cancer tissue were collected from Gene Ex-
pression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo) using the search term “pancreatic ductal
adenocarcinoma” and selecting mRNA expression profil-
ing by an array. The ten datasets (Table 1) were selected
following the criteria: inclusion of (1) studies presenting
PDAC/normal samples from the pancreas; exclusion of
studies (2) with induced mutations or activated path-
ways; (3) cells previously exposed to chemotherapy
drugs. These criteria ensure that the expression alter-
ations were provided only from the shift normal/disease,
and not due to induced mutations in cell lineage or
chemotherapy treatment. The datasets were loaded into
the R software [39] using the GEOquery package [40].
Ten studies were analyzed to find DEG, and two inde-
pendent microarray studies provided samples to validate
the CG derived from the meta-analysis.

Data processing
Non-specific filtering and identification of differentially
expressed genes (DEG) were applied to each dataset
coming from the same GEO series using packages from
Bioconductor [41]. Briefly, the package genefilter was
used to remove the genes with no expression variation
among samples [42], followed by the collapse of multiple
probe measurements of a given gene into a single gene
measurement in package WGCNA [43]. The limma
package [44] was used to identify the DEG through a t-
test. We considered DEGs when log2 fold change
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(log2FC) was ≥1 and adjusted p-value by false discovery
rate (FDR) ≤ 0.05 [45, 46].

Core-gene analysis
The DEG frequency among the microarray studies was
retrieved, and those shared by all microarray studies
were considered as the CG. The CG expression values

were standardized, applying the method X
0 ¼ X−�X

sd ,
where X represents the expression values, �X the gene ex-
pression average, and sd standard deviation [47]. This
standardization was followed by a min-max data rescale,
for each gene transforming all values to [0, 1] range.
Thus, restricting values from different studies to the
same range [48]. The CG standardized values were used
in the Principal Component Analysis (PCA) and the
hierarchical clustering in order to check the clustering of
the samples from all datasets based on the CG expres-
sion values.

Data validation
The IHC staining images and the protein expression
data from pancreatic cancer tissue were used as valid-
ation of the CG. Protein expression data were obtained
from the Human Protein Atlas (HPA) (www.proteina-
tlas.org) [49]. The number of IHC staining images
present in HPA categories (high, medium, low, not de-
tected) was counted to each gene. These IHC staining
images were used as validation of protein expression
when the number of high plus medium stating images
was ≥75%.

We also investigated a validation using the CG mRNA
standardized values in two independent datasets
(GSE16515 and GSE62452). We applied the hierarchical
clustering/heatmap, PCA, and artificial neural network
to the validation samples to evaluate its capability to dif-
ferentiate tumor and normal groups using the micro-
array information.

Neural network sample classification
We build an artificial neural network (ANN) using py-
thon to classify the sample in normal or tumor samples.
The ANN was trained using normalized gene expression
values [0, 1] from the five genes with the highest AUC
among the CG confirmed by HPA (Fig. 1). We explore
the performances of 90 network architectures with one
input layer with five nodes (input neurons to gene ex-
pression values), one or two hidden layers varying the
number of nodes from 2 to 10, and two output nodes,
giving the normal and PDAC probability. Each network
architecture was trained 30 times, and we took the mean
accuracy in the train set to evaluate the classification
performance. We used a learning rate of 0.05, 100
epochs during training, relu and softmax as activation
functions for internal and output node, respectively. The
network weights were randomly initialized with values
between [− 1, 1], and bias with value 1.

Statistics and analysis
Results are presented as a bar plot, representing the pro-
tein expression as indicated in the HPA, and PCA or
heatmap, representing the variation and clusterization
among the samples based on mRNA gene expression.

Table 1 Characteristics of studies used in the meta-analysis

Accession number Study Array platform Differentially expressed genes Samples

Upregulated Downregulated Tumor Normal

GSE23397 * Affymetrix Human Exon 1.0 ST Array 4031 870 15 6

GSE28735 [29] 245 146 45 45

GSE41368 [30] 1200 462 6 6

GSE32676 [31] Affymetrix Human Genome U133 Plus 2.0 Array 686 319 25 7

GSE71989 [32] 3052 661 13 8

GSE15471 [33] 1546 227 39 39

GSE62165 [13] Affymetrix Human Genome U219 Array 2638 1266 118 13

GSE43795 [34] Illumina HumanHT-12 V4.0 expression beadchip 1978 1343 6 5

GSE71729 [35] Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 285 175 145 46

GSE60979 [36] Agilent-028004 SurePrint G3 Human GE 8x60K Microarray 1365 1336 49 12

Total 461 187

GSE16515 [37] Affymetrix Human Genome U133 Plus 2.0 Array – – 36 16

GSE62452 [38] Affymetrix Human Gene 1.0 ST Array 69 61

Total 105 77

* No publication available
- Analysis of differentially expressed genes was not applied to the validation dataset
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The IHC results graph, PCA, and heatmap were pro-
duced using the R statistical computational language
[50] and the ggplot2 package [51]. The statistical tests
(ROC, AUC, and DEG) and p-value correction were per-
formed using the R language. The sensitivity, sensibility,
and accuracy were calculated using python language,
getting the results from the confusion matrix in training
and validation datasets.

Results
Differentially expressed genes in meta-analysis
To profile differentially expressed genes in PDAC, we
performed a meta-analysis of microarray data available
in Table 1. We collected and compared 463 tumor sam-
ples to 187 normal tissues. We have identified 10,861
unique DEG, where 7028 were upregulated and 3833
downregulated genes (log2FC = 1; adj. p-value ≤0.05)
(Additional file 1: Table S1). The ten studies shared 40
DEG (CG), where 39 were upregulated, and one down-
regulated (Table 2).

The CG showed a profile of upregulated genes func-
tions related to cell membrane-ECM interaction
(LAMA3, LAMB3, LAMC2), cytoskeleton interaction/
calcium management (GCNT3, ANLN, S100A14, S100P),
and structural integrity of epithelial cells (ITGA2,
ITGA3, KRT19). Most of the genes reinter the import-
ance of the ECM interaction and cellular morphology in
carcinogenic processes in PDAC. The AOX1 was the
only downregulated gene in PDAC compared to normal
samples. The AOX1 was already detected as downregu-
lated in other PDAC studies [52, 53], and this corrobo-
rates the result presented here.

Immunohistochemical staining images validation
To determine whether the CG is also present as proteins
expressed in PDAC, we investigated the expression of
these genes in HPA. This analysis could confirm the
protein expression from many of the CG list using infor-
mation from IHC staining images. The protein expres-
sion data from the CG showed that 14 genes have more
than 75% of images with high or medium expression in
pancreatic cancer (Fig. 2). More than 75% of IHC images
stained for KRT19 and S100P showed high expression
values of these genes at the protein level (Fig. 3), from a
set of 23 and 12 images in HPA, respectively.
The genes CXCL5, GJB2, IFI27, and SLPI, have a low

or no expression detected in at least 90% of samples, not
corroborating with the CG list. The protein AOX1 pre-
sents a different expression between the RNA and pro-
tein levels. The AOX1 protein is highly expressed in
some samples (60%) and low or not detected in others
(40%) in HPA. There were three proteins (COL10A1,
DKK1, and TCN1) with no information in HPA; thus, it
is not possible to report about the protein expression in
pancreatic cancer. All these data show essential genes in
PDAC highly expressed in proteins level, confirming 14
genes from the CG in pancreatic cancer.

Classification of the merged samples in tumor and
control using PCA and hierarchical clustering
We performed hierarchical clustering of the samples/
genes and a PCA analysis of the samples to evaluate how
different the gene expression is among the samples and
how the samples cluster. The PCA showed variation in
the expression in a continuous manner, and some PDAC
samples mixed with normal samples. Although this con-
tinuum between the normal and PDAC samples, the
PCA plot has a region with only PDAC samples, indicat-
ing more specific gene expression in PDAC. The PCA
result indicates a difference in the CG expression
enough to classify the samples in normal and PDAC;
however, the PCA does not predict the label of the
sample (Additional file 2: Figure S1). The continuum
and mixture of samples indicate that some samples

Fig. 1 Artificial neural network architecture. A graphical
representation of a fully connected artificial intelligence algorithm
(PDAC-ANN). PDAC-ANN is a set of mathematical equations; in each
layer, it transforms expression values up to the last layer. The
expression values from AHNAK2, KRT19, LAMB2, LAMC2, and S100P
genes are data inserted in the input layer (green neurons), the
hidden layers (blue neurons) process the expression values, and the
output layer (red neurons) give the classification in normal or PDAC
sample as a probability
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present a different gene expression pattern and are
closer to samples from the other group.
The hierarchical clustering, performed using CG ex-

pression standardized values from all ten datasets, re-
veals the presence of two groups, and it is possible to

check the error of the sample classification (Fig. 4). The
standardized CG expression values were able to classify
the data into two groups in a continuous manner, once
more indicating that these groups exhibit distinctly cel-
lular processes and functions. The hierarchical clustering

Table 2 Description of the core-genes involved in the PDAC biological process

Gene symbol Gene name Gene symbol Gene name

Upregulated

AHNAK2 AHNAK nucleoprotein 2 KRT19 keratin 19

ANLN anillin actin binding protein LAMA3 laminin subunit alpha 3

ANO1 anoctamin 1 LAMB3 laminin subunit beta 3

ASPM abnormal spindle microtubule assembly LAMC2 laminin subunit gamma 2

CAPG capping actin protein, gelsolin like LCN2 lipocalin 2

CEACAM5 carcinoembryonic antigen related cell adhesion molecule 5 MET MET proto-oncogene, receptor tyrosine kinase

CEACAM6 carcinoembryonic antigen related cell adhesion molecule 6 NQO1 NAD(P)H quinone dehydrogenase 1

COL10A1 collagen type X alpha 1 chain OAS1 2′-5′-oligoadenylate synthetase 1

CXCL5 C-X-C motif chemokine ligand 5 S100A14 S100 calcium binding protein A14

DKK1 dickkopf WNT signaling pathway inhibitor 1 S100P S100 calcium binding protein P

FXYD3 FXYD domain containing ion transport regulator 3 SERPINB5 serpin family B member 5

GABRP gamma-aminobutyric acid type A receptor pi subunit SLC2A1 solute carrier family 2 member 1

GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type SLC44A4 solute carrier family 44 member 4

GJB2 gap junction protein beta 2 SLC6A14 solute carrier family 6 member 14

GPRC5A G protein-coupled receptor class C group 5 member A SLPI secretory leukocyte peptidase inhibitor

GPX2 glutathione peroxidase 2 TCN1 transcobalamin 1

IFI27 interferon alpha inducible protein 27 TFF1 trefoil factor 1

ITGA2 integrin subunit alpha 2 TMC5 transmembrane channel like 5

ITGA3 integrin subunit alpha 3 TMPRSS4 transmembrane protease, serine 4

TSPAN1 tetraspanin 1

Downregulated

AOX1 aldehyde oxidase 1

Fig. 2 Variation in protein expression data from the GC list retrieved from immunohistochemical staining images in HPA. The protein expression
data shows that 14 genes have more than 75% of images with high plus medium expression in pancreatic cancer, evidencing the expression of
predicted core-genes in the pancreatic tissue. The genes with protein expression confirmed in IHC staining images were highlighted in red. Data
credit: Human Protein Atlas
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showed the ratio Normal Classified/Normal = 85.5 and
Tumor Classified/Tumor = 85.6.
The methodology was also applied to independent

datasets (GSE16515 and GSE62452) to validate the CG
found in the meta-analysis. The CG expression values
from these independent datasets produced similar re-
sults in both PCA and heatmap hierarchical clustering
analysis (Additional file 2: Figure S1). The PCA and
heatmap showed that CG could classify the data in two
groups of normal and tumoral samples, which suggest
that the CG maps central process in PDAC. Together,
these results indicate that the CG expression can distin-
guish the groups normal from PDAC samples, with dif-
ferent functional/cellular processes expressed by this
condition, and this points to CG list as critical genes in
PDAC that could be used to classify the samples and im-
prove diagnosis.

Neural network sample classification
The best neural network architecture had a mean accur-
acy of 88.1 and 85.71% in the train and test set respect-
ively; the architecture has five input neurons, eight and
ten neurons in the next two hidden layers, and two out-
put. We selected the best-trained network with this
architecture with an accuracy of 89.66. We examined
the classification performance in the validation dataset
using the f1-score, which summarize the precision and
recall measurements (Table 3). The f1-score was 0.83 for
the normal samples and 0.88 for the PDAC samples,
with an average of 0.86. The confusion matrix showed
that the number of true negatives (normal) was 64/77,
while the number of true positives is 92/105 (Table 4).

Discussion
We performed a meta-analysis of mRNA expression data
recovered from public datasets, intending to investigate
the profile of molecular alterations in pancreatic ductal
adenocarcinoma and use this information to build an
ANN predictor. Comparing 461 tumor samples to 187
normal tissues, we were able to observe a central group
of genes linked to carcinogenic processes, labeled core-
genes. Further, we investigated the protein expression
with immunohistochemistry information recovery from
HPA and validated with two independent microarrays
through hierarchical clustering and PCA. The late diag-
nosis and high mortality rate in PDAC patients demand
better tools to improve the diagnosis. Currently, the gold
standard blood-based biomarker for PDAC diagnosis is
the CA 19–9 [54]. However, CA 19–9 lacks the sensitiv-
ity for the early detection and also has a poor predictive
value in asymptomatic patients [55–57]. Imaging screen-
ing, like magnetic resonance imaging (MRI) and com-
puted tomography (CT), while accurate, is expensive and
uncomfortable [58]. Thus, the precise selection of

Fig. 3 Representative immunohistochemistry staining of AHNAK2,
KRT19, LAMB2, LAMC2, and S100P in Pancreatic Ductal
Adenocarcinoma (Tumor) and normal pancreatic tissue (Normal).
The proteins presented more than 75% of images with high
plus medium expression in HPA. Scales bars represent 400 μm.
Image courtesy of Human Protein Atlas
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biomarkers can increase the accuracy in the diagnosis of
PDAC as well as provide a cheaper diagnostic method
with a lower invasion.
We performed a validation of the CG through the IHC

images retrieved from HPA, and our results indicated a
list of possible PDAC biomarkers. Furthermore, we pre-
sented a biomarker often used for PDAC diagnosis, the
carcinoembryonic antigen-related cell adhesion molecule
5 (CEACAM5, also known as CEA). The CEACAM5 has
been pointed as the second serum biomarker most used
clinically for detecting PDAC [28].
We confirmed the expression of 14 genes from CG

with high expression in the protein level. These proteins
are involved in many functions in cancer biology. For in-
stance, the most expressed protein, keratin 19 (KRT19),
is a structural protein of epithelial cells, with expression
in a subset of pancreatic cells [59]. The KRT19 was
already described as a possible biomarker for PDAC, and
patients with upregulation of KRT19 presents poor dif-
ferentiation, large tumor size, lymph node metastasis,
and invasion [60]. In other gastrointestinal cancers,

clinical-pathological analyses revel KRT19 correlated
with metastasis, tumor size, microvascular invasion, de-
creased tumor differentiation, and also conferred an in-
vasive phenotype [60].
The laminin subunit gamma 2 (LAMC2) and beta 3

(LAMB3) proteins were shown to be upregulated in
PDAC samples using microarray, immunohistochemical
analyses, and biomarkers for diagnosis and prognosis in-
tegrating a multigene panel [61–63]. Proteomic analysis
pointed the LAMC2 as a potential biomarker for PDAC,
being upregulated with an mRNA fold of 8.36. The
serum concentration of LAMC2 in patients with PDAC
was ∼ 3.5-fold higher from benign and normal samples,
indicating this gene as a promising biomarker [64].
PDAC patients expressing the high amount of LAMC2
have a poor prognosis [63], reinforcing this gene as a pu-
tative biomarker for diagnosis or prognosis. The LAMB3

Fig. 4 PCA and hierarchical analysis of the merged data set into one data. a. PCA analysis clearly showed two distinct groups corresponding to
normal and tumor samples. b. Clustering analysis. The red band indicates the PDAC samples with similar gene expression on 40-core-gene, and
the blue band indicates the normal samples

Table 3 Classification report of the validation test set

Precision Recall F1-score Support

Normal 0.83 0.83 0.83 77

Tumor 0.88 0.88 0.88 105

Avg/total 0.86 0.86 0.86 182

Table 4 Confusion matrix of the training and validation test
samples

Actual normal Actual tumor

Training Classified normal 169 49

Classified tumor 18 412

Specificity = 90.4 Sensitivity = 89.4

Test Classified normal 64 13

Classified tumor 13 92

Specificity = 83.1 Sensitivity = 87.6
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is involved in the first stage and progression of PDAC,
promotion of cell proliferation, inhibition of apoptosis,
and is also involved in metastatic PDAC [63, 65]. These
results showed the critical association of LAMC2 and
LAMB3 with PDAC and highlighted them to be used as
therapeutic targets in PDAC treatment [62, 65].
The AHNAK Nucleoprotein 2 was already reported as

a PDAC biomarker with tissue-based evidence, thus,
confirming AHNAK2 expression in protein level [16, 61,
66]. In our analysis, AHNAK2 was highly expressed in
23 of 45 PDAC samples, as indicated in the HPA results.
The AHNAK2 function in PDAC in poorly described;
however, another similar AHNAK gene is involved with
migration and the epithelial-mesenchymal transition, in-
dicating the AHNAK2 may be involved in these pro-
cesses as well [67]. AHNAK2 high expression is
associated with PDAC poor prognosis and is also
expressed in bladder and kidney cancer [68, 69].
The S100 Calcium Binding Protein P was reported as

a useful biomarker for PDAC based on IHC with expres-
sion already reported in gastric and bladder cancer [70].
In PDAC, S100P is expressed in precursor lesions and is
involved with tumor growth and invasion [71, 72]. We
showed that S100P was one of the three proteins de-
tected with high expression based on IHC in HPA (6 of
9 samples). S100P was studied to discriminated normal
and PDAC samples using a higher concentration in duo-
denal fluid in patients with PDAC compared with the
control group, presenting an AUC of 0.71 for detecting
PDAC [73]. Our results showed an AUC of 0.92 for
S100P using mRNA expression (Additional file 4: Figure
S2). A meta-analysis study showed S100P as a potential
biomarker to discriminate PDAC samples using RT-PCR
or IHC and reported a sensitivity and a specificity of
0.87 and 0.88, respectively [74].
In addition to IHC validation, the CG expression

values were tested in independent samples. The PCA
and the heatmap hierarchical clustering analysis indi-
cated that CG plays a central process in PDAC and is
capable of classifying the data in two groups of normal
and tumoral samples. Although there were core regions
with a higher number of normal or PDAC samples,
some PDAC samples presented gene expression similar
to normal samples and were misplaced in PCA. The
microarray analysis using PCA already showed that
higher dimensionality of the PCA, beyond the first two
or three dimensions, can hold valuable information, thus
limiting the PCA interpretations [75, 76]. The CG in
these set of samples present a different pattern, and it is
not possible correctly assigning them based on this gene
expression. The use of ANN could increase the correct
classification, leading to higher sensitivity. Even though,
in the validation dataset, 13 samples in each group were
incorrectly classified, pointing a limitation.

We used five genes to develop an ANN sample classi-
fier. We achieve sensitivity and specificity of 87.6 and
81.8%, respectively, applying our ANN classifier in the
test set. The development of automatic classifiers based
on artificial intelligence can aid the PDAC diagnosis.
Five possible PDAC biomarkers were already pointed
(FAIM3, IRANK3, DENND2D, PLBD1, AGPAT) based
on gene expression, achieving a combined sensitivity of
100% and specificity of 94% [77]; however, no automatic
classification was produced. These five genes were
pointed as potential biomarkers in PDAC diagnosis.
Here, we not only pointed five genes independently dif-
ferentially expressed among datasets but also created an
automatic tool to classify the samples and give the prob-
ability of being normal or PDAC. In contrast with the
list of five differentially genes reported by Irigoyen et al.
2018 [77], the CG list reported here did not include any
of these genes.
In another study, artificial intelligence was developed

with support vector machines (SVM) to classify samples
using PDAC gene expression information of five genes
(TMPRSS4, AHNAK2, POSTN, ECT2, and SERPINB5).
Using different genes, our ANN has different results
compared with the PDAC SVM classifier that showed
validation dataset sensitivity 88.89–97.22% and specifi-
city of 85.7–96.5% [16]. The variation of sensitivity and
specificity indicates that the SVM classifier has better
performance in some datasets. While our ANN was ap-
plied to all validation samples at once and the values of
sensitivity and specificity are closer to the potential of
classifying PDAC samples based on gene expression.
The datasets used in both works are different, with this
in mind, sample preparation or microarray technologies
(Affymetrix and Illumina) could be possible explanations
to different gene lists. Furthermore, the use of ten data-
sets here in contrast with two datasets by Irigoyen et al.
2018 [77] could also produce different results. Another
explanation for these differences in the gene list pre-
sented here could be due to PDAC subtypes already
studied in gene expression and clinical level [10].

Conclusions
The results indicated that PDAC presents a 40-core gene
signature, with 39 genes upregulated and one downregu-
lated. Among these upregulated genes, many are related
to cell adhesion, migration, and extracellular matrix-
receptor interaction; the downregulated gene is associ-
ated with pancreatic functions. Immunohistochemical
analyses confirm the overexpression at the protein level
of 14 genes, validating our analysis. The five most over-
expressed genes were related to tumor differentiation,
cell migration, and metastasis. The PDAC-ANN trained
using gene expression information could classify the
samples in normal and PDAC with an f1-score of 0.82
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and sensitivity 87.6. The ANN diagnosis tool can only be
used when the gene expression information from
AHNAK2, LAMB3, LAMC2, KRT19, and S100P are
available, in addition to min-max gene expression values
rescaling. The PDAC-ANN is a free tool that can sup-
port in the pancreatic ductal adenocarcinoma diagnosis.

Availability and requirements
Project name: Pancreatic ductal adenocarcinoma artifi-
cial neural network (PDAC-ANN).
Project home page: https://github.com/freitasleandro/

PDAC-ANN
Operating system(s): e.g. Platform independent.
Programming language: Python 3.7.
Other requirements: pandas, numpy, sklearn, keras,

tensorflow, argparse.
License: GNU GPL v3.0.
Any restrictions to use by non-academics: licence

needed.
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