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Abstract

Background: The purpose of this study was to investigate the value of wavelet-transformed radiomic MRI in
predicting the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) for patients with locally
advanced breast cancer (LABC).

Methods: Fifty-five female patients with LABC who underwent contrast-enhanced MRI (CE-MRI) examination prior
to NAC were collected for the retrospective study. According to the pathological assessment after NAC, patient
responses to NAC were categorized into pCR and non-pCR. Three groups of radiomic textures were calculated in
the segmented lesions, including (1) volumetric textures, (2) peripheral textures, and (3) wavelet-transformed
textures. Six models for the prediction of pCR were Model I: group (1), Model II: group (1) + (2), Model III: group (3),
Model IV: group (1) + (3), Model V: group (2) + (3), and Model VI: group (1) + (2) + (3). The performance of predicting
models was compared using the area under the receiver operating characteristic (ROC) curves (AUC).

Results: The AUCs of the six models for the prediction of pCR were 0.816 ± 0.033 (Model I), 0.823 ± 0.020 (Model II),
0.888 ± 0.025 (Model III), 0.876 ± 0.015 (Model IV), 0.885 ± 0.030 (Model V), and 0.874 ± 0.019 (Model VI). The
performance of four models with wavelet-transformed textures (Models III, IV, V, and VI) was significantly better than
those without wavelet-transformed textures (Model I and II). In addition, the inclusion of volumetric textures or
peripheral textures or both did not result in any improvements in performance.

Conclusions: Wavelet-transformed textures outperformed volumetric and/or peripheral textures in the radiomic
MRI prediction of pCR to NAC for patients with LABC, which can potentially serve as a surrogate biomarker for the
prediction of the response of LABC to NAC.
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Background
Breast cancer is the most common malignant tumor
among women across the world [1, 2]. For treatment,
preoperative neoadjuvant chemotherapy (NAC) plays a
major role in patients with locally advanced breast

cancer (LABC) [3]. With proper therapy, NAC has been
shown to decrease tumor size, downstage tumors, and
allow breast-conserving surgery to take place with
clearer margins [4]. Furthermore, timely NAC therapy
can also improve the efficacy of follow-up treatment op-
tions after surgery [5].
The response of breast cancer to NAC relies on the

post-treatment pathology, and the pathological complete
response (pCR) is clinically defined as having no residual
invasive carcinoma in the breast tissue after surgery,
which is associated with a better prognosis [6]. However,
it has been reported that the pCR rate of NAC for breast
cancer varies between 10 and 50% [7]. This poor pCR
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rate signifies that the majority of patients receiving NAC
may benefit from a treatment course other than NAC.
Given the well-documented adverse effects to chemo-
therapy [8], an urgent clinical need is present for object-
ive surrogate biomarkers to accurately predict the
response of breast cancer to NAC.
Radiomics is an emerging technology in quantitative im-

aging analysis, which hypothesizes that the spatial tumor
heterogeneity is related to tissue changes on histological
analysis. Preliminary studies using radiomics for breast
MRI have shown that certain pre-treatment texture pa-
rameters (based on high order statistics) may help in
evaluating breast tumor response to NAC [9–12]. Previ-
ously, high throughput image textures have been obtained
for radiomics analysis to predict the efficacy of NAC prior
to initiating treatment [13, 14]. The majority of studies ap-
plied morphologic features and gray-level textures (such
as histogram, gray-level co-occurrence matrices, etc) ex-
tracted from regions of interest (ROI). Alternatively, wave-
let transformation can provide comprehensive spatial, and
frequency distributions for characterizing intratumoral
and peritumoral regions in terms of low and high fre-
quency signals. These properties may improve the per-
formance of radiomic model [15, 16]. The aim of this
study was to investigate whether wavelet-transformed tex-
tures can improve the performance of radiomic MRI pre-
dictions of pCR to NAC in comparison to those utilizing
various combinations of volumetric textures, peripheral
textures, and wavelet-transformed textures extracted in
breast MRI.

Methods
Patients
The Ethics Committee of the First Affiliated Hospital of
Zhejiang Chinese Medical University has approved this
retrospective study, in which informed consent was
waived, but patient confidentiality was protected. All pa-
tients with LABC who received NAC were collected in
our institution from January 2013 to December 2017. In-
clusion criteria for this study were: (1) An adult female
patient over 18 years old; (2) Puncture biopsy confirmed
unilateral invasive ductal carcinoma of the breast prior
to NAC therapy; and (3) CE-MRI examination was per-
formed within 2 weeks before NAC.
The exclusion criteria were as follows: (1) Patients

who underwent the aspiration biopsy or accepted any
endocrine or radiation therapy before MRI scans; (2)
The baseline CE-MRI scan was performed more than 1
week before NAC; (3) Lesions were scarcely identified
on MRI due to motion or other artifacts; (4) Neoadju-
vant chemotherapy was not completed due to extrane-
ous reasons; (5) Patients who did not perform surgical
resection after the completion of NAC.

Figure 1 shows the identification, eligibility, and inclu-
sion of patients in the study. A total of 55 patients were
selected from initial identification of 83 patients after ex-
clusion of patients who underwent other therapies be-
fore MRI (n = 13), those where more than 1 week had
passed between MRI and NAC (n = 2), those with severe
image artifacts (n = 5), incomplete NAC (n = 6), and
those with no surgical resection after NAC (n = 2).

Clinical and pathological data
The patient’s clinical data including patient’s age, tumor
size, tumor histopathologic type, molecular subtypes,
lymph node invasion before NAC, tumor types (mass vs
non-mass) in CE-MRI, and the regimen of NAC were
retrieved from the hospital’s medical record system. The
pathological assessment of NAC was acquired from the
pathology reports after breast-conserving surgery or
mastectomy, which was completed by a pathologist with
more than 10 years of working experience. The criteria
of pCR were defined as the absence of residual invasive
tumor in the surgical specimen (residual ductal carcin-
oma in situ could be present) and the absence of lymph
node invasion in the ipsilateral sentinel node or lymph
nodes removed during the axillary dissection.

Image acquisition
Each patient underwent DCE-MRI examination on a 3.0
Telsa MR scanner (Siemens, Erlangen, Germany) in the
prone position with the use of a dedicated 16-channel
bilateral phased-array breast coil for signal reception.
Data was obtained for routine clinical practice. The
DCE-MRI imaging protocol was as follows: TR/TE =
4.51 ms /1.61 ms, section thickness, 1 mm; flip angle, 10°.
The matrix was 448 × 448; and NEX = 6). One non-
contrast and five contrast dynamic series were included
into the DCE-MRI imaging. The fifth phase of imaging
was selected into segmentation at 245 s after contrast in-
jection. The gadolinium chelate was injected via the
basilic vein with the dosage of 0.1 mmol/kg body weight,
followed by a 10 mL flush of isotonic saline.

Tumor segmentation
Each tumor was segmented on enhanced T1-weighted
images using a semi-automated segmentation tool in an
open volumetric image analysis platform 3DQI (an open
software platform for volumetric image analysis devel-
oped by the 3D quantitative imaging laboratory at Mas-
sachusetts General Hospital and Harvard Medical
School (https://3dqi.mgh.harvard.edu), focusing on the
prediction and assessment of the treatment response in
clinical oncology). Each tumor was first identified and
segmented on the axial plane by a breast radiologist with
3 years’ experience and then verified by another breast

Zhou et al. BMC Cancer          (2020) 20:100 Page 2 of 10

https://3dqi.mgh.harvard.edu


radiologist with 7 years’ experience. They were blinded
to the pathological assessment of NAC after surgery.
The corresponding sagittal and coronal planes of the
tumor were referenced when the lesion was ambiguous
in the axial plane. The volumes of interest (VOIs) of
each tumor was determined by the consensus of both ra-
diologists. In the case of multiple lesions in a patient,
the largest detected lesion was selected.

Radiomic analysis
3DQI software (3D Quantitative Imaging Lab, Harvard
Medical School) was utilized to texture calculation and
radiomic analysis. Three groups of radiomic textures
were calculated for the segmented lesions, including
volumetric, peripheral textures, and wavelet-transformed
textures. Volumetric textures were calculated in the en-
tire volume of segmented lesion containing 5 categories:
11 shape features, 25 histogram statistical textures, 22
gray level co-occurrence matrix (GLCM) textures, 16
gray level run-length matrix (GLRLM) textures, and 14
gray level zone size matrix (GLZSM) textures. Peripheral
textures were calculated in a 10mm wide band region
centered on the boundary of the segmented lesions,
which covered the 5mm inner region and 5mm outer
region separated by the lesion boundary. We calculated
77 volumetric textures except 11 shape features in the
periphery region.

A 3D discrete and single-stage wavelet transform was
used to decompose volumetric images into eight decom-
posed volumes of images, labeled as LLL, LLH, LHL,
LHH, HLL, HLH, HHL and HHH, where L and H are
low- and high-frequency signals, respectively. For ex-
ample, LLH is a volume of images transformed by using
the low-pass filters on the X and Y axis, and a Z-axis
high-pass filter. In the eight decomposed volumes of im-
ages, 3DQI calculated five categories of volumetric tex-
tures with the exception of the shape features in the
segmented lesion VOIs, which resulted in a total of 616
(8X77) wavelet-transformed texture features for each
VOI.
A random forest (RF) was applied [17] to predict the

response of pCR to NAC using tumor texture features
calculated from the pre-operative CE-MRI. RF is a ma-
chine learning classifier, which can prevent over-fitting
of the data (due to a large number of radiomic features)
by injecting randomness into the training of the trees
and combining the output of multiple random trees into
the final classifier. Thus, a random forest is known to
perform consistently well in high-dimensional data com-
pared with other classification algorithms [17]. We
trained six RF models to the prediction of pCR by using
six combinations of three groups of radiomic textures
along with the clinical outcomes. Each RF classification
model had 100 trees with a node size of 1. The number

Fig. 1 Flow diagram of the patient selection in the study
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of features for each tree is the square root of the total
number of features in each model (rounded up). To
avoid over-fitting, RF randomly chooses a subset of fea-
tures (feature bagging) with respect to the number of
features to grow each tree, and randomly sampled the
subset of the bootstrapped data (sample bagging). The
six radiomics combinations were Model I: volumetric
textures, Model II: volumetric+peripheral textures,
Model III: wavelet textures, Model IV: volumetric+wave-
let textures, Model V: peripheral+wavelet textures, and
Model VI: volumetric+peripheral+wavelet textures.
For the selection of important textures in each model,

we adopted a two-round feature selection scheme to se-
lect the optimal features for each model. First, the im-
portance scores calculated by the Boruta algorithm were
used for a rapid reduction of texture dimensionality [18].
The Boruta algorithm is a feature ranking and selection
algorithm based on the random forests algorithm, which
identifies all features which are either strongly or weakly
relevant to the decision variable. The importance of a
feature is defined by the loss of classification accuracy
caused by the random permutation of feature values

between objects. Non-relevant features were rejected by
using Z score cutoff of less than 0.01. An initial RF
model was established after the first round by including
all relevant features. At the second round, an iterative
culling-out algorithm was used to refine the model [19].
In each iteration, we calculated the prediction perform-
ance of the RF model by removing one of the textures,
i.e. the AUC value of the ROC curve. If the AUC value
using one-less texture parameter is higher than that of
current RF model, the model corresponding to the max-
imum AUC value was selected. This iteration was com-
pleted until no AUC values were higher than that of the
current model.
To reduce the bias that may be caused by an unbal-

anced number of positive and negative samples, we ap-
plied the SMOTE (Synthetic Minority Oversampling
Technique) resampling method [20, 21], which combines
informed oversampling of the minority class (patients
with small number of tumors) with random undersam-
pling of the majority class (patients with large number of
tumors) to balance the samples between different patient
groups. All radiomic features in each patient group were

Fig. 2 Radiomic MRI prediction of pathological complete response (pCR)
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resampled to 50 tumor radiomic samples by SMOTE
method, which resulted in 100 samples including 50
pCR and 50 nonpCR samples. A 10-fold cross-validation
method was applied to train and validate the model
through n = 100 repetitions. The model performance
was compared by using the AUC values, represented by
mean ± SD. Figure 2 shows the pipeline of our RF
models for prediction of pCR.

Statistical analysis
All statistical analyses were performed in SPSS version
19.0. A Chi square test or Fisher’s exact test was used
for the nominal variable. A Mann-Whitney U test was
used for the unordered categorical variable. A student’s t
test was used for the continuous variable. A p-value less
than 0.05 was considered statistically significant.

Results
Clinical and pathological data
Fifty-five female patients aged 25 to 75 years (mean age =
50.4 ± 12.2 years) were enrolled in the study which in-
cluded 49 patients with a single breast tumor and 6 pa-
tients with multiple tumors. All patients were diagnosed
with invasive ductal carcinoma by pre-NAC puncture bi-
opsy and received NAC prior to surgical resection. Clin-
ical and pathological data of the study were listed in
Table 1. The pCR rate was 30.9% (17/55) (mean age =
50.7 ± 9.4 years), whereas non-pCR rate was 69.1% (38/
55) (mean age = 49.5 ± 10.4 years). The median max-
imum diameters of the lesions were 2.6 cm (range: 2.3–
3.7 cm) and 4.2 cm (range 3.1–5.4 cm) in the pCR and
the non-pCR group, respectively; and the mean diame-
ters were 2.9 ± 1.1 cm and 4.3 ± 1.9 cm, respectively. Ex-
cept for the maximum diameter (p = 0.002), there were
no statistically significant differences between pCR and
non-pCR groups of patients. Figure 3 demonstrates the
segmentation of breast lesions on CE-MRI.

Radiomic models
After applying our feature selection method to three
groups of MRI radiomic textures, we identified 5 volumet-
ric texture features, 3 peripheral texture features, and 3
wavelet texture features, respectively, for the prediction of
pCR. Table 2 lists the six models by their combinations of
the three groups of selected features. The AUCs of the six
models for the prediction of pCR were 0.816 ± 0.033
(Model I: volumetric textures), 0.823 ± 0.020 (Model II:
volumetric + peripheral textures), 0.888 ± 0.025 (Model
III: wavelet textures), 0.876 ± 0.015 (Model IV: volumetric
+ wavelet textures), 0.885 ± 0.030 (Model V: peripheral +
wavelet textures), and 0.874 ± 0.019 (Model VI: volumetric
+ peripheral + wavelet textures). Figure 4 shows the ROCs
and AUC values of the six models.

The performance (AUC, accuracy, sensitivity, and spe-
cificity) of four models with wavelet textures (Models
III, IV, V, and IV) were statistically significantly better
than those without wavelet textures (Model I and II).
The models by inclusion of peripheral textures did not
show significant improvements in performance com-
pared to those exclusion of peripheral textures (Model I
vs Model II, p = 0.985; Model III vs Model V, p = 1.000).
Also, the addition of either volumetric textures or per-
ipheral textures or both to the wavelet textures (Models
IV vs Model III, p = 0.891; Model V vs Model III, p =
1.000; Model VI vs Model III, p = 0.809) did not yield
any improvements in performance compared to the
model with wavelet textures only (Model III). Figure 5
plots the AUCs of the six models, and Table 3 lists the
p-values among the six models.

Discussions
Several studies have investigated radiomics models in the
prediction of the response of breast cancer to NAC on
CE-MRI [10–12, 22], as shown in Additional file 1: Table
S1. However, the performance of these models varied due

Table 1 Clinical and pathological data in the study

pCR Non-pCR P-value

No. of patients 17 38 N/A

Age(y)

Median(range) 50 (37–70) 48 (25–68) N/A

Mean ± SD 50.7 ± 9.4 49.5 ± 10.4 0.676

Enhancement Type, No. (%) 0.506

Masslike 11 (64.7) 23 (60.5)

Non-masslike 6 (35.3) 15 (39.5)

Max-D(cm)*

Median(range) 2.6 (2.3–3.7) 4.2 (3.1–5.4) N/A

Mean ± SD 2.9 ± 1.1 4.3 ± 1.9 0.002

Subtype, No. (%) 0.493

Luminal A 5 (29.4) 17 (44.7)

Luminal B 2 (11.8) 7 (18.4)

Her-2 5 (29.4) 8 (21.1)

TNBC 5 (29.4) 6 (15.8)

Regimen, No. (%) 0.412

EC + Taxol 4 (23.5) 14 (36.8)

FEC + Taxol 7 (41.2) 15 (39.5)

AC+ Taxol 2 (11.8) 6 (15.8)

Others 4 (23.5) 3 (7.9)

NOTE. P-values were calculated by T-test or Mann-Whitney U test for Age,
Max-D, from Chi-square test or Fisher’s exact test for Enhancement type,
Subtype, Regimen
Abbreviations: Max-D Maximum- diameter, Her-2 Human epidermal growth
factor receptor 2, TNBC Triple negative breast cancer, E epirubicin; C
cyclophosphamide, Taxol paclitaxel; F 5-fluoroucil. A doxorubicin. N/A
Not available
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Table 2 Textures and performance (AUC, Accuracy, Sensitivity and Specificity) of six RF models

RF Models

I II III IV V VI

Features Volumetric Volumetric +
Peripheral

Wavelet Volumetric +
Wavelet

Peripheral +
Wavelet

Volumetric + Peripheral +
Wavelet

Selected Features GLZSM_salgle
GLCM_homo1
GLCM_diffEntro
GLCM_
dissimilar
SHAPE_
surfaceArea

GLZSM_salgle
GLCM_homo1
GLCM_diffEntro
GLCM_dissimilar
Bndry_RL_rln
Bndry_GLZSM_
salgle
Bndry_GLCM_
contrast
SHAPE_
surfaceArea

LHH_GLZSM_zp
LLH_GLCM_
infoCorr1
HHH_GLCM_
correlation

GLZSM_salgle
GLCM_homo1
GLCM_diffEntro
GLCM_dissimilar
HHH_GLCM_
correlation
LHH_GLZSM_zp
LLH_GLCM_
infoCorr1
SHAPE_surfaceArea

Bndry_RL_rln
Bndry_GLZSM_
salgle
Bndry_GLCM_
contrast
HHH_GLCM_
correlation
LHH_GLZSM_zp
LLH_GLCM_
infoCorr1

SHAPE_surfaceArea
GLZSM_salgle
GLCM_homo1
GLCM_diffEntro
GLCM_dissimilar
Bndry_RL_rln
Bndry_GLZSM_salgle
Bndry_GLCM_contrast
HHH_GLCM_correlation
LHH_GLZSM_zp
LLH_GLCM_infoCorr1

AUC (mean ± SD) 0.816 ± 0.033 0.823 ± 0.020 0.888 ± 0.025 0.876 ± 0.015 0.885 ± 0.030 0.874 ± 0.019

Accuracy (mean ±
SD)

0.747 ± 0.022 0.751 ± 0.0150 0.810 ± 0.030 0.781 ± 0.028 0.797 ± 0.032 0.787 ± 0.024

Sensitivity
(mean ± SD)

0.676 ± 0.043 0.684 ± 0.043 0.762 ± 0.035 0.730 ± 0.049 0.770 ± 0.034 0.727 ± 0.045

Specificity
(mean ± SD)

0.812 ± 0.023 0.798 ± 0.021 0.845 ± 0.031 0.818 ± 0.037 0.818 ± 0.047 0.830 ± 0.035

NOTE: Bndry_GLZSM_salgle, Bndry_GLCM_contrast and Bndry_RL_rln were peripheral texture features

Fig. 3 Segmentation of breast lesions on CE-MRI. Images a-b show the right invasive breast cancer that was non-pCR after NAC. Images c-d
show the left invasive breast cancer that was pCR after NAC. a, c Segmentation of breast lesions on CE-MRI. b, d 3D imaging of VOIs
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Fig. 4 Receiver operating characteristic (ROC) curves of the six RF models: a Model I: volumetric textures, b Model II: volumetric + peripheral
textures, c Model III: wavelet textures, d Model IV: volumetric + wavelet textures, e Model V: peripheral + wavelet textures, and f Model VI:
volumetric + peripheral + wavelet textures
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to the different types of radiomic features extracted and
different types of VOIs applied, intratumoral or peritu-
moral regions. This study investigated six radiomics
models composed of three groups of textures, volumetric
textures, peripheral textures, and wavelet-transformed tex-
tures, for prediction of pCR to NAC in breast CE-MRI.
Among 88 volumetric textures, five features were se-

lected as important features, of which three textures
were chosen from GLCM features. Prior studies have
demonstrated that GLCM may be associated with intra-
tumoral heterogeneity, and high intratumoral heterogen-
eity may be associated with poor prognosis [23, 24].
GLCM features were also applied to predict

chemotherapy response to triple negative breast cancer
[22], which was consistent with the results of our study.
In addition, tumor shape features may improve the pre-
diction of prognosis of LABC underwent NAC [25]. For
instance, tumor size and tumor surface characteristics
were related to the effectiveness of NAC [26, 27]. In the
group of peripheral texture features, three features were
selected, one from each of the GLCM, GLZSM, and RL
families, respectively, representing the homogeneity and
heterogeneity of peripheral tumor regions [9, 28]. The
wavelet transformation decomposes images into high
frequency (heterogeneity) and low frequency (homogen-
eity) for both intratumoral and peritumoral regions [29].
The HHH_GLCM family highlighted the features of the
tumor boundary and any internal inhomogeneity. The
LLH_GLCM family revealed the intra-slice homogeneity
and inter-slice inhomogeneity characterization. Peritu-
moral textures may be characterized by the high fre-
quency signals in the tumor boundary regions in the
wavelet-transformed images [11], whereas, intratumoral
textures may be characterized by the low frequency do-
mains in wavelet-decomposed images.
In our study, four models with wavelet-transformed tex-

tures (Model III to VI) outperformed Model I and II

Fig. 5 Boxplots of the prediction performance (AUC, area under ROC curve) of six radiomics models

Table 3 Comparison of p-values of AUCs between 6 models

Models I II III IV V VI

I N/A 0.985 < 0.001 < 0.001 < 0.001 < 0.001

II N/A < 0.001 < 0.001 < 0.001 0.001

III N/A 0.891 1.000 0.809

IV N/A 0.968 1.000

V N/A 0.924

VI N/A

NOTE: P-values are calculated from the T-test
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without wavelet textures in the prediction of pCR to NAC
of LABC (p < 0.001). This indicated that the inclusion of
wavelet-transformed features may improve the perform-
ance of the prediction models, which is consistent with
the results of Imon Banerjee et al. [30] In general, lesion
edges are related to the high-frequency signals in the
wavelet-transformed images. Prior studies have demon-
strated that the addition of peritumoral texture features
optimized the performance for predicting pCR of NAC
[11]. In our study, Model II achieved a better performance
than Model I after the addition of peritumoral texture fea-
tures, but without statistical significance (p = 0.892). On
the other hand, in the comparison of Models III to VI, we
observed that the inclusion of the peritumoral texture fea-
tures into the wavelet-decomposed textures (Model VI)
did not show significant improvements in the model
(Model III). This revealed that characterization from inter-
tumoral and peritumoral textures may be contained in the
wavelet-decomposed textures. The wavelet-transformed
textures achieved the best performance for radiomic MRI
prediction of the pCR of NAC for breast cancer. Thus,
wavelet-transformed textures may be sufficient to predict
pCR of NAC without calculation of textures separately in
the intertumoral and peritumoral regions.
A 3D discrete wavelet transformation decomposes images

into one approximation and seven detailed images, which
are mutually orthogonal sets of wavelets, representing the
low-frequency (smooth such as homogeneous intertumoral
region) and high-frequency (non-smooth such as tumor
boundaries or heterogeneous intertumoral region) contents
of the images, respectively, which are not affected by mo-
tion or orientation. On the other hand, Gabor wavelets are
claimed to be sensitive for detecting the local texture fea-
tures corresponding to specific orientations, allowing opti-
mally extracted information such as retinal blood vessels
and vessel diameter [31, 32]. Nathaniel M. Braman et al. ap-
plied Gabor wavelet in both intratumoral and peritumoral
regions to extract detailed edge information [11]. The Ga-
bor wavelet features based on manually selected regions
tend to show an unreliable performance as manual selec-
tion leads to loss of tumor shape information due to inter-
observer variability.
Despite the findings presented herein, this study had

three major limitations. Firstly, the retrospective nature of
the study lacks external validation outside a single institu-
tion. Secondly, sampling bias may exist as a result of the
small sample size in our study. The small sample size was
caused by the strict inclusion and exclusion criteria. There-
fore, the results in the present investigation also need to be
verified by further studies. The third limitation is the unbal-
anced sample sizes of the experimental group and the con-
trol group. Although a SMOTE algorithm was used to
balance the data, some bias may still exist between the two
groups.

Conclusions
Our study demonstrated that wavelet-transformed textures
outperformed intratumoral and peritumoral textures for
radiomic MRI prediction of pCR to NAC for patients with
LABC. Therefore, the method presented in this study may
provide a potential surrogate for the accurate prediction of
the clinical outcomes of NAC, resulting more effective
treatment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-6523-2.

Additional file 1 Table S1. Comparison between our results and the
recent obtained results.
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