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Abstract

Background: In recent years, the relationship between tumor-associated macrophages (TAMs) and solid tumors
has become a research hotspot. This study aims to explore the close relationship of TAMs with metabolic
reprogramming genes in hepatocellular carcinoma (HCC) to provide new methods of treatment for HCC.

Methods: The study selected 343 HCC patients with complete survival information (survival time > = 1 month) in
the Cancer Genome Atlas (TCGA) as study subjects. Kaplan-Meier survival analysis assisted in determining the
relationship between macrophage infiltration and overall survival (OS), and Pearson correlation tests were used to
identify metabolic reprogramming genes (MRGs) associated with tumor macrophage abundance. Lasso regression
algorithms were used on prognosis-related MRGs identified by Kaplan-Meier survival analysis and univariate Cox
regression analysis to construct a risk score; another independent cohort (including 228 HCC patients) from the
International Cancer Genome Consortium (ICGC) was used to verify prognostic signature externally.

Results: A risk score composed of 8 metabolic genes could accurately predict the OS of a training cohort (TCGA)
and a testing cohort (ICGC). The risk score could be widely used for people with different clinical characteristics,
and it is a predictor that is independent of other clinical factors that affect prognosis. As expected, compared with
the low-risk group, the high-risk group exhibited an obviously higher macrophage abundance, together with a
positive correlation between the risk score and the expression levels of three commonly used immune checkpoints
(PD1, PDL1, and CTLA4).

Conclusion: Our study constructed and validated a novel eight-gene signature for predicting HCC patient OS,
which may contribute to clinical treatment decisions.
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Background

Growing evidence shows that tumor progression and
metastasis are closely related to the tumor microenvir-
onment [1, 2]. Once the tumor microenvironment is
formed, many immune cells, such as T cells, myelogenic
inhibitory cells, macrophages, and others, form the
tumor microenvironment through chemotaxis [3].
Among these immune cells, tumor-associated macro-
phages (TAMs) are macrophages derived from the infil-
tration of peripheral blood monocytes into solid tumor
tissues [4], and they are the most numerous inflamma-
tory cell group in tumor stroma, accounting for approxi-
mately 30-50% of the total inflammatory cells [5, 6].
TAMs have been reported to have a remarkable effect
on tumor occurrence, growth, invasion and metastasis
[7-9], and thus they are receiving growing attention.

To adapt to the decreased nutrients and oxygen avail-
able in the tumor microenvironment (TME) and to
maintain the rapid proliferation and material synthesis
of tumor cells, a series of changes to the metabolic pro-
cesses of tumor cells occur that lead to the increase in
related metabolites, such as lactate, nitrous oxide, react-
ive oxygen species, prostaglandin, and arachidonic acid,
in the tumor microenvironment, thus creating an in-
flammatory microenvironment [10, 11]. These changes
also affect the function of tumor associated macrophages
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(TAMs), including changes in cytokines and angiogenic
factors, which may prompt tumor progression and me-
tastasis [12].

Hepatocellular carcinoma (HCC) contributes to
more than 90% of all cases of liver cancer, and HCC
ranks 2nd in cancer-related deaths worldwide [13].
Metabolic reprogramming has been reported to have
a significant effect on the prognosis of HCC [14, 15].
However, there is no definitive understanding of the
relationship between TAMs and metabolic reprogram-
ming in HCC.

To examine how the infiltration of six types of im-
mune cells affected HCC prognosis, the Tumor Immune
Estimation Resource (TIMER) database was adopted in
this study for the collection of tumor immune cell
infiltration data. The patients with higher macrophage
infiltration levels had a poor overall survival rate. We
also identified differentially expressed metabolism-
related genes (DEMRGs) between high-level and low-
level macrophage infiltration groups of HCC patients
and used these genes to build a prognostic signature.

Methods

Data collection

The immune infiltration data for tumors from the
Cancer Genome Atlas (TCGA) were obtained from the

wilcoxTest using R package
“limma”, p <0.05

Fig. 1 Workflow chart for this study
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TIMER (Tumor Immune Estimation Resource) website
(http://timer.cistrome.org/) [16]. The RNA-sequencing
data for the TCGA dataset, where 343 HCC cases were
collected, were obtained from TCGA (https://portal.gdc.
cancer.gov/); corresponding clinical data were acquired
from the UCSC Xena website (https://xenabrowser.net/).
The RNA-sequencing data including 228 HCC cases and
their clinical information came from the International
Cancer Genome Consortium (ICGC) (https://icgc.org/).
With the purpose of eliminating the impact exerted by
perioperative factors on patients’ survival, our study did
not include patients who survived no more than
1 month. Sequencing data from TCGA and ICGC data-
bases utilized in this study were collected from the same
[lumina HiSeq_RNA-Seq platform, and the R package
“combat” was used to remove batch effects. There is no
need to obtain the approval of a local ethics committee
since the above data can be accessed from public
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sources. This study was conducted following the regula-
tions on the use of databases involved. Figure 1 displays
the workflow.

Identification of TAM-related metabolic genes (TRMGs)

According to the median value of immune cell infiltra-
tion, 343 HCC cases from the TCGA dataset were classi-
fied into two groups, which had high and low levels of
infiltration. We extracted 2752 previously published
genes related to metabolism that encode all the known
human metabolic enzymes and transporters to perform
the following analysis [17]. Then, we used the Wilcoxon
test in the R package “limma” to identify metabolism-
related genes (DEMRGs) that were expressed differently
by the two groups. How gene expression correlated with
estimated immune infiltration was examined by the
Pearson correlation test. A significant correlation with
TAM infiltration was identified by a p-value of smaller

a
Macrophage level == high == low

1.00
Zors
£
o
o
[
5050
E
g
3025

0.00

6 1 52 3 42 &5 6 7 & 8§ 10

5 Time(years)
]
[0}
Dhigh{ 171 120 65 40 20 19 14 4 3 2 1
Slow{172 134 61 49 34 21 114 3 1 0
g 6 1 2 3 4 5 6 7 & & 10
g Time(years)

ﬁ‘rﬂw Type
T B it |* | gggg IwIl';‘fvh
E‘ Lll |nf | 01 ‘mwl III||l !'” s

CYP2E1
HPD 5

: ‘I | y ] '+'|| H |t 3551’3&

1 Sene o
\ II\ F L il ch1sA1

‘ 1 U g cmm
. i 1 P F M' m f' e
‘ n‘lf i \”' ¥ m I '|| | L Eé':'.él
’ I \ Ll H ﬁé:lm
i r b h iy m | I II|I \nu rhn *Hml ﬂuﬂﬂ Y lld"F“' ol :::“
I LR \ 0] \ CHE
‘ u[ |
\| |IHI \‘ Ii |‘ \”l[\l‘l ;x
il
(! ‘pl‘l ’I‘]HI\H‘\ ||:( | Hil’ “”II‘”l[lI\‘i |I 1

SLC:

SLC:

I \ ||” FA2H
| H SLC:MAZ
chw

| \
I \|

I l \II | puox2

| \ \II\ \ CHIT1

]

PP2

macrophage abundance and overall survival. b Heat map of differentially expressed metabolism-related genes between high and low
macrophage abundance HCC patients (c) Venny plot of tumor-associated macrophage-related metabolic genes identified by Pearson
correlation analysis

Fig. 2 Identification of tumor-associated macrophage-related metabolic genes. a Kaplan-Meier survival curve showing the relationship between
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than 0.001 and a Pearson correlation coefficient of larger
than 0.4. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of TRMGs was
conducted by the R package “clusterprofiler”, where P <
0.05 was the threshold.

Identification of prognostic TRMGs

The association of prognosis in the TCGA database with
TRMGs was examined by Kaplan-Meier survival analysis
and univariate Cox regression analysis. P-values < 0.05
were used as selection criteria for both methods.

Construction of a risk score predict overall survival in the
TCGA cohort

To construct a risk score, a lasso regression algorithm
was performed on the prognosis-associated TRMGs
identified by Kaplan-Meier survival analysis and univari-
ate Cox regression analysis. It involved confirming the
optimal penalty parameter A related to the smallest 10-
fold cross-validation in the TCGA dataset. In terms of
the signature, the risk score was calculated as the sum of
each mRNA coefficient * each mRNA expression. The
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formula assisted in computing the risk score specific
to each patient in TCGA and ICGC datasets. With
the median value as the unified cutoff, patients of the
TCGA cohort were classified into low- and high-risk
groups. The prediction accuracy of our risk signature
for 0.5/1/3/5-year survival was assessed by the R
package “survival ROC”, which generated the time-
dependent receiver operating characteristic (ROC)
curves. The Kaplan-Meier curves generated with the
R package “suvminer” were used to compare patients’
OS in different groups using a log-rank test. The R
package “glmnet” was utilized in this study to conduct
lasso regression analysis.

Internal validation of the prognostic signature in the
TCGA cohort

Patients differing in clinical features (vascular invasion,
body mass index, age, gender, race, histological grade,
ajcc-tnm stage, individual tumor status, presence of new
tumors after initial treatment, and previous malignancy
history) are subject to Kaplan-Meier survival analysis to
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Fig. 3 Functional enrichment analysis of tumor-associated macrophage-related metabolic genes (TRMGs). a-b GO enrichment analysis of TRMGs.
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verify whether the prognostic model could be used to
predict different populations’ prognoses.

External validation of prognostic signature in ICGC cohort
The same formula mentioned above was used to calcu-
late each patient’s risk score, resulting in high-risk and
low-risk groups in the same way. Patients with different
clinical features (previous malignancy, stage, age, gender)
were also subject to Kaplan-Meier survival analysis.

Independence validation of the prognostic signature
Based on univariate and multivariate Cox regression
analyses, the risk score and clinicopathological features
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were obtained to determine whether the risk score could
be used as an independent predictor of HCC prognosis.

Correlation analysis between risk score and
clinicopathology

We conducted chi-square tests on different risk groups
for correlation analysis regarding clinical features. P less
than 0.05 represented statistical significance.

Estimation of immune infiltration

Two algorithms were used to estimate immune infiltra-
tion in different risk groups: TIMER, which is a method
for estimating the abundance of 6 types of tumor-
infiltrating immune cells (dendritic cells, macrophages,
CD8 T cells, CD4 T, neutrophils, and B cells) [18]; and
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CIBERSORT-ABS, which is a methodology based on the  “c2.cp.kegg.v7.0.symbols.gmt” was used as reference. The
gene expression profile for evaluating the absolute abun-  threshold was confirmed as FDR<0.25 and NOM p-
dance of 22 immune cell populations [16]. value < 0.05.

Gene set enrichment analysis Statistical analysis

To clarify possible mechanisms underlying the prognos-  SPSS  Statistics 25 (https://www.ibm.com/products/
tic signatures of patients with HCC, HCC patients in  software) together with R v.3.6.1 (https://www.r-project.
both TCGA and ICGC cohorts were subject to Gene Set  org/) was employed for all statistical analyses. Mann-
Enrichment Analysis (GSEA). An annotated gene set file =~ Whitney U-tests and Unpaired Student’s t-tests assisted
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overall survival (image downloaded from http://gepia.cancer-pku.cn/)
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in comparing two groups containing variables with nor-
mal distributions and two groups containing variables
with nonnormal distributions, respectively. To compare
three groups, one-way analysis of variance served as the
parametric method, and Kruskal-Wallis tests of variance
were used as the nonparametric method. Fisher’s exact
tests or chi-square tests assisted in analyzing the contin-
gency table variables. Kaplan-Meier survival analysis was
performed, together with log-rank tests for comparison.
A univariate Cox proportional hazards regression model
assisted in estimating the hazard ratios exhibited by uni-
variate analyses. Statistical significance was identified by
a two-tailed P-value < 0.05 [19].

Results

Identification and annotation of TRMGs

We observed that patients with a higher abundance of
macrophage infiltration had a poorer prognosis (Fig. 2a),
which prompted us to identify prognostic biomarkers of
HCC according to the degree of macrophage infiltration.
We identified 1382 metabolic genes with different
expression levels between high macrophage infiltration
and low macrophage infiltration patients (Fig. 2b), and
192 genes were significantly correlated with macrophage

Page 7 of 15

infiltration (cor > 0.4, p <0.001) (Fig. 2c). KEGG and GO
enrichment analysis demonstrates the involvement of
these genes in many aspects of metabolism, including
those related to glycoproteins, sulfur compounds, coen-
zymes, carbon, purines, glycolysis, and glycogenesis
(Fig. 3).

Construction of prognostic signature

A total of 87 TRMGs were identified by Kaplan-
Meier survival analysis and Univariate Cox regression
analysis, and all were risk factors for the overall sur-
vival of HCC (Fig. 4a). The lasso regression model in-
cluded the following 8 metabolic genes associated
with prognosis (Fig. 4b-c): G6PD, GNPDA1, LDHA,
ELOVLI, SLC25A24, CAD, GTDC1, and AMD1. The
risk score=0.0045 * expression of G6PD +0.0010 *
expression of GNPDA1 +0.0018 * expression of
LDHA +0.0042 * expression of ELOVLI +0.0025 *
expression of SLC25A24+0.0519 * expression of
CAD +0.0847 * expression of GTDC1 +0.0030 * ex-
pression of AMDI1. With the median value of 0.731
as the critical value, two groups were obtained, low-
risk and high-risk. The relationship between the

T I ty pe type

LDHA ‘N :,'f:
sLcasns W6
GTDCH 4
ELOVL1 2

G6PD

CAD

GNPDA1

AMD1

Y TRy 'ﬁ--. i ..«-.. e W»'i'.“::t;ie-'ws“m

False positive rate

status of patients

a Risk == High risk == Low risk C
1.00
£ ors
5
©
Q
[}
5 050
2
4
3 025
@ p<0.001
0.00
6 1 2 3 4 5 6 7 & 9§ 10
Time(years)
¥ Highrisk{ 171 106 45 30 21 13 9 2 2 2 1
o Lowrisk{172 148 81 59 42 27 166 4 1 d
6 1 2 3 4 5 & 7 8 9§ 10 & - ® High risk
Time(years) ° | e low Risk
g w© |
b riskScore ~ -
]
g i
e | (7 T
- S —
T
©
2 0
)
S o
.g c 7 e
T
S < % ° ® Dead
3 © =Y ® Alive
= o © - ° °
£ e o ®
o s o oo %o
© ) —— 5 year (AUC=0.693) < L[] P ]
4 —— 3year (AUC=0.727) s o
1 year (AUC=0.786) 5 'o.o"‘. “
g — 0.5 year (AUC=0.788) 2 o :
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0

50 100 150 200 250 300 350

Fig. 6 Construction of the prognostic model in TCGA cohort. a-b Kaplan-Meier survival analysis and time-dependent ROC analysis for predicting
overall survival for patients in TCGA cohort used by risk score. c-e Heatmap of the eight genes and the distribution of risk score and the survival

Patients (increasing risk socre)




Huo et al. BMC Cancer (2021) 21:31 Page 8 of 15

expression of these 8 genes and macrophage cell infil-  regression analysis reveals the risk score as an inde-
tration is shown in Fig. 5. pendent prognosis predictor for OS (Fig. 7a-b).

Prognostic assessment of the signature in the TCGA

cohort Internal validation of the prognostic signature in the
Kaplan-Meier survival showed poorer overall survival TCGA cohort

(OS) of the high-risk group than the low-risk one Patients were assigned to 20 groups by clinical charac-
(log-rank test p <0.001) (Fig. 6a). The AUC for 1, 3, teristics. The high-risk group exhibited a poorer prog-
and 5-year OS was 0.786, 0.727, and 0.693, respect- nostic outcome in each subgroup than the low-risk one
ively (Fig. 6b). The survival status distribution map based on the Kaplan-Meier analysis. All p values ob-
also showed that mortality increased as the risk score tained from log-rank tests in each subgroup were less
increased (Fig. 6c-e). Univariate and multivariate Cox  than 0.05 (Fig. 7c).

~
a pvalue Hazard ratio : b pvalue Hazard ratio '
Prior_malignancy 0.631 0.612(0.082-4.544) H— Prior_malignancy 0.944 1.079(0.128-9.116) t ~:- J
Cancer_status  <0.001 4.602(1.984-10.673) : | | Cancer_status ~ 0.422 1.832(0.418-8.039) I:—I—I
Gender 0.251 0.653(0.315-1.353) (= Gender 0.668 0.833(0.361-1.921) i
Age 0.230 1.549(0.758-3.165) l:-!—l Age 0.193 1.732(0.758-3.956) I-:—I—l
Histologic Grade 0.202 1.574(0.784-3.164) = Histologic Grade 0.312 1.545(0.664-3.594) I:—I—I
AJCC stage 0.014 2.433(1.193-4.960) —— AJCC stage 0.641 1.225(0.522-2.873) It |
Vascular invasion 0.032 1.890(1.055-3.385) "—'—{ Vascular invasion 0.070 1.699(0.957-3.015) ;—I—|
BMI 0.583 1.219(0.601-2.470) l—:l—| BMI 0.580 0.795(0.352-1.795) I-I:—|
New tumor event 0.003 4.238(1.628-11.035) [N, i New tumor event 0.342 2.198(0.432-11.168) — {
Race 0.010 2.777(1.271-6.067) : —— Race 0.421 1.489(0.565-3.920) I—:—.—I
riskScore <0.001 6.750(3.540-12.871) : k { riskScore <0.001 4.509(2.148-9.463) : _—
I ) e
Hazard ratio Hazard ratio
c age>65 = high risk(n=59) =~ low rsk(n=68) BMI>25 = high risk(n=71) = low risk(n=62) female =~ high risk(n=61) =~ low risk(n=49) New_tumor_event-NO. == high isk{n=71) == low ik(1=91) New_tumor_event-YES = high isk(n=04) = low risk(n=74)

025:

Survival probabilty
Survival probability
Survival probabilty
o
i
&
2
B
‘Survival probabilty
‘Survival probabilty
g 3 3

p<0.001 p=0.012 p=0.002 p<0.001
0.00 0.00 0.00- 0.00- 0.00
T 1z 5 3 55 78 8 M [EERERE) 5% IR RN T F 3 AR T T % 3 1 5 3§ IR
Time(years) Time(years) Time(years) Time(years) Time(years)
age<=65 = high risk(n=112) =~ low risk(n=104) BMI<=25 == high risk(n=86) == low risk(n=77) male < high risk(n=110) = Prior_r - = low risk(n=152) Prior_malignancy~YES = high risk(n=11) = low risk(n=20)

p<0.001 p<0.001 i p<0.001 p=0.008

8

Survival probabilty
8 k3 8 o 8
. ’_’{
.
3
g
2
Survival probability
Survival probability
2 el 8

§ 1 %3 3 567 880 T 1 %33 5675 5D EEEENEEEEIE T TF 5 7 5 5w T T T % E2)
Time(years) Time(years) Time(years) Time(years) Timelyears)

Grade1-2 = high risk(n=90) =~ low risk(n=124) stage I-Il =~ high risk(n1=104) == low isk(n=134) None = high risk(n=76) == low isk(n=112) white == high risk(n=86) == low risk(n=83) asian8blackSindian = high risk(n=53) <~ low risk(n=81)

025 08

p<0.001 p=0.001 p<0.001 £=0.000 p<0.001

020

f
§uwlval gﬂbamlg é‘

000

T 7 2z 53 567 5 50 [BREEREIR] §F 8 5 1 T 1335 35 675 5w ’
K] I 7 EEE I (]
Time(years) Time(years) Time(years) Time(years) Time(years)

Grade3-4 =~ high risk(n=79) =~ low risk(n=45) stage lI-IV == high isk(n=56) == low risk(n=27) Micro-Macro == high risk(n=58) =~ low risk(n=43) TUMOR FREE =~ high risk(n=73) == low rsk(n=106 WITHTUMOR =~ high risk(n=87) == low risk(n=62)

p<0.001 p=0.010 p=0.016 =0.006 <0.001

0.0
A 571 2 3 358 7 8 3w z 3 4 8
Time(years) Time(years) Time(years)

Survival probabilty

8 b 8 3 8
Survival probabilty

8 8 8 3 8
Survival probabilty

8 bl 8 3 8
Survival probability
Survival probabilty

[BERERE] IR LR 5 8 1

75 & T3 5 6 7
Time(years) Time(years)

Fig. 7 Internal validation of the prognostic model in TCGA cohort. a-b Univariate and multivariate regression analysis of the relationship between
the RS and clinicopathological characteristics regarding overall survival in the TCGA cohort (green represents univariate analysis, and red
represents multivariate analysis). € Subgroup survival analysis depending on different clinical features




Huo et al. BMC Cancer (2021) 21:31

External validation of the prognostic signature in ICGC
cohort

A group of 228 patients with complete survival infor-
mation served as an external validation cohort. The
formula mentioned previously was used to calculate
the risk score, and patients were assigned to two
groups with the same cutoff (0.731). Similar to the
TCGA cohort, the high-risk group showed worse sur-
vival as demonstrated by Kaplan-Meier survival ana-
lysis (p <0.01) (Fig. 8a). The AUC for OS at 1, 3, and
5years was 0.775, 0.713, and 0.761, respectively (Fig.
8b). Overall survival was independently predicted by
the risk score as implied by Univariate and multivari-
ate Cox regression analysis (Fig. 9a-b). Then patients
assigned by clinical features (8 subgroups) were sub-
ject to Kaplan-Meier survival analysis, where the
high-risk group exhibited worse OS in each subgroup
(Fig. 9¢). These results further confirmed the robust-
ness of the signature in predicting overall survival of
HCC.

Relationship between risk score and clinical features

According to the results of chi-square test, the
high-risk group has higher histopathological grade,
later clinical stage, greater vascular invasion, and
higher probability of new tumor growth after initial
treatment, and this group usually presents with a
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tumor, which may help to explain the reasons lead-
ing to the poor prognosis of high-risk group (Ta-
bles 1-2).

Relationship between risk score and immune infiltration
The TIMER algorithm showed that the high-risk
group presented greater infiltration of 6 types of im-
mune cells, relative to the low-risk group (Fig. 10a).
Among these immune cells, the risk score has the
strongest correlation with macrophages and neutro-
phils (Fig. 10b). Macrophages and neutrophils were
also estimated to have greater infiltration in the high-
risk group based on the CIBERSORT-ABS algorithm
(Fig. 10c-d). We also found that a variety of immune
checkpoints correlated with the expression of 8 genes
and that the expression of CD274, PDCDI1, and
CTLA4 (Fig. 10e-f) was positively correlated with the
risk score.

GSEA between different risk groups

Five representative upregulated signaling pathways in
the groups with low and high risk, respectively, were
identified by the NES score from TCGA and ICGC
cohorts (Fig. S1). Interestingly, the high-risk group
presents significantly lower metabolic activity than the
low-risk group in the high-risk group in these two inde-
pendent cohorts (Fig. S1, Table S1-2).
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Discussion

Hepatocellular carcinoma (HCC) is a representative type
of primary liver cancer. Despite recent improvements in
treatment, it still holds a low five-year survival [20]. The
mechanisms underlying the initiation and development
of HCC remain to be clarified. In recent years, the
initiation and development of HCC has been shown to
be not only related to the characteristics of the tumor it-
self but also to its microenvironment [3]. Tumor and
stromal cells, various immune inflammatory cells,
chemokines, and cytokines together constitute the tumor
microenvironment [21], and tumor-associated macrophages
(TAMs) play important roles as significant inflamma-
tory cells. As is increasingly shown by several studies,
TAMs promote the generation, metastasis, and im-
munosuppression of HCC [22, 23]. However, how
TAMs promote tumorigenesis, growth, invasion, and
metastasis, how TAMs can lead to immunosuppres-
sion, and how tumor cells interact with TAMs remain
unresolved topics. With the development of genomics
and proteomics, we can better study the molecular

mechanisms by which TAMs influence tumorigenesis
and development, clarify the relationship between
TAMs and tumors, and provide new clues for tumor
biotherapy. It has been reported that the abnormal
metabolism of malignant tumor cells can not only in-
duce changes in the phenotype and function of TAMs
but can also change the metabolic mode of TAMs,
causing them to exert immunosuppressive activity and
to ultimately promote the development and metastasis
of tumors [12]. On that account, exploring the meta-
bolic changes of tumor cells and TAMs and their in-
tricate relationship is necessary.

This study found that the HCC patients with higher
levels of macrophage infiltration had poorer prognosis.
We identified metabolism-related genes with expression
levels closely correlated with macrophage infiltration. A
prognostic signature containing 8 genes was established
using lasso regression analysis, and this signature corre-
lated with the overall survival of HCC patients in TCGA
and ICGC cohorts. The signature was applicable for
people with different clinical features, demonstrating
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Table 1 The chi-square test of the relationship between risk score and clinical features in TCGA cohort

Clinical feature Risk Score c2 P
High risk n(%) Low risk n(%)

Age 0.931 0335
>65 59 (46.46%) 68 (53.54%)
<65 112 (51.85%) 104 (48.15%)

BMI 1.275 0.259
>25 71 (46.41%) 82 (53.59%)
<25 86 (52.76%) 77 (47.24%)

Family cancer history 0.149 0.7
NO 29 (23.58%) 94 (76.42%)
YES 19 (26.03%) 54 (73.97%)

Gender 2.032 0.154
female 61 (55.45%) 49 (44.55%)
male 110 (47.21%) 123 (52.79%)

Tumor status 10.08931 0.001
tumor free 73 (40.78%) 106 (59.22%)
with tumor 87 (58.39%) 62 (41.61%)

New tumor event 4.85 0.028
no 71 (43.83%) 91 (56.17%)
yes 94 (55.95%) 74 (44.05%)

Prior Malignancy 2815 0.093
no 160 (51.28%) 152 (48.72%)
yes 11 (35.48%) 20 (64.52%)

Histologic Grade 14.724 <0.001
G1-2 90 (42.06%) 124 (57.94%)
G3-4 79 (63.71%) 45 (36.29%)

Stage 13911 <0.001
-l 104 (43.70%) 134 (56.30%)
-1V 56 (67.47%) 27 (32.53%)

Vascular tumor 9.806 0.002
none 76 (38.38%) 122 (61.62%)
Micro-Macro 58 (57.43%) 43 (42.57%)

Race 0.003 0.96
white 86 (50.89%) 83 (49.11%)

asian-blank&Indian 83 (50.61%)

81 (49.39%)

that this signature is robust. Additionally, the signature
could be used as an independent predictor for overall
survival of HCC as confirmed by Cox analysis. The im-
mune microenvironment of different risk groups was
also evaluated; immune infiltration has previously been
reported to be correlated with clinical outcome for many
kinds of cancer [24]. In this study, we found that the
high-risk patients with unfavorable prognosis had higher
levels of macrophage infiltration, which is consistent
with the results of Li [25]. In addition, compared with

the low-risk group, the high-risk one exhibited a higher
infiltration level of Tregs and neutrophils; previous lit-
erature also demonstrated the negative correlation of
prognosis in HCC with the infiltration of these two im-
mune cell types [26, 27]. However, we also found that
the infiltration level of B cells, CD4 T cells, and CD8 T
cells was higher in the high-risk group than in the low-
risk group using the TIMER database, which contradicts
previous studies [28-30]. The two groups showed no
difference in the infiltration of these three immune cell
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Table 2 The chi-square test of the relationship between risk
score and clinical features in ICGC cohort

Clinical feature Risk Score A P
High risk n(%) Low risk n(%)

Age 0899 0343
>65 61 (43.57%) 79 (56.43%)
<65 44 (50%) 44 (50%)

Gender 0001 0978
female 28 (45.91%) 33 (54.10%)
male 77 (46.11%) 90 (53.89%)

Prior Malignancy 0292 0589
no 93 (46.73%) 106 (53.27%)
yes 12 (41.38%) 17 (58.62%)

Stage 9.806  0.002
-l 53 (37.32%) 87 (62.68%)
-1V 52 (59.09%) 36 (40.91%)

types as found in the CIBERSORT-ABS method. PDL1
(CD274), PDCD1, and CTLA4 are three immune check-
point markers commonly analyzed in the clinic [31], and
these proteins may be used by tumors to escape immune
surveillance by controlling cell cycle progression and
extracellular and intracellular signals. The positive cor-
relation of the risk score with the expression levels of
PDL1 (CD274), PDCD]1, and CTLA4 was found, suggest-
ing that metabolic reprogramming genes may have a sig-
nificant effect on the tumor immune microenvironment.
Interestingly, we found that the high-risk group had sig-
nificantly lower activity in metabolic pathways than the
low-risk group in two independent cohorts based on
GSEA. This finding is consistent with the improved
prognosis for the metabolism subgroup of HCC reported
by Gao et al. [15].

Lactate dehydrogenase A (LDHA) is a metabolic en-
zyme that can produce lactate in human body, and it has
become an important indicator of clinical tumor diagno-
sis. It has been reported that LDHA can mediate tumor
immune escape by inhibiting the activity of T cells and
NK cells [32]. LDHA expression levels are positively cor-
related with macrophage abundance in HCC, which also
provides a clue for the further study of the tumor im-
mune mechanisms regulated by LDHA. The human sol-
ute carrier protein 25 family is a superfamily of human
solute carrier proteins, which play a role in molecular
transport, oxidative phosphorylation, and iron metabol-
ism related to urea and the citric acid cycle. Recently,
several studies have shown that SLC25 family members
can affect tumor initiation and development [33]. This
study demonstrates for the first time the correlation
among SLC25A24, HCC prognosis, and macrophage

Page 12 of 15

infiltration. Glycosyltransferase is crucial in glycosyla-
tion; it catalyzes the transfer of an active glycosyl
group from a glycosyl donor to a glycosyl receptor
and forms glycosidic bonds [34]. David Kessel et al.
found that the levels of three plasma glycosyltransfer-
ases could affect cancer patients’ neoplasia, especially
for patients with tumors metastasizing to the liver
[35]. However, the mechanism of glycosyltransferase-
like domain containing 1 (GTDC1) in HCC remains
to be elucidated. After HCC leads to the unlimited
proliferation of hepatocytes, the speed of development
begins to slow. The most common metabolic
phenomenon observed in HCC cells is an increased
glycolysis rate, which is known as the Warburg effect
[36]. Glucose-6-phosphate dehydrogenase (G6PD) is
an important metabolic enzyme in glycolysis, and it is
correlated with the proliferation and apoptosis of
HCC [37]. This study is the first to identify correl-
ation between 6-phosphate dehydrogenase and the
abundance of tumor macrophages, which will provide
a new direction for further exploration of the mech-
anism of G6PD in regulating HCC development. The
rapid growth of tumors also depends on the poly-
amine content in cells. The abnormal metabolism of
polyamine can also cause malignant transformation of
cells [38]. The metabolism of polyamine has attracted
special attention in the tumor research field. Known
as SAMDC, S-adenosylmethionine decarboxylase 1
(AMD1) is the rate limiting enzyme, which regulates
polyamine metabolism [39, 40]. In lymphoma, AMD1
acts as a tumor suppressor gene by regulating the
posttranslational modification of eukaryotic translation
initiation factor 5A (eIlF5A) [39]. In prostate cancer,
AMDI1 regulates the mTOR pathway to influence
tumor cell proliferation, thus promoting tumor devel-
opment [41]. AMDI1 also remarkably affects breast
cancer initiation and development [42]. However, the
expression and role of AMDI1 in HCC are not com-
monly reported. The role of the remaining three
genes, CAD, GNPDA1, and ELOVLI, in tumors re-
mains unclear.

Our study is the first attempt to identify the metabolic
genes with prognostic significance for HCC from the
perspective of immune infiltration. Our results show a
significant relationship between metabolic reprogram-
ming and the tumor immune microenvironment, and
metabolic disorders may affect tumor development by
mediating tumor immune regulation. These results pro-
vide theoretical support for exploring the nonmetabolic
mechanisms of metabolic genes in the future. However,
there are some limitations in our research. We have not
performed further experiments to explore the immune
mechanisms of these metabolic genes, but we will ad-
dress this in the future work. And as for the HCC
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immune infiltration cell estimated by CIBERSORT-ABS method (red represents high-risk group, blue represents low-risk group). @ Analysis of
coexpression of 8 genes and immune checkpoints (f) The comparison of expression levels of CD274 (PDL1), PDCD1, and CTLA4 between different
risk groups and correlation analysis between risk score and the expression levels of CD274 (PDL1), PDCD1, and CTLA4
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patients who are mostly diagnosed by imaging modalities
and treated with nonsurgical methods, the value of this
model may be limited, because our model needs to
quantify the expression levels of eight specific genes in
tumor tissues. Our research preliminarily demonstrates
the feasibility of exploring the immune activity of tumors
from the perspective of metabolic reprogramming.
Therefore, it is necessary to continue performing multi-
center prospective research on this subject.

Conclusion

To evaluate the prognosis of HCC, our study established
a novel risk score by examining how tumor macrophages
correlated with metabolic genes. Considering the hetero-
geneity of HCC, the prognostic evaluation of HCC may
be improved by the prognostic model. Our study also
provides theoretical support for further elucidating the
complex relationship between metabolic reprogramming
and tumor immune mechanisms.
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