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Abstract

Background: Human CD133+ hematopoietic progenitor cells (HPCs) are a specific subset of cells that can regulate
tumor malignancy. However, the mechanism by which CD133+ HPCs affect the malignancy of human breast
cancer has not been reported.

Methods: CD133+ HPCs were isolated and purified from human umbilical cord blood (UCB). We used in vitro
culture of MCF-7 and MDA-MB-231 cell lines, and MCF-7 and MDA-MB-231 cells in nude mice to evaluate whether
CD133+ HPCs affected the apoptosis, proliferation, invasion and epithelial mesenchymal transition EMT of breast
cancer cells.

Results: Co-culture with CD133+ HPCs, but not UCB CD133- cells, promoted the proliferation of human breast
cancer MCF-7 and MDA-MB-231 cells, accompanied by reducing in vitro spontaneous apoptosis. Co-administration
of these two lines with CD133+ HPCs significantly enhanced the growth of implanted breast cancer in vivo.
Furthermore, co-culture with CD133+ HPCs, enhanced the invasion of breast cancer cells, N-cadherin and Vimentin
expression, but reduced E-cadherin expression in breast cancer cells.

Conclusions: Our study demonstrated that CD133+ HPCs enhance the malignancy of breast cancer cells by
attenuating spontaneous apoptosis and promoting the process of epithelial mesenchymal transition. These findings
may provide new insights into the role of human CD133+ HPCs in breast cancer pathogenesis. Therefore, CD133+
HPCs may be a new therapeutic target for inhibiting the progression of breast cancer.
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Background proliferation and invasion capacities to enhance malignancy.

Breast cancer metastasis is a significant cause of cancer-
related death in women. Cancer metastasis is a dynamic
process and is regulated by many factors. During cancer
metastasis, malignant tumor cells are subjected to a series of
changes, including alterations in cytoskeleton, morphology,
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It is notable that malignant tumor cells often undergo
epithelial mesenchymal transition (EMT), character-
ized by loss of epithelial markers (e.g., E-cadherin)
and acquisition of mesenchymal N-cadherin and
Vimentin expression. However, it is unclear how
these factors regulate the EMT process and metastasis
in breast cancer [1, 2].

The development of metastases is influenced by an intri-
cate interaction between breast cancer cells and the
microenvironment [3]. Prior work has shown that cells
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existing in the metastatic microenvironment are recruited
from bone marrow derived cells [4]. In particular, the
bone marrow-derived hematopoietic progenitor cells
(HPC) are involved in the initiation of metastases [5].
HPCs are primitive cells predominantly in hematopoietic
tissues, such as the bone marrow and umbilical cord blood
(UCB) [6-8]. HPCs can proliferate and differentiate into
various kinds of blood cells. Human HPCs can be
recognized by their surface CD133 and CD34 expression
[9-13]. The early developing human CD133+ HPCs are a
subpopulation of cells in the bone marrow, fetal liver,
UCB and peripheral blood [14—18]. Functionally, CD133+
HPCs have stronger proliferation and migration potential
than CD133- cells, perhaps, representing more primitive
hematopoietic cells [19, 20]. A recent study suggested that
CD133+ human umbilical hematopoietic progenitor cells
may induce proliferation or metastasis of colorectal cancer
cells [21]. However, few experiments have addressed the
role of HPCs in breast cancer. Furthermore, clinical
studies indicate that transplantation with hematopoietic
stem cells after high dose of chemotherapies benefits
patients with advanced breast cancer [22, 23]. However,
there is little information on how human HPCs regulate
the malignancy of breast cancer.

UCB can be obtained easily and is an excellent alterna-
tive source of HPCs. In this study, we isolated human
CD133+ HPCs and CD133- cells from human UCB and
tested whether CD133+ HPCs modulated the malignancy
of breast cancer cells in vitro and in vivo to explore the
potential mechanisms involved in metastasis.

Methods

Isolation of CD133+ HPCs

The Human Ethics Committee of the First Affiliated
Hospital, College of Medicine at Xi'an Jiaotong University
approved the experimental protocol (2017-041). Written
informed consent was signed the parents of individual
newborns. Fresh and healthy human UCB samples (about
60-100 ml) were collected from five human newborns in
our hospital. The CD133+ HPCs were isolated by immu-
nomagnetic beads and Magnetic Activated Cell Sorting
(MACS) column (Mitenyi Biotec, Germany) according to
the manufacturer’s instructions. Briefly, the mononuclear
cells in the UCB samples were isolated by density gradient
centrifugation at 2000rpm for 25 mins using human
lymphocyte separation solution. After being washed, the
collected mononuclear cells (1 x 10% cells/sample) in 5 g/
ml BSA (Merck, Germany) and 2 mmol/ml EDTA buffer
(Promega, USA) were blocked with anti-CD16/anti-CD32
(Promega, USA) and stained with anti-human CD133
immunomagnetic beads, followed by loading into the
Macs column. During column washing, the flow-through
CD133- cells were collected and the bound CD133+
HPCs were eluted. The CD133+ and CD133- cells
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were stained with PE-anti-CD133 (MBS851590,
MyBioSource, California, USA) and FITC-anti-CD34
(MBS850595, MyBioSource, California, USA). The
percentages of CD133 + CD34+ cells were analyzed by
flow cytometry, the remaining cells were designated
CD133- human umbilical cord blood cells (HUCBCs).
The isolated CD133 +CD34+ HPCs were routine-
cultured in IMDM (Novagen, USA) medium contain-
ing 10% of fetal bovine serum (FBS, MyBioSource),
and semi suspended in a 37°C / 5% CO, incubator.
Cell growth was monitored daily.

Culture of breast cancer cells

MCEF-7 and MDA-MB-231 breast cancer cell lines were
purchased from Shanghai cell bank of the Chinese
Academy of Sciences. The cells were cultured with
DMEM (MCLAB, USA) containing 10% newborn
bovine serum (MCLAB, USA) under the conditions of
37°C and 5% CO,. 0.25% trypsin (MCLAB, USA) was
used to digest and passage. Fresh medium was replaced
every 2-3 days.

Cell proliferation assay

The effect of CD133+ HPCs on the proliferation of
breast cancer cells was quantified by 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assays [24]. MCF-7 and MDA-MB-231 breast cancer
cells in logarithmic growth period were inoculated in 96
well plates, 2 x 10® breast cancer cells for each group.
After 12h of culture, CD133+ HPCs and CD133-
HPCs were added to the experimental group and the
negative control group in a 20:1 proportion of breast
cancer cells to HPCs. 24 h later, each well was dosed
with 200 pL serum-free medium DMEM and 20 pl 5
mg/ml MTT (MCLAB, USA). After 4h, 150 uL of
DMSO (MCLAB, USA) was added to each well and
incubated at room temperature for 10 min, oscillated
with a micro-oscillator for 15 min, and optical density
value was recorded at 570 nm with a flow cytometer
instrument. All measurements were performed in
triplicate.

Transwell invasion assay

We examined the influence of CD133+ HPCs on breast
cancer cell invasion by Transwell invasion assay [25].
Briefly, the upper and lower chambers of a Transwell insert
are separated by polycarbonate microporous membrane
(8 um pore size), which is coated with Matrigel (Thermo
Scientific, USA) on the upper chamber surface and dried at
room temperature. 1 x 10> breast cancer cells were added
to the upper chamber. CD133+ HPCs and CD133- HPCs
were added to the lower chamber of the experimental
group and the negative control group. The cell number
ratio of breast cancer cells to HPCs was 20:1. After
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culturing at 37°C for 24h, the non-invasive cells were
wiped off with a cotton swab. The filter membrane was
fixed with 4% paraformaldehyde solution (Thermo
Scientific, USA) for 30 min, and 0.01% crystal violet dye
solution was added for a 20 min incubation. The migrating
cells were photoimaged and counted under the microscope.
All measurements were performed in triplicate, and the
experiments were repeated three times independently.

Cell apoptosis assay

We tested the role of CD133+ HPCs in spontaneous
apoptosis of MCF-7 or MDA-MB-231 cells by flow
cytometry [26]. The cancer cells were cultured alone
(blank control), or together with CD133+ HPCs or
CD133- HUCBCs at a proportion of 20:1 in the upper
and lower chambers of the Transwell insert (0.4 pm pore
size), respectively, for 72h. The cancer cells (3 x 10°
cells/tube) were tested for apoptosis by flow cytometry
after staining with 5uL Annexin V-FITC (Promega,
USA) and 10 pL Propidium iodide (PI, MyBioSource).
The apoptotic FITC+ and FITC+PI+ cells were quanti-
fied and the experiment was repeated three times.

Western blotting

The Transwell (0.4 um) indirect co-culture method and
groups were described as above. The MCF-7 and MDA-
MB-231 breast cancer cells were digested with 0.25%
trypsin, and 250 pL RIPA lysate was added, incubated on
ice for 10min, and centrifuged at 4°C for 20 min.
Following centrifugation, the supernatant was collected
and the protein concentration of each group of samples
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was detected on the spectrophotometer. A 10% separ-
ation gel and 5% concentrated gel were prepared, a
20 pg protein was mixed with 2 x SDS sample buffer in a
1:1 ratio. Samples were added to the gel followed by
electrophoresis (concentrating gel 80V; separating gel
100 V). The gel interlayer was removed and the target
protein and [-actin were isolated according to molecular
weight. The proteins were transferred to a PVDF mem-
brane followed by soaking the membrane in methanol.
The membrane was placed in 5% skimmed milk
powder prepared by TBST for non-specific antigen
blocking, and then Rabbit anti rat E-cadherin
antibody (Merck, Germany, diluted in 1:2000), Rabbit
anti rat Vimentin (Merck, Germany, diluted in1:500),
Rabbit anti rat N-cadherin antibody (Merck, Germany,
diluted in 1:500), or Rabbit anti rat B-actin antibodies
were added (Merck, Germany, diluted in 1:2000). The
membrane was washed three times with TBST, then
Sheep anti rabbit IgG (Merck, Germany, diluted in 1:
5000) labeled by HRP (Merck, Germany) was added
for incubation followed by 3x TBST wash. After the
film dried slightly, it was incubated with supersignal
chemiluminescent reagent (Merck, Germany). The
membrane was placed in a dark box and exposed
together with the X-ray film (Merck, Germany). The
exposure time was about 1min. X-light was photo-
graphed after developing and fixing, and the gray
value of the strip was analyzed by gel image analysis
software IMAGE-].All measurements were performed
in triplicate, and the experiments were repeated three
times independently.
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Fig. 1 Isolation and identification of human CD133 + CD34+ HPCs. Flow cytometry analysis showing the purity of CD133+ HPCs (a); and CD133-
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Fig. 2 CD133+ HPCs enhances breast cancer cell proliferation and reduces their apoptosis in vitro. Data show representative flow cytometry
charts, or present the mean + SD of each group from three separate experiments. a The proliferation of cells; b The images of apoptotic cells;
¢ Quantitative analysis of apoptotic cells. *P < 0.05, compared with CD133- HUCBCs group
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Fig. 3 CD133+ HPCs promotes breast cancer growth in vivo. Balb/c
nude mice were implanted subcutaneously with MCF-7 or MDA-MB-
231 cells alone or together with CD133- HUCBCs or CD133+ HPCs
(20:1) and the grown tumor volumes were monitored. a Data are
present the mean + SD of each group (n=8); b Tumor formation of
MCF-7 cells in vivo; € Tumor formation of MDA-MB-231 cells in vivo;
d Representative histology (H&E) for the MCF-7 tumor tissue (x 400);
e Representative histology (H&E) for the MDA-MB-231 tumor

tissue (x 400)

Animal experiment

Six-week-old female BALB/c nude mice were obtained
from Silaike Laboratory Animal Co., Ltd.,Shanghai,
China. The protocol was authorized by the Animal Care
and Use Committee of Xi'an Jiaotong University. In
order to evaluate whether CD133+ HPCs affected the
growth of breast cancer in vivo, a 1x 10’ suspension
cells of MCF-7 and MDA-MB-231 breast cancer cells
were taken respectively, mixed with CD133+/- cells, and
inoculated to the nude mice (n = 8 in each group). In the
experimental and negative control group, breast cancer
cells and CD133+/- cells were added in a 20:1 ratio. For
the negative control group, breast cancer cells and
CD133- HPCs cell suspensions were added in a 20:1
ratio. For the blank control group, only breast cancer
cells were inoculated. Tumor growth was monitored
every 2 days for 30 days after inoculation, and the tumor
volume (volume = lengthxwidth2 x 0.5) was measured.
Each group of eight mice were housed in separated
individual standard cleaned cages under automatically
controlled air conditioning system with temperature
(22 £ 2°C), humidity (about 60%), and lighting (12:12-
h light—dark cycle). Diet and sterilized water are
provided in the experiments. At the endpoint, mice
were euthanized by inhalation of CO, followed by
cervical dislocation. On the 30th day, mice were sacri-
ficed and the tumor tissues were collected, stained
with hematoxylin and eosin (H&E) and observed
under an optical microscope.

Statistical analysis

Data are expressed as mean+SD. We statistically
analyzed the significance among groups by one way
ANOVA and between groups by Student’s ¢ test using
the SPSS 22.0 software. A P-value of <0.05 was defined
as statistical significance.

Results

Isolation and characterization of CD133+ HPCs from
human umbilical cord blood

To determine the role of CD133+ HPCs in the malig-
nancy of breast cancer cells, we isolated mononuclear
cells from five UCB samples and obtained mononuclear
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cells of (3.07 +0.63) x 10”/ml. Following magnetic bead-
based purification, we collected (2.91 +0.6) x 10°/ml
HPCs, accounting for (0.95+0.011) % of all mono-
nuclear cells. Flow cytometry analysis indicated that the
purity of CD133 + CD34+ HPCs was (83 + 12) % (Fig. 1a
and b). Hence, the isolated CD133 + CD34+ HPCs had a
high purity.

CD133+ HPCs promote breast cancer cell proliferation
and inhibit their apoptosis in vitro

Breast cancer cells display their malignancy by rapid
proliferation and potent invasion. Next, we examined
the effect of CD133+ HPCs on the proliferation of breast
cancer cells in vitro. We cultured MCF-7 or MDA-MB-
231 cells alone or together with CD133+ HPCs or
CD133- HUCBGC: at a cell number ratio of 20:1 for vary-
ing time periods, and we quantified breast cancer cell
proliferation longitudinally by MTT assay. As shown in
Fig. 2a, we observed co-culture with CD133+ HPCs sig-
nificantly promoted the proliferation of MCF-7 and
MDA-MB-231 cells in a time-dependent manner. While
there was no significant difference in the growth rate
between the cells cultured alone or co-cultured with
CD133- HUCBCs in each cell line. Subsequently, we
tested whether co-culture with CD133+ HPCs could
modulate the spontaneous apoptosis of breast cancer
cells by flow cytometry (Fig. 2b and c). We found that
the percentages of apoptotic MCF-7 or MDA-MB-231
cells following co-culture with CD133+ HPCs (15% + 3,
9% + 3.8 respectively) were significantly lower than that
of culture alone or co-culture with CD133- HUCBCs
(20% + 3.5, 16%+3.2 respectively; P<0.05 for all).
Hence, CD133+ HPCs significantly promoted breast
cancer cell proliferation and inhibited their spontaneous
apoptosis in vitro.

CD133+ HPCs enhance the growth of breast cancer

in vivo

We further evaluated the effect of CD133+ HPCs on the
growth of breast cancer in vivo. Following inoculation of
MCE-7 or MDA-MB-231 cells alone, or together with
CD133+ HPCs or CD133- HUCBCs at a ratio of 20:1,
we monitored the dynamic growth of implanted tumors
by measuring their volumes (Fig. 3a). At day 30, co-
administration of breast cancer cells with CD133+ HPCs
(MCF-7 1.43cm® +0.15, MDA-MB-231 1.76 cm® +0.13)
significantly increased tumor volumes when compared
to that of the mice with breast cancer alone and the cells
mixed with CD133- HUCBCs (MCF-7 0.83cm® +0.12,
MDA-MB-231 1.03cm® +0.16; P<0.05 for all). In
contrast, there were no significant difference in tumor
size between the mice with breast cancer alone and the
cells mixed with CD133- HUCBCs. Thus, CD133+ HPCs
enhanced the growth of implanted breast tumors
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in vivo. Histologic examination of two types of tumors
are shown in Fig. 3b and c. The parenchymal cells in the
cancer tissue were much more than those in the stroma,
and the cancer cells were arranged in a strip like
manner, in which scattered tumor cells were observed.
The tumor cells were irregular with a large volume and
large nucleus. The nucleoli were clear and pleomorphic.
The pathological diagnosis was invasive ductal carcinoma
(Fig. 3d and e).

CD133+ HPCs promote breast cancer cell invasion in vitro
Breast cancer cell invasion is one of the malignant
characteristics. To understand the role of CD133+
HPCs, we tested whether CD133+ HPCs could modulate
breast cancer cell invasion by Transwell invasion assays.
Following culture of each type of breast cancer cells
alone, with CDI133+ HPCs or CD133- HUCBCs
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Fig. 4 CD133+ HPCs enhances breast cancer cell invasion in vitro.
The Transwell assay was conducted and the invasive breast cancer
cells were stained, photoimaged and counted. a A representative
image of the invasive cells (magnification x 400). b Quantitative
analysis of invasive cells. *P < 0.05, compared with CD133-

HUCBCs group
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Fig. 5 CD133+ HPCs promotes the EMT process in breast cancer cells. Breast cancer cells were culture alone or co-culture with CD133- HUCBCs
or CD133+ HPCs in Transwell plates, the relative levels of E-cadherin, N-cadherin and Vimentin to the control 3-actin expression in breast cancer
cells were quantified by Western blot. Data are representative images or present as the mean + SD of each group from three separate
experiments. a Western blot analysis. b Quantitative analysis of each protein expression. *P < 0.05, compared with CD133- HUCBCs group

separately in Transwell chambers for 24 h, we found that
the numbers of invaded cells that had been cultured
with CD133+ HPCs (MCF-7160 cells+15, MDA-MB-
231222 cells+5) were significantly greater than that of
the cells cultured alone or with CD133- HUCBCs
(MCE-7 26 cells+11, MDA-MB-231 72 cells+9; P<0.05
for all, Fig. 4a and b) in two different lines. We did not
observe any significant difference in the numbers of
invaded cells between the cell cultured alone and those
with CD133- HUCBCs in our experimental system.
Therefore, CD133+ HPCs enhanced breast cancer cell
invasion in vitro.

CD133+ HPCs enhances the process of EMT in breast
cancer cells

The EMT process is associated with invasion and
metastasis of cancers. Therefore, we further explored
whether CD133+ HPCs could affect the EMT process in
breast cancer cells to promote invasion by quantifying
the relative levels of E-cadherin, N-cadherin and
Vimentin expression using Western blot assays. The
results showed that the expression of E-cadherin in
MCEF-7 and MDA-MB-231 breast cancer cells co-
cultured with CD133+ HPCs (0.15+0.08, 0.3+0.11
respectively) was significantly lower than that co-
cultured with CD133- HPCs (0.51+0.15, 0.8+0.17
respectively) and in breast cancer cells alone (0.49 + 0.13,
0.83+0.11 respectively, P <0.05). The expression of N-
cadherin in MCF-7 and MDA-MB-231 breast cancer
cells co-cultured with CD133+ HPCs (1.8 £0.23, 2.3 +
0.27 respectively) was significantly higher than that of
co-cultured with CD133- HPCs (0.8 +0.19, 1.1+0.17
respectively) and single breast cancer cells (0.9 +0.18,
1+£0.19 respectively; P<0.05). The expression of
Vimentin in MCF-7 and MDA-MB-231 breast cancer cells
co-cultured with CDI133+ HPCs (1.5+0.19,1.3+0.11
respectively) was significantly higher than that of co-
cultured with CD133- HPCs (0.7 + 0.11, 0.5 + 0.13 respect-
ively) and single breast cancer cells (0.6 + 0.09, 041+ 0.16
respectively; P < 0.05). We found that there were similar
levels of E-cadherin, N-cadherin and Vimentin expres-
sion in the cells cultured alone or together with
CD133- HUCBCs (Fig. 5a and b). In comparison with
the control, significantly down-regulated E-cadherin
expression, but up-regulated N-cadherin and Vimentin
expression were observed in the cells co-cultured with
CD133+ HPCs (P<0.05 for all). Such data indicated

that CD133+ HPCs promoted the EMT process in
breast cancer cells.

Discussion

VEGFR1+ HPCs can promote tumor metastasis in
rodent models of cancers [5]. In this study, we purified
human CD133 + CD34+ HPCs from UCB.

We found that co-culture of CD133+ HPCs, but not
CD133- HUCBCs, remarkably strengthened breast cancer
cell proliferation and invasion, accompanied by attenuating
spontaneous apoptosis in vitro and enhanced breast tumor
growth in vivo. The lack of modulatory effect of CD133-
HUCBCs suggests that CD133 expression is an important
marker for human HPCs. The increased proliferation and
invasion as well as tumor growth in vivo by CD133+ HPCs
indicated that CD133+ HPCs enhanced the malignancy of
different types of breast cancers. Given that CD133+ HPCs
enhanced breast cancer cell invasion in Transwell plates, the
promoting activity of CD133+ HPCs may be mediated by
secreting soluble oncogenic factors. Future studies are neces-
sary to investigate which soluble molecules CD133+ HPCs
secrete and how they enhance the malignancy of breast
cancers. At the same time, the molecular and cellular
changes might be induced in breast cancer cells in the pres-
ence of CD133+ HPCs have not been uncovered,the follow-
up experimental plan of our research group is to identify
possible pathways of action and study the changes of
pathway which effected by the antibodies that act on
CD133 + targets.

It is well known that the EMT process is associated
with cancer invasion and metastasis [27]. In this study,
we found that co-culture of CD133+ HPCs, but not
CD133- HUCBG: significantly decreased E-cadherin, but
increased N-cadherin and Vimentin expression in breast
cancer cells, indicating that CD133+ HPCs promoted
the EMT process in breast cancer cells. The increased
EMT process by CD133+ HPCs may also mechanistic-
ally explain how CD133+ HPCs enhance the invasion of
breast cancer cells.

Conclusions

In summary, we determined that CD133+ HPCs
remarkably strengthened the malignancy of breast
cancer cells by enhancing their proliferation and inva-
sion, accompanied by attenuating spontaneous apop-
tosis in vitro and enhancing breast tumor growth
in vivo. Furthermore, CD133+ HPCs increased the
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EMT process in breast cancer cells. Given that
CD133+ HPCs can circulate in peripheral blood, such
type of cells may contribute to the pathological
process of breast cancer. Therefore, CD133+ HPCs
may be new targets for therapies against breast cancer
metastasis and invasion.
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