Ju et al. BMC Cancer (2021) 21:243

https://doi.org/10.1186/512885-020-07595-6 B M C C ancer

RESEARCH ARTICLE Open Access

CT based automatic clinical target volume ®
delineation using a dense-fully connected
convolution network for cervical Cancer
radiation therapy

Zhongjian Ju'", Wen Guo®*', Shanshan Gu'", Jin Zhou®, Wei Yang', Xiaohu Cong', Xiangkun Dai', Hong Quan?,
Jie Liu*, Baolin Qu'" and Guocai Liu®

Check for
updates

Abstract

Background: It is very important to accurately delineate the CTV on the patient’s three-dimensional CT image in
the radiotherapy process. Limited to the scarcity of clinical samples and the difficulty of automatic delineation, the
research of automatic delineation of cervical cancer CTV based on CT images for new patients is slow. This study
aimed to assess the value of Dense-Fully Connected Convolution Network (Dense V-Net) in predicting Clinical
Target Volume (CTV) pre-delineation in cervical cancer patients for radiotherapy.

Methods: In this study, we used Dense V-Net, a dense and fully connected convolutional network with suitable
feature learning in small samples to automatically pre-delineate the CTV of cervical cancer patients based on
computed tomography (CT) images and then we assessed the outcome. The CT data of 133 patients with stage 1B
and lIA postoperative cervical cancer with a comparable delineation scope was enrolled in this study. One hundred
and thirteen patients were randomly designated as the training set to adjust the model parameters. Twenty cases
were used as the test set to assess the network performance. The 8 most representative parameters were also used
to assess the pre-sketching accuracy from 3 aspects: sketching similarity, sketching offset, and sketching volume
difference.

Results: The results presented that the DSC, DC/mm, HD/cm, MAD/mm, AV, SI, Incl and JD of CTV were 0.82 +0.03,
428+ 235, 1.86 £048, 252 + 040, 0.09 + 0.05, 0.84 + 0.04, 0.80 + 0.05, and 0.30 + 0.04, respectively, and the results
were greater than those with a single network.

Conclusions: Dense V-Net can correctly predict CTV pre-delineation of cervical cancer patients and can be applied
in clinical practice after completing simple modifications.
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volume
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Background

Cervical cancer is the second most common cancer in
Chinese women and ranks fourth for both incidence and
mortality in women worldwide, and its morbidity and
mortality have revealed an upward inclination in recent
years [1]. Radiotherapy is an important treatment for
prolonging the life of cervical cancer patients. Radical
radiotherapy is suitable for patients with stage I and
stage II and whose physical conditions are not suitable
for surgery. Adjuvant radiotherapy is effective for pa-
tients with intermediate and high risk factors found in
postoperative pathological examination. The precise de-
lineation of CTV plays an important role in the radio-
therapy process, which is also very important for the
design, assessment, and optimization of radiotherapy
planning and directly impacts patients’ prognosis. Cur-
rently, the work of delineating CTV is mainly done
manually by radiotherapists based on three-dimensional
CT images. This is time-consuming, labor-intensive, and
very boring. Many researchers try to use new methods,
such as k-nearest neighbor [2], ATLAS [3], PET-ATLA
AS [4], to achieve automatic delineation.

Recently, the use of deep learning for automatic lesion
identification has attracted much attention and signifi-
cant progress has been made in nasopharyngeal carcin-
oma [5, 6], rectal cancer [7], and other diseases [8, 9].
The CTV area of cervical cancer includes not only im-
aging visible lesions, but also subclinical lesion areas and
possible invasion areas. Even in the same stage, the
range of invasion and organ filling are different, which
will form individual differences, which will affect the
range of delineation. As a result, the research progress in
this field is slow, and no relevant results have been re-
ported in previous studies.

Therefore, in this study, we used Dense V-Net to de-
lineate cervical cancer CTV based on CT images auto-
matically to assess the value of Dense V-Net in
predicting CTV pre-delineation inpatients with cervical
cancer.

Methods

Data collection

From May 2016 to June 2019, data were collected from
patients with postoperative cervical cancer that were ad-
mitted to the Department of Radiotherapy in the First
Medical Center of the Chinese People’s Liberation Army
General Hospital. This study was conducted according
to the Declaration of Helsinki and the ethics committee
of our hospital approved this study. All patients signed
informed consent.

According to Radiation Therapy Oncology Group
(RTOG) CTV consensus definition [10], the CTV range
comprises of the uterine body, whole vagina, cervical le-
sions, bilateral uterine parasites, as well as common iliac,
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internal iliac, external iliac obturator, and presacral
lymphatic drainage regions. The CT images of all pa-
tients were obtained using the SIMENS SOMATOM
Definition AS large-aperture CT machine. The scanning
range was from the top of the liver to the lower end of
the perineum. The number of layers was 85-120 and the
layer thickness was 5mm. The scanning parameters
were 120KV tube voltage, 400mAs tube current, and the
reconstructed voxel value was 512*512* k. During the
CT scan, the patient was setup in a supine position and
fixed with a thermoplastic phantom.

Dense V-net for segmentation
Dense V-Net [11] is a deep learning network that inte-
grates two deep learning models of Dense Net [12, 13]
and V-Net [14, 15]. The structure is shown in Fig. 1. Its
three main features are the use of dense connection,
horizontal connection, and fusion convolution. Firstly,
the input of the dense connection convolution x; layer
contains all the outputs of the previous xg, Xy, ... ... ) Xp1
layers. Each layer of the network can directly approach
the feature maps of the previous layers, involving the
loss function and the gradient of the original input, which
assists in deepening the network structure and improves
the utilization rate of the image features of each layer. The
use of dropout clarifies the image information taken for
each dense connection and the suitable training outcome
can be achieved by using fewer parameters without
relearning unnecessary feature mapping between the
layers. The use of BN (Batch Normalization) also reduces
the over-fitting of the training set with fewer data. Sec-
ondly, the horizontal connection joins the convolutional
layer through a kernel with assize of 5*5*5 voxels and con-
volution up-sampling and down-sampling layer with 2*2*2
voxel-wide kernels applied with stride 2. This operation
can achieve the effect of improving the output image de-
tails, deepening the image contour, and shortening the
network fusion time while correctly predicting the image
structure. The residual connections are used between con-
volution operations to break network symmetry and en-
hance the sensitivity of gradient calculations. In the final
prediction, a convolution kernel with a volume of 1 x 1 x 1
is used to perform the convolution operation, the soft-
max layer uses the Dice coefficient as the new objective
function, and finally outputs the probabilistic segmenta-
tion image of the foreground and background regions.
Thirdly, the convolution kernel of 3*3*3 is used in the fu-
sion convolutional layer and the rectified linear unit
(ReLu) is applied as the activation function so that the
image features are fully utilized, and the segmentation
outcome is enhanced. Finally, the output of the same size
as the original input image is obtained [16].

The fusion network includes the benefits of two single
networks. The structure of Dense Net ensures that each
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Fig. 1 Dense V-Net structure diagram

layer of the image has the maximum information flow so
that the parameters can be used by all the following
layers, therefore, improving the utilization rate of image
features and quickening the convergence of the target
function while reducing unnecessary information. Per-
forming convolution and concatenation operations on
three resolution images facilitate multi-scale features ex-
traction and add more details and global data to the re-
sults. The structure of V-Net confirms that the output
prediction can reserve more image details and maintain
the correctness of the image prediction in the case of a
small training set. When the network deepens, the re-
sults of a deep network are still controlled by the

expanding receptive field, which has a significant result
in reducing over-fitting.

The experimental methods

Since the CT image contains a large amount of vacant
background and the research focus area is located in the
middle of the space, the CT images should be prepro-
cessed. First, the cross-section of the CT image is inter-
cepted at the center of the 320*320 size and resampled
by bilinear interpolation to decrease the resolution of
the entire training sample to 256*256*k. This operation
enhances the proportion of effective data in a single
training data, reduces the volume of the sample, and
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achieves the purpose of enhancing training precision
and reducing training time.

Then, a data enhancement process should be per-
formed by sampling and rotating the training samples:
we randomly extracted 64 consecutive layers of CT im-
ages of each case to attain 10-20 training samples and
then we rotated the samples at random angles within +
10 degrees along the x, y, and z axes, respectively, to fur-
ther expand the data capacity. These two operations can
increase the sample size while producing more extensive
and accurate training results.

Finally, we completed the network training and verifi-
cation. The details of the flow are shown in Fig. 2. Dur-
ing training, the parameters of V-Net and Dense Net
were separately trained and optimized. When the loss
function of the two was optimal, the fusion layer was
fine-tuned so that Dense V-Net could achieve the best
network fusion effect in the shortest time.

Data training, assessment, and testing tasks were all
run on servers with dual NVIDIA (GTX 1080) graph-
ics cards. The algorithms used were based on the
TensorFlow system architecture and written and
tuned in Python. We also used the DSC (Dice Simi-
larity Coefficient) value as the loss function. The ini-
tial learning efficiency was set to 0.0005, the learning
rate attenuation factor was 0.5, the attenuation step
size was 1000, and the number of iterations was set
to 10,000.
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The quantitative evaluation

The overall assessment of the automatic delineation was
completed using the DSC [17]. To describe the details
further, the other seven most representative parameters
were used to evaluate the automatic sketching accuracy.
They were the three parameters for measuring the de-
gree of contour deviation of the two sketches: deviation
of Centroid (DC), Hausdorff Distance (HD) [18], and
Minimum Average Distance (MAD), as well as four pa-
rameters that measured the difference in volume be-
tween the two sketches, namely the Deviation of
Volume (AV), Sensitivity Index (SI), Inclusiveness Index
(Incl) [19], and Jaccard Distance (JD) [20]. The image
and training results were then transmitted into MIM.
Maestro 6.6.5 software to acquire the sketch information
and the assessment parameters of the two sketches were
calculated on the basis of this platform.

Statistical analysis

We used the software program SPSS 20.0 (IBM, Chi-
cago, USA) to conduct the statistical analysis. The con-
tinuous variables of normal distribution were expressed
as mean * standard deviation, the continuous variables
of a non-normal distribution were expressed as median
(interquartile range [IQR]), and the categorical variables
were expressed as frequency (percentage [%]). For mul-
tiple comparisons, each value was compared by one-way
ANOVA following a Dunnett test when each datum
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conformed to a normal distribution while the non-
normally distributed continuous data were compared
using non-parametric tests. The counting data were
tested by a chi-square test. A value of P <0.05 was con-
sidered statistically significant.

Results

The general characteristics

A total of 133 patients with stage IB and stage IIA, ac-
cording to 2018 International Federation of Gynecology
and Obstetrics (FIGO 2018 stage) Cancer Report [21],
were enrolled in this study. The CT images of all the pa-
tients were manually delineated by 2 attending physi-
cians and then studied and approved by a senior chief
physician. One hundred and thirteen of the patients
were randomly selected as the training set and the
remaining twenty patients’ CT images were used as the
test set to assess the automatic delineation performance
of the network. The statistical results of 8 parameters of
the CTV automatically delineated by Dense V-Net are
shown in Table 1 and the scatter box diagram is shown
in Fig. 3.

The DSC score

The results presented that all the 20 cases were higher
than the standard 0.75 [22]. Only 5 of them were less
than 0.8; the median and mean were both greater than
0.8 and the maximum reached 0.875. This showed that
the overall resemblance between the automatic sketch
and manual sketch was high.

The contour deviation

During the completion of the contour deviation, the
automatic sketching was stable. The results presented
that no extreme point existed, showing that there was
no extreme identification error in the automatic delinea-
tion; the standard deviation was small, which indicated
that the sketch effect was stable. MAD represents the
average value of the minimum distance between the two
contours and its results were on the order of millimeters,
which presented that the inaccurate automatic sketch
areas had little effect on the deviation of the two
outlines.

Table 1 Dense V-Net automatically draws parameters
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The volume of each orientation

Based on the evaluation of the correctness of the auto-
matic contour orientation, the volume of each orienta-
tion was further evaluated by the AV, SI, Incl, and JD.
AV represents the proportion of the volume difference
between the two sketches in the manual sketch, which is
used to assess the volume stability of the network. The
average value was 0.09 and the maximum value was
0.18, suggesting that the automatic sketch was partially
or even completely contained. SI and Incl indicated the
ratio of the coincidence volume of the two delineations
to the manual and automatic contour volume, respect-
ively; the average values were 0.84 and 0.80, respectively.
SI was slightly larger than Incl, which meant that the
volume of the automatic delineation volume was larger
than the manual one overall. The minimum values of
the two were 0.71 and 0.73, respectively, and JD repre-
sented the complement of the size of the union of the
two delineations intersection. The JD values were in a
narrow distribution and the standard deviation was 0.04.

The comparison between the fusion network and a single
network

The fusion network was compared with the single net-
work and the results are shown in Table 2. According to
the characteristics of each parameter, it was evident that
the automatic delineation similarity of the fusion net-
work was significantly higher than the single network.
Some representative evaluation parameters, such as
DSC, HD, JD, had significant differences in the results
(p <0.01),while the other parameters had statistical dif-
ferences (p < 0.05).

The comparison between the automatic delineation
among the fusion network and manual delineation

The comparison results of automatic delineation using
the fusion network and manual delineation by the radi-
ation oncologist are shown in Fig. 4. The red regions
showed the contours of CTV manually drawn by the
doctors and the blue regions showed the result of the
automatic sketches. It is evident that the results of the
two kinds of delineations had a high degree of
coincidence.

Paraments DSC DC/mm HD/cm MAD/mm av Sl Incl JD

Minimum 0.78 095 117 1.76 0.01 0.71 0.73 0.22
Maximum 0.88 8.55 3.01 3.25 0.18 0.89 091 0.37
Median 0.83 3.92 1.74 249 0.10 0.85 0.78 0.30
Mean 0.82 4.28 1.86 252 0.09 0.84 0.80 030
Standard Deviation 0.03 2.35 048 040 0.05 0.04 0.05 0.04
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Table 2 The 8 parameters of network delineation and the
single-factor analysis of variance of the single network to the
converged network

Paraments Dense V- Net Dense Net P V-Net P
DsC 0.82 £+ 0.03 075+004 <001 076+007 <001
DC/mm 428 + 235 517+309 <001 452+235 <001
HD/cm 1.86 + 048 274+099 <001 256+068 <001
MAD/mm  2.52 + 040 265+058 039  265+030 023
AV 0.09 £+ 0.05 018 +004 <001 012+005 021
S| 0.84 + 0.04 080+£006 005 079+005 <001
Incl 0.80 £ 0.05 074 £007 001 075+ 009 002
JD 0.30 £ 0.04 041 £006 <001 044 +005 <001

The specific segmentation results

A more detailed examination of the segmentation results
found that in the following three structures, the network
segmentation ability performed poorly. As shown in
Fig. 5.

First, at the lower edge of the bifurcation of the presa-
cral lymphatic drainage area, and the upper anterior
boundary of the piriformis, the automatic delineation
error is generally large. The deep network often fails to
accurately identify this boundary, which results in re-
dundant delineation at the anterior edge of the pirifor-
mis muscle and the third sacral vertebra.

Secondly, in the area of the posterior wall of the blad-
der and the anterior wall of the rectum, automatic delin-
eation also has recognition bias. This is mainly due to
the fact that when the doctor manually draws it out, the
CTV boundary will be extended to the back wall of the
bladder for a distance ranging from 1 to 2 mm according
to the degree of the patient’s holding back. However, this
deep network only pays attention to the significant ana-
tomical differences in this part, and due to the small
sample size and unequal extension distance, the learning
effect here is poor.

Finally, there are a few cases of vaginal invasion due to
disease progression. In actual delineation, doctors often
delineate a small number of lymph nodes in the groin
area as CTV. This is also difficult for the network to
handle.

Discussion
Medical image analysis, especially medical image seg-
mentation based on deep learning, is one of the most
critical areas of current computer vision research. Seg-
mentation is an important processing step in medical
images, used for medical scene understanding and image
analysis.

The tumor regions segmentation is a research hotspot
in medical imaging analysis. There have been many re-
ports on segmentation of visible lesions or GTV (Gross
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Tumor Volume) and the results show that, the accuracy
has surpassed traditional methods, and some results are
comparable to expert manual segmentation. For example,
Alom [23] automatically outlines the tumor in the lung CT
image, and the average segmentation DSC value is 98.32%.

Nevertheless, the identification and delineation of
CTV is still very difficult. This is mainly because, in
addition to the visible anatomical structure, CTV also
includes subclinical potential lesion areas and some le-
sion invasion areas. These areas are often determined by
the doctor’s supervisory judgment and are greatly af-
fected by individual differences, the location of the le-
sion, and the stage of the cancer. Even if the stage is the
same, the scope of tumor invasion and lymphatic in-
volvement are different, which will lead to different de-
lineation scopes. In addition, changes in the patient’s
bowel position and bladder filling shape will also affect
the recognition and delineation of CTV.

It is of clinical significance to differentiate and delin-
eate CTV in cervical cancer patients. Although there
have been some pioneering studies [24-26], they are
mainly applied to the self-image sketching of patients,
image-guided radiotherapy or the dose superposition
evaluation of re-planning, and it is impossible to delin-
eate the CTV of new patients. Due to the scarcity of
clinical samples and problems in implementation, the re-
search development of CTV automatic delineation based
on CT images of new cervical cancer patients is slow
and no relevant results have been reported yet.

To minimize the error of delineation outcomes caused
by individual differences in different patients, we used a
deep learning method to automatically sketch CTV
based on CT images in cervical cancer patients with pel-
vic radiotherapy. Dense V-Net, a fusion algorithm with
an accurate automatic segmentation effect for high de-
formation soft tissue organs [11],has the advantages of
the 2 single algorithms: the dense connection structure
is used to understand parameter sharing and strengthen
feature transfer; dropout and BN enables a training set
with a capacity of 113 to achieve good training results;
horizontal connection improves the precision and cor-
rectness of the output sketch; and residual connection
efficiently solves the gradient disappearance and explo-
sion phenomena generated during training. Its unique
fusion convolution layer and the unilateral inhibition of
the ReLu function further enhances the outcome of fea-
ture learning, quickens the model convergence and im-
proves the sketch efficiency. According to our research
results, the characteristics of CTV can be fully learned
by Dense V-Net and the automatic delineation outcome
is helpful in the case of limited training samples. When
designing the radiotherapy plan for cervical cancer, the
network can fulfill the automatic pre-sketching of CTV,
which greatly improves the clinical work effectiveness.
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DSC is used to assess the proportion of the coinci-
dence delineation of 2 sketches in the total outline.
When the DSC score is greater than 0.75, it is deliberated
that the two regions have a high degree of coincidence
[22]. Our study showed that the overall resemblance be-
tween the automatic sketch and manual sketch was high.

During the completion of contour deviation, automatic
sketching was stable. DC measures the centroid devi-
ation of the two contours, with an average of 4.28 mm,
which is less than the scanning layer thickness of 5 mm.
HD represents the maximum value of the shortest dis-
tance between the two outlines. Statistics demonstrate
that no extreme point exists, representing that there is
no extreme identification error in automatic delineation;
In our experience the standard deviation is small, which
specifies that the sketch effect is stable. MAD represents
the average value of the minimum distance between the
two contours and its results are all on the order of milli-
meters, which demonstrates that the incorrect automatic
sketch areas have little effect on the deviation of the two
outlines.

Based on the evaluation of the accuracy of the automatic
contour orientation, the volume of each orientation was
further evaluated by the AV, SI, Incl, and JD.AV repre-
sents the proportion of the volume difference between the
two sketches in the manual sketch, which is used to assess
the volume stability of the network. Our study discovered
that the volume difference between the two delineations
were small and the automatic sketch was partially or even
completely contained. SI and Incl indicate the ratio of the
coincidence volume of the two delineations to the manual
and automatic contour volume, respectively. The results
of this study showed that the two delineations had a high
degree of coincidence. SI was slightly larger than Incl,
which meant that the volume of automatic delineation
volume was larger than the manual one overall. The cor-
responding samples had a large contour deviation degree.
JD represents the complement of the size of the union of
the two delineations intersection. The JD values were in a
narrow distribution, which suggested that the volume off-
set was small and the network sufficiently identified the
sample features.

In this study, the automatic delineation resemblance of
the fusion network was significantly higher than that of
the single network. Representative evaluation parameters
such as DSC, HD, JD, etc. have significant differences in
the results while the other parameters had statistical dif-
ferences. Therefore, automatic sketching using a fusion
network has a smaller volume deviation, reduced less
range of error identification, lower centroid deviation,
and higher volume stability. The difference between the
standard deviation also showed that the fusion network
had stronger sketching stability and featured an accurate
learning ability.
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The comparison results of automatic delineation
using the fusion network and manual delineation by
the radiation oncologists showed that the results of
the two kinds of delineations had a high degree of
coincidence, which further suggested that Dense V-
Net could achieve satisfactory automatic CTV sketch-
ing in CT images.

From the analysis of the evaluation parameters, when
the DSC value tended to be stable, the reason for the de-
viation was further assessed by analyzing the other pa-
rameters. We found that the network had a weak
segmentation ability in some parts of the delineation. It
is evident from Fig. 3 (c), (e), and (f) that there were ex-
treme values for HD, AV, and SI. The extreme value of
HD suggested that there may have been large error iden-
tification or local extreme contour deviation. After com-
pleting the examination, the reason was identified to be
the lack of automatic delineation; on the coronal plane,
the upper bound of automatic delineation was much
lower than the manual one. The extreme value of AV
means that the volume of the two sketches was fairly dif-
ferent and we found that the range of the automatic
sketch was too large, which essentially included the
manual sketch in most areas. The extreme deviation
values of SI is due to the insufficient network recogni-
tion ability, which results in the overall difference in vol-
ume between automatic drawing and manual drawing,
and the overlapping volume is small.

However, the network still has many limitations.
Firstly, the individual differences in the medical samples
were extremely large. Even in the case of a limited sam-
ple size, there are a few cases with more specific CTV
sketching and the network tends to overlook this abnor-
mal information when learning features, which confines
the compatibility of Dense V-Net to various complex
conditions. Secondly, this study only focused on the cer-
vical cancer delineation of stage IB and IIA cancer after
surgery. Other stages and if surgery or other anti-cancer
treatments will affect CTV delineation to a large extent
needs further study. Therefore, the effect of automatic
delineation for more complex clinical cases needs to be
determined. Thirdly, since the judgment of the potential
tumor invasion area contained in CTV, particularly the
number of lymph nodes that need to be clarified, de-
pends on the clinical experience of radiation oncologists,
different doctors have diverse understandings in the de-
lineation of CTV for the same patient, which confines
the universality of the network.

Conclusions

Dense V-Net can accurately predict CTV pre-delineation
of cervical cancer patients and can be utilized in clinical
practice after simple modifications.
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