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Abstract

and bone cancer metastasis.

Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among
bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment
paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms
of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA
through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via
suppressing receptor activator of nuclear factor kB ligand (RANKL)/receptor activator of nuclear factor kB (RANK)
pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase Il (CaMKIl) pathway, and preventing of
macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting
farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species
(ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and
angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in
synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced.
We hope this review will provide more information in support of future studies of ZA in the treatment of cancers
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Background

Osteoclasts, which are abundant in the bone tissue,
are multinuclear cells derived from myeloid lineage
[1, 2]. Osteoclasts are known to initiate physiologic
bone remodeling during bone growth, tooth eruption
and fracture healing, and also are able to mediate
bone loss in pathologic conditions, such as bone can-
cer metastasis [3, 4]. Therefore, inhibition of osteo-
clasts is a potential target for the treatment of bone
cancer metastasis.
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According to the Global Cancer Statistics 2018, there
would have 18.1 million new cancer cases and 9.6 mil-
lion deaths from cancer worldwide in 2018 [5]. Increas-
ing global demographic trends and epidemiologic
transitions indicate an ever-increasing cancer burden
over the coming decades, particularly in low- and
middle-income countries, with over 20 million new
cancer cases expected annually as early as 2025 [6]. The
bone is the third most common site of metastasis for a
wide range of solid tumors including lung, breast, pros-
tate, colorectal, thyroid, gynecologic, and melanoma,
with 70% of metastatic prostate and breast cancer
patients harboring bone metastasis [7], because of the
close interactions between cancer cells and the bone
marrow microenvironment which facilitates the growth
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of the tumors cells in the bone by providing niche, nutri-
ents and oxygen [8]. However, the mechanism of bone
cancer metastasis is very complex, including various
cytokines, growth factors and other molecules involved,
leading to activation of different pathways of bone
resorption [9].

Zoledronic acid (ZA, C5H10N207P2), also called zole-
dronate, is the third generation of bisphosphonate (BP)
with a history of only 25 years, belonging to nitrogen-
containing bisphosphonate (N-BP). BP is a kind of anti-
resorptive drug, and has been used clinically for near 50
years [10], which is stable pyrophosphate analogues,
where a carbon atom replaces the central oxygen atom,
making the P-C-P backbone non-hydrolysable [11]. Fur-
thermore, the P-C-P backbone structure allows the BP
binding to hydroxyapatite in bone tissue through the
chelation of Ca®* [12, 13], this is the reason why BP has
high affinity with bone. Once internalized by bone-
resorbing osteoclasts [14], BP affects multiple pathways
to lead to effective anti-resorptive activity and induces
cell apoptosis [15, 16]. ZA is the most widely used BP
for its potent anti-resorptive activity, in addition, it in-
hibits the differentiation and apoptosis of osteoclasts
[17-19]. It also has anticancer effects [15, 20], including
suppressing metastasis of cancer [21, 22], inhibiting the
angiogenesis [23], and the synergistic effect with other
anticancer drugs [17, 20, 24]. Here, we want to elaborate
the mechanisms of ZA in inhibition of differentiation
and apoptosis of osteoclasts, as well as its anticancer ef-
fects, which may provide a new strategy for the treat-
ment of cancer, especially cancer with bone metastasis.

Inhibition of differentiation of osteoclasts by ZA
An increasing body of evidence suggests that ZA inhibits
the differentiation of osteoclasts in vitro through various
pathways, including inhibition of receptor activator of
nuclear factor kB ligand (RANKL)/receptor activator of
nuclear factor kB (RANK) pathway, non-canonical Wnt/
Ca**/calmodulin dependent protein kinase II (CaMKII)
pathway, and prevention of macrophage differentiation
into osteoclasts [19, 25, 26].

Inhibition of RANKL/RANK pathway
Osteoclasts could be regulated by RANKL, a tumor ne-
crosis factor (TNF)-super family cytokine produced by
osteocytes and stromal cells in bone tissues [27], through
binding to its receptor RANK expressed on mature
osteoclasts and their precursors [28]. The dysregulation
of the physiological equilibrium in the RANK/RANKL
pathway also leads to the pathological remodeling
associated with cancer and to the development of bone
metastasis [29-31].

During osteoclast formation, the RANKL is thought to
bind with RANK in osteoclast precursors, and their
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complex recruits TNF receptor-associated factors
(TRAFs), especially TRAF6, a sensitive marker of the
activity of osteoclasts, which is expressed by mature os-
teoclasts [32]. It activates phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt)/mTOR pathway and sub-
sequently nuclear factor kappa B (NF-kB) pathway [33],
by promoting the phosphorylation of inhibitor of kappa
Ba (IkBa) and its subsequent degradation [27], followed
by increased translocation and phosphorylation of
downstream p65 [34]. In addition, the RANK-TRAFs
complex also activates other downstream signaling
cascades, including nuclear factor of activation of T
cells-1 (NFATcl) and c-fos, as well as multiple
osteoclastogenesis-related genes, such as tartrate resist-
ant acid phosphatase (TRAP), matrix metalloproteinases
(MMP)-9 [35]. Moreover, mitogen-activated protein ki-
nases (MAPKs), including C-Jun N-terminal kinase
(INK), extracellular signal-regulated kinase (Erk) and
p38MAPK [17]. Downregulation of Erk inhibits the
merging of osteoclast precursors, suppression of JNK
impedes RANKL-stimulated the differentiation of osteo-
clasts [36], and the activation of p38MAPK contributes
greatly to the early maturation of osteoclasts [37].

Many experiments have demonstrated that ZA inhibits
bone destruction caused by enhanced differentiation and
function of osteoclasts by interrupting RANKL/RANK
pathway [17, 18, 38] (Fig. 1). ZA decreases the expres-
sion of RANK to inhibit the differentiation of osteoclasts
through suppressing TNF-a and RANKL [39-41]. In
addition, it is reported that ZA also inhibits NFATcl
and c-fos [17, 26, 42], suppresses NF-«B pathway
through promoting the deubiquitination of TRAF6 [18],
as well as the phosphorylation of tyrosine and the nu-
clear translocation of p65 [43].

Another receptor for RANKL has to mention is
leucine-rich repeat-containing G-protein-coupled recep-
tor 4 (LGR4, also called GPR48), which competes with
RANK to bind RANKL, plays a key negative feedback
mechanism in the RANK-RANKL signaling pathway that
negatively regulates osteoclast differentiation and bone
resorption by suppressing RANK-TRAF6 signaling and
activating Gaq Ca2+ induced inhibition of NFATc1 dur-
ing osteoclastogenesis [44, 45]. However, whether the re-
lationships between ZA and LGR4 has not been found
until now, and this may be a new insight of ZA against
osteoclastogenesis.

Inhibition of non-canonical Wnt pathway

It is reported that non-canonical Wnt signaling, which is
mainly through Ca**/ CaMKII pathway, mediates osteo-
clastic differentiation [39, 46, 47], and the decreased
non-canonical Wnt signaling results in decreases of dif-
ferentiation of osteoclasts and bone resorption [48, 49].
And once osteoclasts stimulated, their Ca®* levels are
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Fig. 1 ZA inhibits the RANKL/RANK pathway. The RANKL is thought to bind with RANK, and their complex recruits TNF receptor-associated
factors (TRAF6), activates phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTOR pathway and subsequently nuclear factor kappa B (NF-
kB) pathway, as well as nuclear factor of activation of T cells-1 (NFATc1), JNK, Erk and p38MAPK. ZA decreases the expression of RANKL to inhibit
osteoclastogenesis, in addition, it is reported that ZA also inhibits NFATc1, suppresses NF-kB pathway, as well as inhibiting the phosphorylation of
the nuclear translocation of p65, besides, ZA also inhibits non-canonical Wnt signaling through decreasing the signaling protein levels of Wnt5a,
CaMKIl, and the Ca2+ levels, and finally inhibits osteoclasts survival, proliferation, differentiation and apoptosis

NFATc] | ZA

upregulated, and then activates calmodulin combines
with CaMKII to regulate the expression of NFATcl and
TRAP, and terminally induce osteoclastic differentiation
[46, 47]. ZA inhibits non-canonical Wnt signaling
through decreasing the signaling protein levels of Wnt5a
and CaMKII [39]. In addition, ZA significantly decreases
the Ca®* levels, inhibits the expression of calmodulin,
CaMKII [50], and its combination, finally inhibits its dif-
ferentiation [39].

Prevention of macrophage differentiation into osteoclasts
As is known, Osteoclast is derived from myeloid lineage,
including macrophage, monocyte, and osteoclast precur-
sor cell [1, 2]. In addition to RANKL in these process,
macrophage colony-stimulating factor (M-CSF) is an-
other important cytokine, produced by mesenchymal
cells in the bone marrow environment. M-CSF promotes
survival and proliferation of osteoclast precursors, and
their differentiation into mature phagocytes, including
osteoclasts [51, 52]. ZA inhibits the activity, aggregation
and migration of osteoclast precursor cells and macro-
phage [17, 20, 43, 53] to prevent the differentiation of
osteoclasts and induce apoptosis [54]. It is demonstrated

that in the presence of M-CSF, ZA also inhibits RANK
L-induced upregulation of RANK mRNA to suppress
the differentiation of osteoclasts [41]. Nevertheless, there
is not enough evidence of the relationship between ZA
and M-CSF at present, which may be another potential
pathway of ZA against osteoclastogenesis.

Induction of apoptosis of osteoclasts

Apoptosis literally means “falling away” in Greek, and
occurs normally in multicellular organisms. It is a
process to eliminate abnormal, damaged, or mutated
cells, and plays important roles in embryonic develop-
ment and adult tissue equilibrium by adjusting the
physiological processes involved [55]. In humans, many
cells are turned over and replaced each day through
apoptosis. This process maintains a balance between the
death and survival of cells and tissues [56]. It is demon-
strated that ZA induces the apoptosis of osteoclasts
through inhibition of the farnesyl pyrophosphate syn-
thase (FPPS)-mediated mevalonate pathway, and induc-
tion of reactive oxygen species (ROS)-mediated
apoptosis [24, 39, 57, 58].
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Inhibition of the FPPS-mediated mevalonate pathway

The mevalonate pathway is an important biochemical
pathway in the production of cholesterol and isopre-
noids, which are essential for maintaining cell membrane
integrity, producing steroids and regulating cellular res-
piration [59]. And isoprene precursors are crucial for the
prenylation of regulatory proteins involved in the control
of cell proliferation, tumor progression and cell death
[59]. Therefore, inhibition of the mevalonate pathway
may have an impact on cellular activities that goes
beyond inhibition of bone resorption [60]. It has been
revealed that ZA inhibits mevalonate pathway (Fig. 2)
through inhibition of FPPS, a major regulatory enzyme,
to inhibit bone resorption and induce osteoclastic
apoptosis [61]. FPPS, an active dimer composed of 10
a-helices with highly conserved sequences, is essential
for the differentiation of osteoclast [62] through cata-
lyzing the biosynthesis of geranyl pyrophosphate (GPP)
and farnesyl pyrophosphate (FPP) [63]. FPP is the sub-
strate of the geranylgeranyl pyrophosphate synthase
(GGPPS) and it is converted into geranylgeranyl pyro-
phosphate (GGPP). The isoprene moieties from FPP
and GGPP are post-translationally incorporated into
several proteins, including many members of the Ras
and Rho family of small GTPases, which control cell
growth, proliferation, apoptosis and migration [11, 64,
65]. ZA inhibits FPPS and/or GGPPS, prevents the bio-
synthesis of FPP and GGPP that are required for the
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post-translational prenylation of small GTP-binding
proteins such as Rab, Rho and Rac [66], leading to
apoptosis of osteoclasts [38, 53, 54, 60].

Induction of ROS-mediated apoptosis in osteoclast
precursors and mature osteoclast like cells

ROS which are deleterious at high concentrations, in-
cluding superoxide anion (O2-), hydrogen peroxide [67],
and also nitric oxide, cause oxidative stress in the in-
flammatory and apoptotic process [68]. And osteoclasts
are very sensitive to oxidative stress [69]. The exposure
of osteoclasts to elevate oxidative stress results in cyto-
toxic effects due to the increased oxidative damage of
DNA, proteins, and lipids, finally leads to apoptosis via
the caspase-dependent pathway [70]. Recent studies have
found that ZA induces apoptosis in osteoclast precursors
and mature osteoclast-like cells by increasing of NADPH
oxidase subunits (p91P"°%, p22PhX pa7PROx and
p67P")/ROS to cause PI3K/AKT inactivation, glycogen
synthase kinase (GSK)-3p activation, and the anti-
apoptotic protein myeloid cell leukemia 1 (Mcl-1)
downregulation [71]. In addition, the increased ROS also
activates JNK to induce apoptosis [72]. Moreover, the
expression of pro-apoptotic protein Bax is also increased
by the decreased Mcl-1, which finally leads to apoptosis
through sequentially activating caspase-3 dependent
apoptotic pathway [71].
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Fig. 2 ZA inhibits mevalonate pathway. ZA inhibits farnesyl pyrophosphate synthase (FPPS) and geranylgeranyl pyrophosphate synthase (GGPPS),
prevents the biosynthesis of FPP and GGPP that are required for the post-translational prenylation of small GTP-binding proteins such as Rab, Rho
and Rac, leading to apoptosis of the osteoclasts
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Anticancer effects of ZA

ZA has a direct effect on cancer cell through inhibiting
proliferation and migration of cancer cells and induces
apoptosis in vitro [73] and in vivo [74] in multiple can-
cer types, such as neuroblastoma [21], breast cancer cells
[75], prostate cancer [20, 76, 77], epidermoid cancer cells
[78], pancreatic cancer [79]. Previous studies have shown
that the use of ZA may significantly enhance apoptosis
by elevating ROS levels in prostate carcinoma and saliv-
ary adenoid cystic carcinoma cell models [80, 81]. In
addition, it is reported that ZA induces cancer cells
apoptosis by inhibiting the production of RANKL in
leukemia [82]. Moreover, ZA also increases the expres-
sion of pro-apoptotic protein Bax and decreases the ex-
pression of anti-apoptotic protein Bcl-2, increases the
permeability of cell membrane, and induces caspase-3
dependent pathway, and finally induce apoptosis [43].
Furthermore, ZA also inhibits bone cancer metastasis
through suppressing osteoclasts [21, 22, 41, 58, 83-85].

Inducing apoptosis of cancer by ZA

The protein Ras, one of the isoprenylation of small
GTP binding protein we have mentioned above, is as-
sociated with the survival pathway in cancer cells of
acitivating MAPK [86], and then the Erk1/2 [86] that
mediates strong anti-apoptotic effects [87]. In
addition, Ras also activates the PI3K/Akt pathway to
induce survival [88], moreover, Akt is activated con-
comitantly or independently through Ras/Raf/Mek/
Erk1/2 signaling by growth factors [89, 90], and then
upregulates Bcl-related proteins such as Bad and Mcl-
1 to protect from apoptosis [90].

It is reported that ZA inhibits Ras, blocks the Ras-
dependent Erk 1/2 and Akt pathways, and then reduces
the phosphorylation of both Bcl-2 and Bad, activates the
caspase-dependent apoptosis pathway to kill cancer cells
[76, 78, 79, 91] (Fig. 3). Interestingly, ZA is reportedly to
induce apoptosis through activating caspase-3 pathway
on epidermoid cancer cells [78] and breast cancer cells
[92]. However, Tassone et al. found caspase-9 is acti-
vated by ZA to induce apoptosis in treatment of pancre-
atic cancer cells, instead of caspase-3 [79]. This may be
related with tissue-specific executioners of apoptosis in
different cancer types, and may have the advantage of
enhancing selectivity in therapeutical intervention. In
addition, ZA-mediated apoptosis is associated with cyto-
chrome c release and consequent caspase-9 activation
[79, 92]. ZA also induces actin rearrangements into cor-
tical rings and that these events may drive the pancreatic
cancer cells to the apoptotic process [79].

Anti-angiogenesis of cancer by ZA
ZA inhibits the differentiation, migration and secretion
of proangiogenic factors of mesenchymal stromal cells
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Fig. 3 ZA induces caspase-dependent apoptosis, reverts
chemoresistance and stimulats immune response in cancer cells
through Ras/Erk1/2 pathway. ZA inhibits Ras, blocks the Ras-
dependent Erk 1/2 and Akt pathways, and then reduces the
phosphorylation of both Bcl-2 and Bad, activates the caspase-
dependent apoptosis pathway to kill cancer cells. In addition, ZA
also reduces the activity of hypoxia inducible factor-1 alpha (HIF-10)
through interrupting Ras/Erk1/2, and then suppresses the
production of ATP, and decreases the drug efflux transporter P-
glycoprotein (P-gp) to induce immunogenic cell death and reverses
the tumor-induced immunosuppression. In addition, ZA also inhibits
the signal transducer and activator of transcription-3 (STAT3)/

indoleamine 2,3 dioxygenase (IDO) axis via Ras/Erk1/2 pathway

to suppress the growth, migration and angiogenesis of
prostate cancer cells [93], including vascular endothelial
growth factor (VEGF) and fibroblast growth factor-2
(FGF-2), which are related to angiogenesis, immunosup-
pression and migration of cancer cells [94, 95]. In
addition, ZA also inhibits platelet-derived growth factor-
BB (PDGEF-BB), a factor released by osteoclast precursor
cells could promote endothelial progenitor cells differen-
tiating into mature endothelial cells [96], and endothelial
progenitor cells to suppress angiogenesis [23].

Anti-micrometastasis of cancer by ZA

The bone marrow microenvironment provides a site for
cancer cells to escape from systemic anticancer therapy,
and many bone micrometastasis are believed to be
formed cancer persistence and relapse [97-99]. The
growth factors and cytokines released by cancer cells
enter into bone marrow microenvironment, promote os-
teoclasts differentiation through activating RANKL/
RANK pathway with cytokines released, and finally lead
to the growth and proliferation of cancer cells [100]. It is
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revealed that ZA significantly inhibits RANKL/RANK
pathway to suppress micrometastasis of cancer. In
addition, ZA also reduces the number and persistence of
disseminated tumor cells in the bone marrow of patients
with breast cancer [101, 102], through inhibiting chemo-
kine C-C motif ligand 5 (CCL5)/chemokine receptor
(CCR5) and IL-17B/17-BR [103]. CCL5/CCR5 regulates
the coupling of cancer cells and mesenchymal stromal
cells [104], and IL-17B/17-BR stimulates chemokines or
enhancing inflammation [105], both of them facilitate
the progression and metastasis of cancer cells. Moreover,
ZA inhibits the expression of MMP-2 to suppress breast
cancer metastasis [106]. In addition, it is reported that
ZA suppresses the adhesion of cancer cells with extra-
cellular matrix (ECM) to impair the process of invasion
and metastasis [107]. Therefore, ZA may also be able to
prevent distant metastases and local recurrence by de-
creasing the persistence of circulating tumor cells and
disseminated cancer cells [60].

Reverting chemoresistance and stimulating immune
response by ZA

The resistance to chemotherapy and immune escape are
the main causes of the failure of treatment in cancer
cells. Fortunately, it has been reported that the clinically
used ZA reverses chemoresistance and immunoresisi-
tance in vitro [108, 109] (Fig. 3). ZA interrupts Ras/
Erkl1/2 downstream signaling pathways, and then re-
duces the activity of hypoxia inducible factor-1 alpha
(HIF-1a), a key element in allowing cells to adapt and
survive, which increases the energy metabolism and
ATP synthesis in cancer cells [110], and then, suppresses
the drug efflux transporter P-glycoprotein (P-gp), de-
creases the glycolysis and the mitochondrial respiratory
chain, and finally induce a cytochrome c/caspase-
dependent apoptosis in multidrug resistant cancer cells
[75, 108, 109, 111]. Moreover, ZA restores the
doxorubicin-induced immunogenic cell death and re-
verses the tumor-induced immunosuppression due to
the production of kynurenine, by inhibiting the signal
transducer and activator of transcription-3 (STAT3)/
indoleamine 2,3 dioxygenase (IDO) axis, which is highly
activated in cancer cells. These events increased the
number of dendritic cells and decreased the number of
immunosuppressive T-regulatory cells infiltrating the tu-
mors [75, 108, 109]. In addition, ZA reduces tumor bur-
den through inhibiting FPPs, activating Vy9 V82 T cells,
a special subsite of Y8 T cells, to trigger activation of im-
munologic response through stimulating natural kill cells
against cancer cells [112, 113]. ZA alters the prenylation
of tumor cell and the associated macrophages to reduce
tumor vascularization and prolong overall survival [114].
ZA also directly activates immunocytes of the bone mar-
row to kill cancer cells [115-117].
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Synergetic with other anticancer drugs

ZA combines with other anticancer drugs decreases its
dosage with better effects, less cytotoxic effects and side
effects. The combination of metronomic ZA and corio-
lus versicolor inhibits the growth breast cancer without
increasing lung and liver metastasis through suppressing
the expression of CD34 and MMP-2 [106]. Furthermore,
it is demonstrated that the treatment of ZA with other
chemotherapies in children leukemia related osteonecro-
sis is safe and tolerant [118]. Combination therapy with
ZA and tumor-specific replicating oncolytic adenovirus
DBP-301 significantly inhibits tumor-mediated osteo-
clast activation, tumor growth and bone destruction via
suppression of Mcl-1 [24]. In addition, ZA and R115777
(Zarnestra) are synergistic in inducing both growth in-
hibition and apoptosis in cancer cells by disruption of
Ras-dependent Erk and Akt survival pathways and con-
sequent Bcl-related proteins-dependent apoptosis [76,
78]. Meanwhile, the bi-weekly combination of Taxotere
(50 mg/m?2) followed by ZA is feasible and shows prom-
ising antitumor activity through suppressing angiogen-
esis, tumorigenicity and metastasis in castration resistant
prostate cancer patients [77].

New ways of delivering ZA against cancer

Despite the significant antiproliferative activity of ZA on
different cell lines, it has a very short plasma half-life
and treads to accumulate in the bone [119]. Therefore, it
is necessary to find new ways to deliver ZA in the treat-
ment of cancer. Fortunately, it has been shown that the
use of nanovectors, including liposomes (PEGylated lipo-
somes, polysaccharides), biodegradable polymers, inor-
ganic nanoparticles (made by metals, metal oxides or
salts), hybrid nanoparticles and nanocomposite mate-
rials, can “convert” ZA in a powerful anticancer agent
[120-123]. It has been reported that ZA-containing
nanoparticles (N-ZA) shows superior technological
characteristics in terms of mean diameter, size distribu-
tion, and ZA encapsulation efficiency, compared to ZA-
encapsulating PEGylated liposomes (L-ZA). Moreover,
the anti-cancer activity of N-ZA outstrips L-ZA, L-ZA
outstrips free ZA in the treatment of nude mice xeno-
grafted with prostate cancer PC3 cells, both of the N-ZA
and L-ZA are without any toxic effects [124]. In
addition, Transferrin (Tf)-targeted N-ZA allowed the
achievement of enhanced antitumor activity of ZA in a
heterotopic model of glioblastoma through the acquisi-
tion of ability to cross the blood-brain barrier [125], sim-
ultaneously, it is also a novel type of easy-to-obtain
nanoparticles for the delivery of ZA in the treatment of
tumors [126]. All these results suggest that the future
preclinical development of ZA-encapsulating nanoparti-
cles is a trend in the treatment of human cancer.
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Conclusions

ZA is a new geminal BP that has a heterocyclic
nitrogen-containing substituent. And it is the most
widely used BP for its potent antiresorptive activity. Lots
of experiments have demonstrated that ZA could inhibit
the differentiation of osteoclasts through the inhibition
of the RANKL/ RANK pathway and non-canonical Wnt/
Ca2+/CaMKII pathway, prevention of macrophage dif-
ferentiation into osteoclasts, induce of apoptosis of oste-
oclasts through inhibition of mevalonate pathway, and
induction of ROS-mediated apoptosis. Moreover, ZA
could also be used to treat cancer cells via the inhibition
of the proliferation, viability, motility, invasion and
angiogenesis of cancer cells, induction of apoptosis, and
synergic with other anti-cancer drugs. As well, we also
introduce the new ways for delivering ZA against cancer,
and this may provide a new strategy to improve the ef-
fect of ZA in vivo. However, the side effects of ZA
whether it leads to BP-induced osteonecrosis of the jaw
and cancer metastasis are still in controversial. And the
pharmacokinetics of ZA suggests that it is only in solu-
tion in cancer patients under two conditions: for an hour
during the annual infusion and only locally in the bone
microenvironment adjacent to active osteoclasts. There-
fore, more focus on the side effects of ZA and the mech-
anisms of ZA in cancer patients will do a great favor to
clinicians.
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