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Abstract

Background: DNA methylation is a potential biomarker for early detection of breast cancer. However, robust
evidence of a prospective relationship between DNA methylation patterns and breast cancer risk is still lacking. The
objective of this study is to provide a systematic analysis of the findings of epigenome-wide DNA methylation
studies on breast cancer risk, in light of their methodological strengths and weaknesses.

Methods: We searched major databases (MEDLINE, EMBASE, Web of Science, CENTRAL) from inception up to 30th
June 2019, for observational or intervention studies investigating the association between epigenome-wide DNA
methylation (using the HM450k or EPIC BeadChip), measured in any type of human sample, and breast cancer risk.
A pre-established protocol was drawn up following the Cochrane Reviews rigorous methodology. Study selection,
data abstraction, and risk of bias assessment were performed by at least two investigators. A qualitative synthesis
and systematic comparison of the strengths and weaknesses of studies was performed.

Results: Overall, 20 studies using the HM450k BeadChip were included, 17 of which had measured blood-derived
DNA methylation. There was a consistent trend toward an association of global blood-derived DNA
hypomethylation and higher epigenetic age with higher risk of breast cancer. The strength of associations was
modest for global hypomethylation and relatively weak for most of epigenetic age algorithms. Differences in length
of follow-up periods may have influenced the ability to detect associations, as studies reporting follow-up periods
shorter than 10 years were more likely to observe an association with global DNA methylation. Probe-wise
differential methylation analyses identified between one and 806 differentially methylated CpGs positions in 10
studies. None of the identified differentially methylated sites overlapped between studies. Three studies used breast
tissue DNA and suffered major methodological issues that precludes any conclusion. Overall risk of bias was critical
mainly because of incomplete control of confounding. Important issues relative to data preprocessing could have
limited the consistency of results.

Conclusions: Global DNA methylation may be a short-term predictor of breast cancer risk. Further studies with
rigorous methodology are needed to determine spatial distribution of DNA hypomethylation and identify
differentially methylated sites associated with risk of breast cancer.
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Background
Alterations of DNA methylation patterns are the most
common epigenetic aberrations in cancer and occur in
cells during early breast cancer development and pro-
gression [1]. DNA methylation is a reversible biological
signal that underlies tissue specific cell differentiation
and cells adaptability to changes in their environment
through regulation of gene expression [2]. Specifically, it
is the addition of a methyl group to DNA cytosine bases
that occurs predominantly in Cytosine-phosphate-
Guanine (CpG) dinucleotides [2]. Approximately 60% of
human genes contain high density of CpG dinucleotides
in their promoters [3, 4]. CpG-rich regions are mostly
unmethylated in normal cells when located in regulatory
regions of housekeeping genes, tissue-specific genes and
tumor suppressors [4, 5], while a methylated state of
CpG islands located in promoters of some oncogenes
leads to their transcriptional silencing [6].
As DNA methylation status of large subset of sites are

known to be strongly correlated with each other, ap-
proaches that capture the dynamics of several sites sim-
ultaneously across the entire genome (epigenome-wide
studies) are less prone to bias than candidate gene
methylation studies [7]. Numerous genome-wide DNA
methylation-profiling techniques exist, hindering the
comparison of results across studies that have used dif-
ferent methods [8, 9]. While the whole-genome bisul-
phite sequencing method provides the highest accuracy
and single nucleotide resolution, it is not yet feasible for
large cohorts [9]. An acceptable compromise between
coverage and precision is to target a comprehensive sub-
set of the genome [9]. As such, the high-throughput and
relatively affordable Infinium Human Methylation 450 K
(HM450k) and MethylationEPIC (EPIC) BeadChip of
Illumina, which targets approximately 480,000 CpG and
850,000 CpG sites across the human genome respect-
ively, with at least 99% coverage of RefSeq genes [9, 10],
have been widely used in epidemiological studies.
DNA methylation studies are aimed at identifying

high-risk methylation patterns that may have an applica-
tion in breast cancer early diagnosis and in identifying
high-risk women for targeted interventions [11]. How-
ever, robust evidence of a prospective relationship be-
tween DNA methylation patterns and breast cancer risk
is still lacking. Previous reviews focused mainly on
whole-blood DNA methylation studies, considered all
methods of DNA methylation measurement, the results
of which are inherently different and difficult to compare
across different methods, and lacked the systematic
evaluation of strengths and weaknesses of included stud-
ies. Furthermore, many more epigenome-wide studies of
breast cancer risk have been published since, prompting
the need for an updated rigorous and systematic meth-
odological evaluation of all relevant studies. Thus, the

objective of the present systematic review is to evaluate
and synthesize results of epigenome-wide association
studies that have used the HM450k or EPIC BeadChip,
to determine if global DNA methylation and specific dif-
ferentially methylated sites are consistently associated
with women breast cancer risk, and to identify what
could have limited the consistency of their results.

Methods
A systematic review was conducted following a pre-
established protocol and the general methods for
Cochrane reviews [12] and reported in adherence with
PRISMA guidelines for systematic reviews and meta-
analysis [13]. Considering the expected methodological
diversity and heterogeneity between eligible studies, the
great susceptibility of observational designs to selection
bias and the variability in methods used to control for
confounding, no quantitative synthesis was planned [12].
The protocol was deposited for registration at the Inter-
national Prospective Register of Systematic Reviews
(PROSPERO) in august 2019.

Search methods for identification of studies
An electronic search was conducted in MEDLINE (via
PubMed), EMBASE, Web of Science and CENTRAL
(Cochrane Central Register of Controlled Trials) data-
bases, from inception to June 30, 2019. Search strategies
were developed for each of these databases with text
words and index terms referring to breast cancer, methy-
lation and risk (Table S1). No language or publication date
restrictions were applied. The reference lists of relevant
reviews as well as the included studies were scanned for
any additional studies not otherwise identified.

Criteria for considering studies for this review
Types of studies
Any observational or intervention study that evaluated the
association between DNA methylation and breast cancer
risk, whatever the study design, was eligible for inclusion.
No restrictions were applied regarding language or publi-
cation type (articles, short reports and abstracts).

Types of participants
Women included in the studies before or after breast
cancer diagnosis, regardless of age, stage, treatment regi-
men and menopausal status, were eligible. No partici-
pants were excluded based on ethnicity. A special
attention was paid to identifying overlapping populations
between studies, by comparing study population source,
date of start and end of study recruitment, inclusion cri-
teria, follow-up duration and population characteristics.
When overlapping populations between studies was en-
countered, the study with the largest sample size was
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considered as the reference, and information was supple-
mented by the other publications as required.

Types of exposures
Only studies that measured DNA methylation in human
samples (blood, breast tissue, breast fine needle aspiration,
ductal fluid, human milk), on a genome-wide scale (epige-
nome-wide studies) using the HM450k or EPIC BeadChip
were eligible. Measures of global DNA methylation across
all included probes or a predefined set of probes (subset of
CpGs defined by spacial localization or a pre-specified
function such as epigenetic clocks algorithms) as well as
probe-wise differential methylation analysis were consid-
ered appropriate exposure estimations.

Types of outcomes
Breast cancer risk, measured as breast cancer incidence,
prevalence or breast mammographic density (a recog-
nized breast cancer risk factor), or as defined by authors
of included studies, was the primary outcome. Compari-
sons between matched normal and tumor tissue from
the same patient were not considered a measure of
breast cancer risk and were not included.

Data collection and analysis
Selection of studies
The references identified by the search strategy were
reviewed independently by two authors (KEI and CD) in
a 2-step process. First, the title and abstract of each
study were screened to exclude obviously non-eligible
studies. Then, the full text of retained articles was exam-
ined and subjected to evaluation using the predefined
eligibility criteria. Whenever required, a third review au-
thor (FD) was consulted. When required, further infor-
mation was sought from the authors by email.

Data extraction
Data extraction was performed using an exhaustive stan-
dardized form designed for this review. Information
about study design (inclusion criteria, sample size and
methodology), participants and tumors characteristics at
diagnosis (age, ethnicity, menopausal status, tumor inva-
siveness, tumor estrogen receptor (ER) status), exposure
assessment (timing, tissue sample, tissue processing, data
preprocessing methods), measured outcome and re-
ported results (any reported measure of association,
adjustment variables, and statistical model selection pro-
cedure) were collected. For observational studies, special
attention was paid to distinguishing between adjusted
and unadjusted results, and to the variable selection
method used in multivariate analyses. The study’s defin-
ition of each retained characteristic or variable was re-
corded. In the case of multiple publications related to
the same study, and to avoid the overlap across studies

populations, the publication reporting the outcomes of
interest to the present review or the one with the longest
follow-up of these outcomes or with the largest sample
size was considered as the reference, and information
was supplemented by secondary publications as re-
quired. Abstracts with insufficient information and data
to permit inclusion were excluded from the qualitative
synthesis. Data were extracted independently by two re-
view authors (KEI, DD) to ensure their consistency.

Assessment of risk of bias in included studies
Assessment of risk of bias was performed for each study
and for the overall risk of bias across studies. Based on
the “STrengthening the Reporting of OBservational
studies in Epidemiology” (STROBE) statements [14], and
the rating approach of the “Risk Of Bias in Non-
randomized Studies - of Interventions” (ROBINS-I) tool
[15], the following domains were evaluated for risk of
bias in included studies: selection of participants into the
study, exposure measurement, outcome measurement,
potential confounding accounted for, missing data, and
selective reporting. When required, a second reviewer
(CD) was consulted.

Data synthesis
Given that high heterogeneity between studies was ex-
pected, quantitative synthesis of data was considered not
appropriate. Using additional tables, a formal systematic
qualitative and narrative synthesis of studies characteris-
tics and results was performed separately for each type
of tissue sample. A representative population sample
was defined as one that includes at least 80% of post-
menopausal patients and at least 80% of ER-positive in-
vasive breast cancers [16]. The results were considered
adjusted only when all important confounders were con-
sidered for adjustment. Authors should have considered
age, body mass index or any other estimation of body
fat, breastfeeding or parity, alcohol consumption and
smoking as potential confounders. In addition, studies
including multiple ethnic groups should have adjusted
for ethnicity if no bioinformatics method was used to
avoid population stratification bias. If authors, in the
context of a particular study, demonstrated that a con-
founding factor is not associated to intervention or to
outcome (i.e. a null association measure), and subse-
quently did not adjust for this factor, the results were
considered adjusted [15]. In this context, a “no statisti-
cally significant association” was not considered a “no
association” [15]. If authors have considered all import-
ant confounders for adjustment, and used an appropriate
method for variable selection (i.e. backward selection
method based on change in estimate) to reduce the
number of adjustment covariates, the results were con-
sidered adjusted. A stepwise forward selection method
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or a selection method based on p-values were considered
not appropriate as these methods are prone to introduce
selection bias. A method based on change of estimate of
odds ratio was considered inappropriate because of the
non-collapsibility of such measures [17].
The direction and magnitude of observed associations

across different statistical models were compared be-
tween studies for average methylation analyses, globally
and by genomic regions. All individual differentially
methylated CpGs identified from each study were com-
pared to detect any overlapping CpGs. Results were con-
sidered consistent when associations were in the same
direction across studies (at minimum in two studies)
with no study reporting an opposite association. Any
discrepancy was analyzed for sources of heterogeneity. A
positive association was defined as an observed higher
risk with higher methylation levels whereas a negative
association was defined as an observed inverse
association.

Assessment of heterogeneity
Differences between studies, including study design, par-
ticipant characteristics (age and menopausal status),
tumor characteristics (invasiveness, ER status and

treatment received), exposure measurement (timing,
type of tissue sample, preprocessing methods), statistical
analysis (parametric or not, robust or not, adjusted or
not) and different levels of risk of bias were considered
to explore possible sources of heterogeneity.

Results
Results of the search
Of the 4017 references retrieved by electronic search
after duplicate removal, 20 studies, published between
2013 and 2019, met eligibility criteria (Fig. 1) [13], of
which 17 measured blood-derived DNA methylation
[18–34] and three measured breast tissue DNA
methylation [35–37].

Description of studies
Studies of blood-derived DNA methylation
Characteristics of the 17 studies of blood-derived DNA
methylation are reported in Table 1 and Table S2. These
studies involved between 90 and 228,951 participants (me-
dian = 465 participants), including 48 to 122,977 cases (me-
dian = 233 cases) drawn from one to four different
populations. Most studies were nested case-control studies,
were conducted on populations from European

Fig. 1 Flow Diagram according to PRISMA (Preferred Reporting Items of Systematic Reviews and Meta-Analyses) [13], with modifications
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countries, spanned from 2 weeks to over 20 years of
follow-up and evaluated incident breast cancer risk.
All studies used the HM450k beadchip. One study ag-
gregated methylation data of common CpGs retrieved
from four different populations, of which one have
used the EPIC beadchip [19].

Studies included breast cancer patients between 48
and 64 years of mean age (n = 12 studies), and one study
included exclusively patients under 40 years old [28].
Proportion of postmenopausal patients varied from 31
to 100% (n = 7 studies), with only one study including at
least 80% of postmenopausal patients [26]. Proportion of
patients presenting invasive breast cancers varied from

Table 1 Summary characteristics of blood-derived methylation studies and breast cancer risk (n = 17)

Design Study design
Case-cohort or cohort studies, n = 2
Nested case-control studies, n = 9
Unspecified case-control studies, n = 3
Cross-sectional study, n = 1
Multiple designs, n = 2

Sample size
Total participants, 90 to 228,951
Breast cancer patients, 48 to 122,977

Population source
Europe, n = 8
Australia, n = 3
USA, n = 2
Europe and/or Australia and/or USA, n = 4

Follow-up
Duration, 2 weeks to > 20 years
Not reported in 9 studies

Breast cancer patients Mean age, 48 to 64 years old
Postmenopausal, 31 to 100%, NR in 10 studies

Invasive cancers, 88 to 100%, NR in 10 studies
ER-positive cancers, 0 to 83%, NR in 9 studies

DNA methylation measurement Timing
Before diagnosis, n = 13
After diagnosis, before treatment, n = 2
After diagnosis, unspecified, n = 1
Not reported, n = 1

Cell-type proportions
Estimated (Houseman algorithm), n = 10
Estimated, other method, n = 2
Estimated, method NR, n = 2
Not considered, n = 3

Probe design bias correction method
Functional normalizationa, n = 7
SWANa, n = 7
BMIQ, n = 2
Quantile normalization, n = 2
RCP, n = 1
Not reported, n = 4

Cross-hybridizing probes
Excluded, n = 5
Not reported, n = 12

Probes with SNP
Excluded, n = 5
Not excluded, n = 1
Not reported, n = 11

X chromosomes
Excluded, n = 5
Included, n = 4
Not reported, n = 8

Outcomes Breast cancer incidence, n = 16
Breast mammographic density, n = 1

Statistical modeling Global methylation, n = 9
Type of global methylation analysis
Average across all included probesc, n = 6
Average across pre-defined set of probesc, n = 5

Type of methylation value
Beta-values, n = 8
Not reported, n = 1

Statistical model
Logistic regression, n = 5
Cox proportional hazard model, n = 1
Non-parametric test, n = 2
Not reported, n = 1

Adjustment
Appropriate, n = 3
Incomplete, n = 4
None, n = 2

Probe-wise differential methylation, n = 16
Type of methylation value
Beta-values, n = 10
M-values, n = 4
Not reported, n = 2

Statistical model
Logistic regressionb, n = 6
Cox proportional hazard modelsb, n = 2
Beta-regression, n = 2
Linear mixed effect model, n = 2
MetaXcan method, n = 1
Linear regression with empirical Bayes methods, n = 1
Non-parametric tests, n = 1
Not reported, n = 2

Adjustment
Appropriate, n = 3
Incomplete, n = 12
None, n = 1

Multiple comparison correction
Bonferroni’s correction, n = 6
FDR, n = 3
None, n = 7

n number of studies, NR not reported, SNP single nucleotide polymorphism, SWAN Subset-quantile within array normalization, BMIQ Beta-mixture quantile
normalization, RCP Regression on Correlated Probes, DMP differentially methylated positions, FDR false discovery rate, ER estrogen receptor
an = 6 studies used both functional normalization and SWAN
bone study used both logistic regression and Cox proportional hazard models
cn = 2 studies measured both
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88 to 100% (n = 7 studies), with five studies including ex-
clusively invasive breast cancers [18, 19, 21, 30, 31]. Pro-
portion of ER-positive breast cancers varied from 0 to
83% (n = 7 studies), with only two studies including at
least 80% of ER-positive breast cancers [30, 32], and one
study including exclusively ER-negative breast cancers
[22] (Table 1 and Table S2).
Most studies measured blood-derived DNA methyla-

tion in samples collected before cancer diagnosis, esti-
mated blood cell-type proportions using Houseman’s
algorithm and used functional normalization to correct
for probe design bias. Few studies mentioned exclusion
of cross-hybridizing probes, probes containing SNPs,
and probes located on X-chromosomes (Table 1 and
Table S2). Most studies reporting global methylation
analysis across all included probes or a predefined set of
probes used methylation beta-values in conditional or
unconditional logistic regression models, with only three
out of nine studies considering all important con-
founders for adjustment [23, 24, 27]. Most studies
reporting probe-wise differential methylation analysis
used methylation beta-values, conditional or uncondi-
tional logistic regression models, Bonferroni’s correction
for multiple comparisons, with only three out of 16 stud-
ies considering all important confounders for adjustment
[23, 24, 27] (Table 1 and Table S2).

Studies of breast tissue DNA methylation
Characteristics of the three studies of breast tissue DNA
methylation are reported in Table S3 [35–37]. These
studies involved between 96 and 262 participants, in-
cluding 35 to 210 cases, drawn from hospital and tissue
bank registries, with one study using The Cancer Gen-
ome Atlas (TCGA) data [35]. These studies were mainly
cross-sectional and used samples collected after breast
cancer diagnosis, with only one study reporting samples
collection before any treatment [36]. All three studies
used the HM450k beadchip [35–37].
Included patients in these studies were between 50

and 61 years of mean age, with one study including 29%
of patients under 49 years old [37]. One study included
33% of postmenopausal patients [36], and two studies in-
cluded more than 80% of invasive breast cancers [35,
37]. Proportions of ER-positive breast cancers varied
from 63 to 98%, with two studies including more than
80% of ER-positive tumors [35, 36] (Table S3).
Only one study compared normal breast tissue of cases

to normal breast tissue of non-cases [36], whereas one
study compared tumor tissue of cases to normal tissue
of non-cases [37] and the third one compared tumor tis-
sue collected from breast cancer patients to normal
breast tissue collected from a different group of breast
cancer patients [35]. No study verified cell composition
of collected samples nor considered correction for cell-

type proportions. Correction for probe design bias was
reported by two studies [36, 37], whereas only one study
mentioned exclusion of cross-hybridizing probes and
probes containing SNPs [37] and none of them reported
exclusion of probes located on sex chromosomes. All
three studies used methylation beta-values, nonparamet-
ric tests for global methylation and probe-wise differen-
tial methylation analyses, and Benjamini-Hochberg’s
correction for multiple comparisons. No study per-
formed appropriate adjustment for breast cancer risk
and prognostic factors to control for confounding and
reverse causation bias.

Risk of bias in included studies
Overall, studies ranged from moderate to serious risk of
bias, with most studies reporting insufficient information
on selection of participants into the study and handling
of missing data to enable evaluation of risk of selection
bias. Most studies that included multiple ethnic groups
did not investigate nor correct for population stratifica-
tion bias, and few studies controlled appropriately for
potential confounding factors.

Systematic data synthesis
Studies of blood-derived DNA methylation
Among the nine studies reporting global methylation
analysis, six measured average methylation across all in-
cluded probes, of which one estimated separate associa-
tions in three different populations [33] (Table S2). Out
of the eight separate association analyses, four identified
a global hypomethylation in women who developed
breast cancer, with odds ratios ranging from 0.69 [0.50–
0.95] [31, 38] to 0.94 [0.85–1.05] [19], and one study re-
ported a trend toward a marginally lower average methy-
lation in breast cancer patients [32] (Table S2). The
three other analyses did not identify a difference be-
tween cases and controls [25, 29, 30], and no study re-
ported an opposite association. Three studies reported
analyses by CpG location [30, 33, 38], of which one re-
ported higher CpGs islands methylation in breast cancer
patients [30] whereas the two other studies did not iden-
tify an association with breast cancer risk (Table S2).
One study also reported higher methylation in CpGs lo-
cated in functional promoters but lower methylation in
CpGs located far from islands and CpGs located outside
promoters in association with breast cancer risk [38].
Five studies measured average methylation across a

pre-defined set of probes, four of which corresponded to
estimations of epigenetic age using different published
algorithms such as Horvath (353 CpGs, n = 4 studies)
[25, 29, 30, 36], Hannum (71 CpGs, n = 3 studies) [25,
29, 36], Levine (513 CpGs, n = 1 study) [25] and Weid-
ner (3 CpGs, n = 1 study) [29] epigenetic clocks. Higher
Horvath’s epigenetic age was associated with 4 to 9%
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higher risk of breast cancer in three out of four studies
(OR = 1.04 [1.01–1.08] [30], HR = 1.08 [1.00–1.17] [25],
and HR = 1.09, p-value 6.3 × 10− 5 [36]), with one study
reporting no association [29]. One study reported 10%
higher risk of breast cancer with higher Hannum’s epi-
genetic age (HR = 1.10 [1.00–1.21]) [25], whereas the
two other studies reported no association [29, 36]. One
study reported 15% higher risk of breast cancer with
higher Levine’s epigenetic age (HR = 1.15 [1.07–1.23])
[25] whereas the study that estimated Weidner’s epigen-
etic age reported no association with breast cancer risk
[29]. One study calculated a methylation index based on
31 CpGs associated with estimated lifetime estrogen ex-
posure and reported 43% higher breast cancer risk in the
fourth vs first quartile of methylation index (OR = 1.43
[1.05–2.00]) [18].
Sixteen studies performed probe-wise differential

methylation analyses, of which one study performed sep-
arate association analyses in two different populations
[33]. Out of the 17 probe-wise differential methylation
analyses, seven did not identify associations with breast
cancer risk, of which one study reported two differen-
tially methylated CpGs positions (DMP) when restricting
analyses to cases occurring within 2 years of blood draw
[19]. The other 10 probe-wise differential methylation
analyses identified between one and 806 DMP (median =
24 DMP) with no overlapping DMP between different
studies. Five genes overlapped between two different
studies but differed in the identified DMP, namely:
GRB10 [18, 25], RPH3AL [18, 25], SEMA5A [25, 33],
C7orf50 [25, 27] and XYLT1 [22, 27].

Studies of breast tissue DNA methylation
The one study that measured average methylation across
all included probes reported higher methylation in
tumor tissue of cases than in normal tissue of controls
[37], globally and in CpGs located in islands and shores
whereas CpGs located in shelves and “open sea” were
hypomethylated in tumor tissue of cases [37]. One study
measured average methylation across a predefined set of
probes corresponding to Horvath’s clock and reported
higher epigenetic age in normal breast tissue of cases
when compared with normal breast tissue of controls
[36] (Table S3).
Two studies performed probe-wise differential methy-

lation analyses and reported respectively 550 [35] and
2761 DMP [37] between tumor and normal tissue. De-
tailed analysis of overlapping DMP was not performed
because the list of DMP was not reported in one study.
No overlapping DMP was identified between studies of

blood-derived DNA methylation and studies of breast tissue
DNA methylation. Thirteen genes (IGF2BP, HIST1H3E,
CUBN, ADCY4, ZNF804A, HIST1H1A, NOX4, CYP24A1,
GLIPR1L1, CHODL, PLSCR4, CDH26 and RAD54B)

overlapped between a study of blood-derived DNA methy-
lation [25] and the study of tumor vs normal breast tissue
of different breast cancer patients [35] but differed in the
identified DMP.

Assessment of heterogeneity
Overall, patients age was not related to the observed dif-
ferences between studies results. Insufficient information
was available to evaluate the impact of other population
characteristics, such as menopausal status, and tumor
characteristics, such as tumor invasiveness and ER sta-
tus. Studies that have identified an association between
global methylation and breast cancer risk reported
follow-up periods shorter than 10 years, and one study
reported stronger associations after restricting analyses
to the first 5 years to 10 years after blood draw [38].
However, this observation was not reflected by differ-
ences in time to diagnosis for cases and was not evalu-
ated in studies reporting probe-wise differential
methylation analyses because of lacking information.

Discussion
The present systematic review of epigenome-wide DNA
methylation and risk of breast cancer indicates a consist-
ent trend toward a global blood-derived DNA hypome-
thylation and higher estimates of epigenetic age in
women who develop breast cancer. None of the identi-
fied differentially methylated CpGs in individual studies
were consistently associated with breast cancer risk
across studies and sparse data precludes any conclusions
from studies of breast tissue DNA methylation.
Although the overall strength of evidence is weak, since

most studies were at least at serious risk of bias and the
strength of associations is relatively weak, especially for epi-
genetic age, our findings are more consistent than those ob-
served from studies that have used other global DNA
methylation estimation methods such the luminometric
methylation assay (LUMA), liquid chromatography-mass
spectrometry (LC-MS) of 5-methyldeoxycytosine (5-mdC)
concentration or pyrosequencing and MethyLight assay
measuring the methylation of repetitive DNA elements (i.e.,
LINE-1, Alu, or Sat2) [39], indicating that these methods
may not capture the global DNA methylation differences
between cases and controls.
A growing body of evidence suggests that well known

breast cancer risk factors are associated with global
DNA hypomethylation and increased epigenetic age
[40], including lifestyle and dietary factors [41, 42], body
mass index [43], physical inactivity [44], and hormone
exposure [45]. Furthermore, global DNA hypomethyla-
tion has been observed in cancers [46], including breast
carcinomas, indicating that DNA methylation mediates
gene-environment interactions. However, effect of DNA
hypomethylation depends on the genomic location of
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hypomethylated CpGs [47]. In fact, while DNA hypome-
thylation of gene promoters is positively correlated with
gene transcription, hypomethylation in repetitive ele-
ments may lead to genomic instability and reactivation
of expression of transposable elements, whereas hypo-
methylation within gene bodies may disturb alternative
splicing [47]. Even though few studies included in the
present systematic review have considered CpGs loca-
tion in their analyses, there is some indication that the
variability in DNA methylation between breast cancer
cases and controls is driven by differential methylation
of CpGs located outside CpGs islands and promoters.
The lack of evidence for consistent associations be-

tween DNA methylation at specific CpGs and breast
cancer risk may be explained by methodological biases.
Because DNA methylation profiles, unlike the genome,
are subject to dynamic changes induced by genetic, en-
vironmental and stochastic factors [9], identification of a
causal relationship is challenging and requires the use of
conventional epidemiological approaches [9], which has
been largely overlooked in most included studies.
In addition to traditional causes of biases inherent in

observational designs, an important issue was related to
preprocessing of methylation data. Different methods for
data normalization have been developed for probe de-
sign bias correction, a systematic difference in methyla-
tion values distributions related to the use of two types
of probes of different chemical properties in the
HM450k BeadChip. While no single normalization
method is considered the best, functional normalization
method, which was used by most included studies, is ap-
propriate for cancer/normal comparisons and vastly dif-
ferent tissue types, where large global methylation
differences are expected [48]. When comparing the same
tissue type, functional normalization method is believed
to be inappropriate as it may obscure true differences
between individuals [48]. Moreover, few studies reported
exclusion of cross-hybridizing probes and probes over-
lapping SNPs prior to analyses, which are known to gen-
erate technical and biological artifacts that could have
confounded the results [49].
The strengths of the present systematic review include

the use of the Cochrane Reviews rigorous methodology,
the extensive and highly sensitive search strategy to re-
trieve as many relevant studies as possible, the use of a
pre-established protocol, the assessment of the risk of
bias, and the systematic analysis of results in light of
methodological strengths and weaknesses of relevant
studies. Limitations include the lack of high-quality evi-
dence and the overall serious risk of bias in included
studies, due to selection bias, confounding and data
preprocessing.
Although considered relatively stable, DNA methyla-

tion is a labile and reversible feature that may vary over

time, reflecting variation in environmental exposures
[50]. In fact, we observed that differences in follow-up
periods may have impacted detection of differences in
methylation patterns between breast cancer cases and
controls, suggesting that a point measurement of DNA
methylation may not predict lifetime breast cancer risk,
but rather could be used for short-term prediction of
breast cancer risk. It should also be kept in mind that
DNA methylation patterns are tissue-specific. While
tissue-specificity is generally considered of lesser con-
cern in studies aiming at identification of biomarkers of
exposure or disease risk, DNA methylation patterns ob-
tained from accessible surrogate tissues such as blood
can not be easily extrapolated to breast tissue [11]. In
fact, concordance between DNA methylation in different
tissues seems to be complex and locus dependent [51]
and if high inter-tissue correlation may be present when
methylation changes induced during embryogenesis are
propagated soma-wide, changes occurring during adult-
hood and ageing are more likely to remain tissue specific
[9, 51, 52]. For DNA methylation biomarkers to have the
potential to inform interventions based on epigenetic
agents for prevention or treatment of breast cancer, it is
necessary to demonstrate a mechanistic link between
DNA methylation patterns and breast cancer occurrence
[11]. Such mechanistic link could only be supported by
identification of tissue-specific DNA methylation
changes in normal breast tissue prior to breast cancer
occurrence [11].
To overcame some of the observed limitations,

epigenome-wide studies should use more conventional
epidemiological approaches, including an ethnically
homogeneous and representative sampling of breast
cancer patients and proper selection of controls to
minimize the risk of selection bias (such as the use of
nested case-control designs). Moreover, appropriate
correction of potential confounding (by adjusting or
matching for breast cancer known risk factors) should
be considered. Studies should also allow for a sufficient
lag time (time between sample collection and breast
cancer diagnosis) to minimize the risk of reverse caus-
ation (effects of an underlying breast cancer not yet di-
agnosed). In addition, studies should consider the
impact of time to diagnosis for cases and length of
follow-up in controls as changes in methylation status
due to variation in environmental exposures can occur
during long follow-up periods and bias the observations
toward the null (toward weaker associations or no asso-
ciation). Finally, data preprocessing should avoid func-
tional normalization methods, which are not suitable
for detection of discreet differences between samples
from the same tissue type, and should exclude cross-
hybridizing probes and probes overlapping SNPs prior
to analyses.
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While epigenome-wide DNA methylation methods are
particularly suitable for hypothesis generation, as they
capture the dynamics of several sites simultaneously
across the entire genome, their findings, particularly dif-
ferential methylation of specific CpGs sites and related
genes, should be validated using a different measure-
ment method, with higher sensitivity and specificity,
such as PCR-based methods in a candidate-gene methy-
lation approach. In addition, any detected methylation
differences should be supplemented by transcriptional or
protein expression analysis to confirm their functional
impact and its association with breast cancer occurrence
[53]. Once validated, specific CpGs methylation status,
and expression value of related genes, could be used in
prospective study designs to generate comprehensive
predictive models, integrating clinical characteristics and
environmental risk factors that would accurately predict
breast cancer risk for each woman.

Conclusions
Since the launch of the high-throughput HM450k Bead-
Chip for epigenome-wide interrogation of DNA methy-
lation, many epigenome-wide studies have tried to
identify high-risk methylation patterns associated with
breast cancer risk. Despite methodological differences
between studies, we observed a trend toward an associ-
ation of global blood-derived DNA hypomethylation and
higher epigenetic age with breast cancer risk in women.
Further epigenome-wide studies should use more con-
ventional epidemiological approaches, including an eth-
nically homogeneous and representative sampling of
breast cancer patients, proper selection of controls and
proper correction of potential confounding, in addition
to considering the impact of time to diagnosis for cases
and length of follow-up in controls and choosing proper
data preprocessing methods.
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