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Abstract

Background: Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and
mortality. Colon adenocarcinoma (COAD) is the main pathological type of colon cancer, and much evidence has
supported the correlation between the prognosis of COAD and the immune system. The current study aimed to
develop a robust prognostic immune-related gene pair (IRGP) model to estimate the overall survival of patients
with COAD.

Methods: The gene expression profiles and clinical information of patients with colon adenocarcinoma were
obtained from the TCGA and GEO databases and were divided into training and validation cohorts. Immune genes
were selected that showed a significant association with prognosis.

Results: Among 1647 immune genes, a model with 17 IRGPs was built that was significantly associated with OS in
the training cohort. In the training and validation datasets, the IRGP model divided patients into the high-risk group
and low-risk group, and the prognosis of the high-risk group was significantly worse (P<0.001). Univariate and
multivariate Cox proportional hazard analyses confirmed the feasibility of this model. Functional analysis confirmed
that multiple tumor progression and stem cell growth-related pathways were upregulated in the high-risk groups.
Regulatory T cells and macrophages M0 were significantly highly expressed in the high-risk group.

Conclusion: We successfully constructed an IRGP model that can predict the prognosis of COAD, providing new
insights into the treatment strategy of COAD.
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Background
According to the latest GLOBOCAN [1] report, colorec-
tal cancer (CRC) is the third most commonly diagnosed
cancer worldwide (10.2%) and has the second-highest
mortality rate (9.2%). Approximately 145,600 new colo-
rectal cancer cases occur each year in the United States,
among which 101,420 cases are colon cancer, and the

remainder is rectal cancer [2]. In recent years, colon
cancer mortality has continued to rise in many countries
with limited resources and health infrastructure, particu-
larly in South America and Eastern Europe [3]. Colon
adenocarcinoma (COAD) is the primary pathological
type of colon cancer. Surgery combined with postopera-
tive chemotherapy is currently the main treatment for
COAD. However, the survival of COAD has improved due
to the continuous advancement of surgical technology.
However, postoperative recurrence and chemotherapy
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resistance remain two major obstacles to the long-term sur-
vival of patients [4–6].
With the development of high-throughput omics,

various omics techniques, such as whole-genome se-
quencing, epigenomics, and proteomics, have been
applied to study COAD [7–10]. Increasing evidence
has shown that COAD is not a consistent disease
type but a molecularly heterogeneous disease com-
prising a series of genetic changes [11]. Tumor het-
erogeneity can alter the tumor growth rate, invasive
ability, sensitivity to drugs, prognosis and other as-
pects, making it one of the main obstacles affecting
tumor treatment [12, 13]. Therefore, dividing patients
with COAD into different risk groups based on gene
expression profiles helps to predict the risk of tumor
progression or metastasis and recurrence and is a ne-
cessary prerequisite for proper individualized treat-
ment [14–16].
There is increasing evidence that the immune system

plays an important role in the occurrence and develop-
ment of cancer [17–19]. For example, Salem M [20]
found that disrupting the cell surface receptor
glycoprotein-A repetitions predominant (GARP) on acti-
vated regulatory T (Treg) cells reduces immune toler-
ance and the development of colon cancer. In recent
years, a method based on the relative ranking of gene ex-
pression levels was proposed to eliminate the shortcom-
ings of data standardization and scaling in gene
expression data processing, achieving reliable results in
various studies [21, 22]. The present study selected im-
mune genes that are significantly associated with the
prognosis of COAD. Next, we integrated these genes to
construct an immune-related gene pair (IRGP) risk
model and verified its feasibility as a prognostic marker
for COAD.

Methods
Sources of colon adenocarcinoma patients
The data analyzed in this study were all obtained from
public databases. The training cohort datasets were
downloaded from TCGA (https://tcga-data.nci.nih.gov/
tcga) [23], and the validation datasets were obtained
from GEO (https://www.ncbi.nlm.nih.gov/geo/). The
training cohort datasets included clinical datasets (n =
452), transcriptome datasets (n = 449), and verification
datasets from GSE39582 (n = 585) [24] and GSE17538
(n = 244) [25].

Data processing
The human General Transfer Format (hunman.gtf) from
Ensemble (https://www.ensembl.org/index.html) [26]
was downloaded, and the TCGA data were annotated
using Perl language [27]. The chip data file (GSE39582
and GSE17538) was preprocessed using Perl language

through the annotation file of the GPL570 platform.
Using the above operations, all the gene probe IDs were
converted to corresponding gene symbols. To analyze
the correlation between the IRGP signature and progno-
sis in COAD, only patient data containing complete
overall survival (OS) were selected.

Establishment of the prognostic immune-related gene
pair (IRGP) model
We downloaded a list of immune-related genes
(IRGs) from IMMPORT (https://www.immport.org/)
[28], a website with open access to immunoassay
data for translation and clinical research. Next, the R
language [29] limma package (version 3.42.2) was
used to control the list to screen out the IRGs in the
downloaded TCGA transcriptome data. To further
select valuable IRGPs, we measured and stored IRGs
with a relatively high variation on all the platforms
in this study (as determined by the median absolute
deviation (MAD) > 0.5) [30]. The expression levels of
IRGs in each sample in the transcriptome, GSE39582
and GSE17538 were compared in pairs to form each
IRGP according to a previously validated method
[22]. Specifically, in the pairwise comparison of each
sample, if the expression level of the first gene is
greater than that of the second gene, the output is 1;
otherwise, it is 0. Samples with a ratio of 0 and 1
less than 20% were deleted to retain gene pairs that
may be related to survival. These IRGPs were
merged with the survival time of the clinical data
downloaded by the corresponding platform to evalu-
ate the correlation between each IRGP in the train-
ing dataset and overall survival rate of the patient.
Based on previous reports [31, 32], we used the R
language survival software package (version 3.1–11)
to perform univariate Cox regression analysis and
P < 0.001 to screen the effective IRGPs in the TCGA
data. From these IRGPs, we used R language for
Lasso Cox proportional hazards regression (glmnet
software package, version 3.0–2) to construct the risk
score, and the final prognostic model was defined
using 17 gene pairs. Finally, in the training cohort,
we set the overall survival to 5 years and constructed
the time-dependent receiver operating characteristic
(ROC) curve (survivalROC, version 1.0.3) to deter-
mine the best cutoff value for the risk score and div-
ide patients into low-risk and high-risk groups
accordingly.

Further validation of the model
Using the R package survival and survminer (version
0.4.6), Kaplan–Meier plots were applied to establish
survival curves for the high-risk and low-risk groups
in the training and verification cohorts. The
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differences in the survival curves were analyzed using
the log-rank test. Cox proportional hazards analysis
was used for univariate and multivariate analyses to
assess the effect of the risk score and other clinical
factors.

Gene expression profiles (GEPs) of immune cell
infiltration in tumors
We used CIBERSORT [33] to infer the relative abun-
dance of tumor-infiltrating immune cells in different
risk groups. CIBERSORT estimated the putative pro-
portion of infiltrating immune cells using a reference
set with 22 sorted immune cell subtypes for each
sample in the training cohort and validation cohorts.
Monte Carlo sampling was used in CIBERSORT to
calculate the P-value of the deconvolution of each
sample to provide the estimated confidence. The per-
mutation is set to greater than 100, and the corre-
sponding P-value is generated.

Gene set enrichment analysis (GSEA)
The chemical and genetic perturbation analysis-related
documents involved in the study were downloaded from
the Molecular Signature Database (MSigDB C2, version
7.1) (https://www.gsea-msigdb.org/gsea/datasets.jsp).
GSEA [34] was performed using the R package fgsea
(version 1.12.0) with default parameters. A log 2-fold
change was made between GEPs in the high-risk vs low-

risk groups. The difference in the gene sets between the
high- and low-risk groups was compared. Differences
with an FDR-adjusted P < 0.05 were defined as
significant.

Statistical analysis
For all the above tests, a P-value less than 0.05 denoted
the presence of a statistically significant difference. Stat-
istical significance was indicated as follows: *P < 0.05,
**P < 0.01, ***P < 0.001.

Results
Construction of the prognostic IRGP model
The TCGA transcriptome data were used as a train-
ing cohort. From the list of immune-related genes
(IRGs) obtained by IMMPORT, the genes in the
transcriptome data were searched in turn, and 1647
IRGs were identified. To ensure relatively high vari-
ation in the genes of the two platforms, we retained
325 IRGs with a median absolute deviation (MAD) >
0.5. In total, 40,375 pairs were deleted with a ratio of
0 and 1 less than 20%. Next, 12,275 immune-related
gene pairs (IRGPs) were built based on these 325
IRGs. After univariate Cox regression analysis of
these IRGPs in the training group, 28 potential prog-
nostic IRGPs remained. Using Lasso Cox propor-
tional hazards regression to define the model on the
training set, 17 IRGPs were retained to form the final

Table 1 List of immune-related genes for constructing prognostic models

IRG1 Category IRG2 Category Coefficient

CXCL14 Cytokines BST2 Antimicrobials −0.32

RBP7 Antimicrobials PTGS2 Antimicrobials 0.26

RBP7 Antimicrobials ARG2 Antimicrobials 0.23

APOD Antimicrobials IL17RB Cytokine_Receptors 0.05

C5AR1 Chemokine_Receptors NR3C2 Cytokine_Receptors 0.18

IL10RA Cytokine_Receptors TNFRSF11A Cytokine_Receptors 0.12

STC2 Cytokines HNF4G Cytokine_Receptors 0.29

RBP1 Antimicrobials STC2 Cytokines −0.63

GNAI1 Antimicrobials GRP Cytokines −0.24

CCL4 Antimicrobials INHBB Cytokines −0.19

ABCC4 Antimicrobials GRP Cytokines −0.28

ARG2 Antimicrobials GRP Cytokines −0.37

CCR7 Antimicrobials INHBB Cytokines −0.31

CD86 Antimicrobials IL7 Cytokines 0.28

INHBB Cytokines PDGFC Cytokines 0.50

TNFRSF11A Cytokine_Receptors LCK NaturalKiller_Cell_Cytotoxicity −0.34

RORC Cytokine_Receptors PRKCQ TCRsignalingPathway −0.36

Abbreviation: IRG immune-related gene
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prognostic risk model. These IRGPs comprised 26
unique IRGs, most of which are antibiotics, cytokine
receptors and cytokine-related molecules (Table 1).
Next, the risk score for each patient in the TCGA
dataset was calculated based on the model. Finally,
we used a time-dependent ROC curve analysis to
classify patients into high- or low-immune risk
groups. The optimal cutoff value for the risk score
was set to − 0.576 (Fig. 1). This value successfully
stratified the patients in the training cohort into
high- and low-risk groups. In other words, the over-
all survival (OS) of the low-risk group was signifi-
cantly higher than that of the high-risk group
(Fig. 2a). We further performed univariate and multi-
variate Cox proportional hazards analyses to test
whether the IRGP model predicted survival inde-
pendently of other prognostic factors in the TCGA
cohort. Among these analyses, the risk score of the
model can be used as an independent prognostic fac-
tor (Fig. 3a, b).

Verification of the feasibility of the IRGP model to predict
survival
To determine whether the model had consistent
prognostic value in different risk groups, we applied
the model to GSE39582 and GSE17538 as external

Fig. 1 Time-dependent ROC curve for IRGPs risk model in the
training cohort. Risk score of − 0.576 which was used as cut-off value
for the model to stratify patients into high risk group or low risk
group. Abbreviations: ROC, receiver operating characteristic; IRGPs,
immune-related gene pairs

Fig. 2 Kaplan-meier curves of OS among different risk groups. Patients were stratified by immune-related gene pairs model. OS among patients
in the training (a) and validation cohorts(b). Abbreviation: OS, overall survival
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validation. The patients in the verification cohort
were divided into two groups according to the risk
score. The OS of subgroups in the low-risk group in-
creased significantly (Fig. 2b, Figure S1A). After per-
forming univariate and multivariate Cox proportional
hazards analyses in the validation group, we found
that the results were similar to those of the training
group, and the high risk score of this model suggests
a poor prognostic factor (Fig. 3c, d, Figure S1B and
Figure S1C).

Immune cell infiltration in different risk groups
Previous studies have revealed that tumor-infiltrating
immune cells are related to prognosis [35]. To deter-
mine the infiltration of specific tumor immune cell
subsets, we used CIBERSORT to estimate the rela-
tive proportion of 22 different immune cells per pa-
tient in different risk groups. Three radar charts
depict a comparative summary of various immune
cells in these two risk groups (Fig. 4, Figure S2 and
Figure S6). In the training cohort, we found that

Fig. 3 Univariate and multivariate analyses of prognostic factors in the training and validation cohort. a and c represent the univariate analysis of
training cohort and validation cohort, respectively. b and d represent the multivariate analyses of the training cohort and the validation
cohort, respectively
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activated dendritic cells, resting dendritic cells, eo-
sinophils, M0 macrophages, monocytes, resting CD4
memory T cells and regulatory T cells (Tregs) were
enriched in different risk groups. Among them, regu-
latory T cells (Tregs) and M0 macrophages were sig-
nificantly and highly expressed in the high-risk
group, and the rest were highly expressed in the
low-risk group (Fig. 5). The high-risk group of
GSE39582 highly expressed M0 macrophages, M1
macrophages, monocytes, neutrophils, CD8 T cells
and follicular helper T cells (Figure S3). The high-
risk population in GSE17538 also highly expressed
monocytes and Tregs (Figure S7).

Functional evaluation of the IRGP model
To investigate the expression signatures of genetic
perturbations that were significantly altered by the
IRGP model, GSEA was performed in the high-risk
and low-risk groups in the TCGA cohort. The

bubble chart revealed that genes in the high-risk
populations were enriched in stem cells and various
advanced tumors (Fig. 6). The top five genetic per-
turbations in the high-risk group were enriched stem
cells, increased breast cancer ductal invasion, a mul-
ticancer invasiveness signature, increased advanced
vs early-stage gastric cancer and enriched mammary
stem cells (Fig. 7). We also obtained similar results when
performing the above analysis on GSE39582 and
GSE17538 (Figure S4, Figure S8). The high-risk group
genes in GSE39582 were significantly enriched in breast
cancer ductal invasion and stem cells (Figure S5). The
GSEA results obtained in GSE17538 also showed that the
high-risk group genes are enriched in tumor cell growth
and invasion (Figure S9).

Discussion
Colon cancer is the most common type of gastrointes-
tinal cancer and has high morbidity and mortality.

Fig. 4 Summary of the 22 immune cells’ abundance estimated by CIBERSORT for different risk groups. P-values are based on t-test(*P < 0.05,
**P < 0.01, ***P < 0.001)
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Approximately 95% of colon cancer is colon adenocar-
cinoma (COAD). In recent years, immunotherapy has
been a hotspot in the research of major tumor types. In
the COAD field, studies on the high-level microsatellite
instability (MSI-H) population have been performed suc-
cessively since 2015. The Keynote 016, Keynote 164,
Checkmate 142, and NICHE clinical trial results all
indicate the extraordinary efficacy of immunotherapy
[36–39]. Patients with MSI-H have a better prognosis
than those with microsatellite stability (MSS). How-
ever, the MSI-H population accounts for only ap-
proximately 10% of COAD. Most patients still face
the dilemma of not having an effective prognostic in-
dicator. Thus, the determination of new prognostic
biomarkers is urgent to predict the survival of colon
adenocarcinoma patients.
To obtain the robustness of the prognosis predic-

tion in this study, we adopted a method for data ana-
lysis without considering the technical deviation of
different platforms. The newly established prognostic
model is based on the ranking and pairing compari-
son of relative gene expression values; thus, data pre-
processing, such as scaling and normalization, is not
required. This method has reliable results in many
studies [40, 41].
In this study, we identified an immune-related gene

pair model to predict the overall survival for colon
adenocarcinoma. The prognostic model comprises 17
immune-related gene pairs containing 26 unique
immune-related genes. Most genes in this immune
model are cytokine receptors and cytokines, which
play a vital role in the adaptive immune response.

Among these IRGs, no evidence supports that the
overexpression of IL17RB can enhance the invasion
and metastasis of thyroid cancer cells [42]. STC2
overexpression is associated with a poor prognosis in
patients with nasopharyngeal carcinoma (NPC) and
can be used as a predictor of NPC responses to radi-
ation [43]. The increase in IL-7 in colorectal cancer
(CRC) is related to metastatic disease and tumor loca-
tion [44]. Decreased CXCL14 expression indicates a
poor prognosis and causes metastasis in colon cancer
[45]. GRP signaling alters the invasion of colon can-
cer through heterochromatin protein 1Hsβ and can
improve the prognosis of patients with colon cancer
[46]. Moreover, regulatory T cells (Tregs) and M0
macrophages are related to the poor clinical prognosis
of many patients with cancer [47, 48]. Dendritic cells
are associated with cancer immunity and a favorable
prognosis [49]. At the same time, the immune cell
types M0 macrophages, M1 macrophages, monocytes,
neutrophils, CD8 T cells and follicular helper T cells
in the high-risk group of GSE39582 are all related to
tumor progression and poor prognosis [50–53]. These
findings are consistent with our results. In this study,
we also found that several expression characteristics
of genetic perturbations, such as increased stem cells,
increased breast cancer ductal invasion, a multicancer
invasiveness signature, increased advanced vs early
gastric cancer and increased mammary stem cells,
were related to the IRGP model. These results were
verified by corresponding experiments [54–58], con-
firming their importance in tumor development and
cell growth. These findings indicate that the IRGP

Fig. 5 The abundance distribution of specific immune cells’ within different risk groups. T cells regulatory and Macrophage M0 were significantly
highly expressed in the high-risk group, while the rest were significantly higher in the low-risk group
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model may play an essential role in tumor invasive-
ness and progression in COAD.
The difference between this study and previously

published studies [59] is that the IRGP model was
established based on the TCGA database. Second,
our strategy to establish a prognostic model was dif-
ferent. To screen out immune-related gene pairs that
are significantly related to OS in patients with colon
cancer, we used univariate Cox regression analysis
before determining the final model using Lasso re-
gression analysis. Finally, we conducted GSEA in the
training and validation cohorts to further analyze the
specific differences between the high- and low-risk
groups. We found that the high-risk group genes
were significantly enriched in tumor cell invasion
and growth.

Similar to all RNA-seq and microarray analyses,
our study had limitations. First, the training dataset
to build the immune model was obtained from a
retrospective study, which included fresh frozen
samples; the stability and efficiency of formalin-
fixed and paraffin-embedded (FFPE) samples remain
questionable. Therefore, it may be necessary to add
more datasets with different sample attributes for
more extensive verification. Second, because the
prognostic model was based on TCGA and other
databases, it required proficiency in bioinformatics.
Additionally, the gene expression profiles produced
by RNA-seq or microarray platforms require high
prices and long conversion cycles. Therefore, this
method is challenging to popularize in daily clinical
applications.

Fig. 6 The expression characteristics of genetic perturbations significantly changed by the IRGPs model. A number of these gene sets come in
pairs: xxx_UP (and xxx_DN) gene sets representing genes induced (and repressed) by the perturbation

Luo et al. BMC Cancer         (2020) 20:1071 Page 8 of 11



Conclusions
In summary, our immune-related gene pair model can
provide an evaluation reference for the prognostic risk
of patients with colon adenocarcinoma. The immune-
related model was associated with the prognosis of pa-
tients with COAD. The tumor-infiltrating immune cells
and genetic perturbations distinguished by this model in
the high- and low-risk groups can further elucidate the
role of our prognostic model in the development of
colon adenocarcinoma. Therefore, the risk model will be
a useful tool to better evaluate patients who may benefit
from immunotherapy.
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