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Abstract

of genome surveillance system.

Background: Loss of the genomic stability jeopardize genome stability and promote malignancies. A fraction of
ovarian cancer (OvCa) arises from pathological mutations of DNA repair genes that result in highly mutagenic
genomes. However, it remains elusive why the ovarian epithelial cells are particularly susceptible to the malfunction

Methods: To explore the genotoxic responses in the unique context of microenvironment for ovarian epithelium
that is periodically exposed to high-level steroid hormones, we examined estrogen-induced DNA damage by
immunofluorescence in OvCa cell lines, animal and human samples.

Results: We found that OvCa cells are burdened with high levels of endogenous DNA damage that is not
correlated with genomic replication. The elevation of damage burden is attributable to the excessive concentration
of bioactive estrogen instead of its chemomimetic derivative (tamoxifen). Induction of DNA lesions by estrogen is
dependent on the expression of hormone receptors, and occurs in G1 and non-G1 phases of cell cycle. Moreover,
depletion of homologous recombination (HR) genes (BRCAT and BRCA?2) exacerbated the genotoxicity of estrogen,
highlighting the role of HR to counteract hormone-induced genome instability. Finally, the estrogen-induced DNA
damage was reproduced in the epithelial compartments of both ovarian and fallopian tubes.

Conclusions: Taken together, our study disclose that estrogen-induced genotoxicity and HR deficiency perturb the genome
stability of ovarian and fallopian epithelial cells, representing microenvironmental and genetic risk factors, respectively.
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Background

Cancer genomes accumulate mutations upon loss of gen-
ome stability. During carcinogenesis and progression of can-
cer, cells are challenged by various genotoxic insults, which
pose threats to genomic stability [1, 2]. Encounter of DNA
lesions requires efficient DNA damage responses (DDR) to
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prevents loss and gain of genetic information. DNA lesions
can be quickly monitored by ATM (Ataxia-Telangiectasia
mutated) and ATR (A-T-related)-mediated cell cycle check-
point [3], followed by actions of repair factors such as
RADS51, BRCA1 and 53BP1 to eliminate DNA breaks. For
DNA double strand breaks (DSBs) that generated frequently
during genomic replication, appropriate repair pathways
including non-homologous end joining (NHE]) and hom-
ologous recombination (HR) are activated in G1 and S/G2
phases, respectively [4—6]. For HR, RAD51 is the essential
recombinase, whose recruitment to DNA breaks is
dependent on RPA-coated ssDNA (single-strand DNA)
filaments and HR mediator factors (ie. BRCA2) [7, 8].
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Loss of DDR function via deleterious mutation impair
genomic stability, and consequently lead to high-frequent
point mutations and structural variation at chromosomal
level, which eventually promote carcinogenesis [9, 10]. For
example, pathogenic mutations (ie. BRCA1, BRCA2) that
debilitates HR are frequently associated with increase of
cancer predisposition, manifested in 17.1% of the familial
and sporadic breast cancer patients [11-13]. Similarly, ~
50% cases of high-grade ovarian cancers carry BRCAI and
BRCA2 mutations, causing high-incidence of homologous
recombination deficiency (HRD) [14-16]. Although HR
mutations, including those arisen from familiar and her-
editary sources, affect all types of proliferating cells, risk of
malignancies are mainly limited in tissues like breast,
ovary and prostate [17, 18]. Up to date, it remains mysteri-
ous why the epithelial compartments in these tissues are
uniquely susceptible to carcinogenesis upon HR ablation.

Steroid hormones including estrogen, progestogen, an-
drogen, and possibly their derivatives, are genotoxic to
ovarian epithelial cells that expressing hormone receptors
[19]. Activation of hormone receptors (ie. ER) can induce
DSBs and require Topoisomerase II (TOP2) to resolve
decatenated DNA. It was reported that endogenous DNA
lesion is transiently elevated in G1 phase of breast cancer
cells upon increased concentration of estrogen [20].
BRCAL1 and endonuclease activity of MRE11 is obligated
to remove TOP2 adducts-associated DSBs. Although this
model points to the resolution of estrogen-induced TOP2
adducts, and can be expanded to ovarian epithelium
whose microenvironment is periodically flushed with even
higher concentration of estrogen [21], it does not thor-
oughly explain the susceptibility of breast/ovarian epithe-
lium to other HR mutations (ie. BRCA2), which functions
in S/G2 phase instead of G1. Moreover, the genomic foot-
prints in BRCAI-mutated breast cancer are distinct from
those bearing BRCA2 mutations, implying the involve-
ment of different mutational processes/mechanisms [22].

Here, we hypothesized that estrogen-induced genotoxi-
city contributes to the tissue susceptibility of ovarian epi-
thelium to HRD. We characterized the DDR patterns
using cell lines, clinically derived ovarian cancer tissues as
well as mouse models. We show that arising of DNA
breaks are independent of proliferation of OvCa cells, and
thus irrelevant to erroneous genomic DNA replication. In-
stead, high-level estrogen contributes to the accumulation
of DNA lesions in ER-positive OvCa, which act in both
G1 and non-G1 phases of cell cycle. ER-induced genotoxi-
city requires functional HR. At last, estrogen-induced gen-
otoxicity was rigorously reproduced in non-cancerous
epithelial compartment of ovary and fallopian tubes.
Altogether, we conclude that estrogen specifically chal-
lenge the genomic integrity in ovarian epithelium. This
demands the functional HR to curb the carcinogenesis of
ovarian cancer.
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Methods

Cell culture

Cancer cell lines were grown in Dulbecco’s DMEM sup-
plemented with 10% calf serum plus 100 U/ml Penicillin
and 100 mg/ml streptomycin. SKOV-3 (HTB-77) and
A549 (CCL-185™) were purchased from ATCC. HO8910
(3111C0001CCC000280) and HO8910-PM (3111C0001C
CC000281) were purchased from National Infrastructural
of Cell Line Resources, Beijing. OVCAR-8TR and L02
lines were gifted by collaborating laboratory. Cell lines
were authenticated upon purchase and regularly tested for
mycoplasma contamination.

Biopsies, cryosections and ex vivo culture of ovarian
tissue

Ovarian tissues diagnosed with OvCa were used in this
study along with one ‘healthy” ovary without detectable
malignancy. Freshly excised tissue blocks were embed-
ded in OCT, followed by snap frozen in liquid nitrogen
and stored in -80 °C. Deep frozen tissue blocks were sec-
tioned at 8 pm using microtome (LEICA, CM3050 S).
For ex vivo culture of OvCa biopsies, freshly excised tis-
sues were subjected to mincing and enzymatic digestion
(Collagenase A, Roche, 10,103,578,001; Trypsin, GIBCO,
25200-056) for 2 h with occasional vortex. Isolated sin-
gle cells were dispersed in RPMI-1640/10% FBS and
grown in media supplemented with 10 mg/ml Matrigel
(BD, 356234). After 48 h, experiments were performed
when 70% of cells were attached.

In vivo experiments

Eight reproductively mature female mice (C57/B6, 6 weeks
old) were divided into two groups: group A, no estrogen
treatment; group B, intraperitoneal injection with estrogen
(Selleck, S1709, 1 mg/kg) for 6h. Dissected liver, ovary
and fallopian tube were instantly frozen in liquid nitrogen
and cryosectioned for indirect immunofluorescent stain-
ing. All animals were housed in standard SPF condition
throughout the experiments. Animals were sacrificed with
minimal pain by neck broken protocol following approved
CO2 euthanasia procedure.

Immunostaining and fluorescence microscopy

Cryopreserved sections or cells grown on coverslip were fix
with 4% paraformaldehyde (PFA) and permeabilize with
0.3%TritonX-100, followed by blocking in PBS with
3%BSA, 3% donkey serum and 0.2% Triton X-100. Primary
antibodies were diluted with antibody buffer (3% Triton/
10% BSA in PBS) and incubated overnight: phoshpo-
BRCA1 (Bethyl, A300-001A, 1:1000), phosphor-RPA32
(NOVUS, NB100-544,1:3000), RAD51 (Proteintech, 14,
961-1-AP, 1:500), Cyclin A2 (Huabio, ET-1612-26,1:500),
anti-53BP1 (Bethyl, A300-272A,1:1000), anti-yH2AX (Milli-
pore, 05-636,1:500), anti-BRCA?2 (Invitrogen, MA5-32986,
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1:500). Fluorescent images were acquired using OLYMPAS
(BX51) and images were processed analysed using Image-
Pro Plus software.

Chemical treatments

Cells were treated with hormones at the following concen-
trations: tamoxifen (Sigma, T5648), 50 nM; estrogen (1703-
estradiol, Wako), 50 nM. Intraperitoneal injection of estra-
diol (Selleck, S1709, 1 mg/Kg) was applied to animals.
Time of treatment are described for each experiment.

RNA interference and RT-PCR

Lipofectamine 3000 transfection kit (Invitrogen, 3,000,
015) was used for siRNA transfection for cells grown to
70% confluency. Cells were collected 48 h after transfec-
tion for indicated experiments. Individual siRNA duplexes
used were: BRCA1 (target sequence: UCUGCUGUAU
UGGAACAAAUU); BRCA2 (target sequence: AAC AAC
AAUUACGAACCAAACUU). Knockdown efficiencies of
these genes are shown in Supplementary Figure 2. To
quantify gene expression levels, total cellular RNA was ex-
tracted by using TRIzol® Reagent (Invitrogen) and cDNA
was synthesized using Eastep RT Master Mix Kit (Pro-
mega). RT-PCR products were visualized by agarose gel
electrophoresis. mRNA levels were normalized using
GAPDH or actin RNA as internal control.

Statistical analysis

The Student’s t-test was performed on all data analysis.
Each experiment had at least three independent bio-
logical replicates. Unless otherwise specified, data are
showed as mean * s.em. p <0.05 was considered to be
statistically significant. Excel and GraphPad Prism was
used to create the graphs and calculate the p value.

Results

Endogenous DNA damage in OvCa cells is not correlated
with genomic replication

In advanced stages of cancer, uncontrolled DNA replica-
tion in fast-proliferating cancer cells can increase the
chances of DNA damage. To evaluate the level of endogen-
ous DNA damage in OvCa cells, we examined the activa-
tion of DSB repair factors in OVCAR-8TR cells. In
comparison with hTERT-transformed human primary cells
(RPE1, non-cancerous) without obvious DNA breaks, ~
11-17% percentage of OVCAR-8TR cells were marked
with foci of 53BP1, phosphorylated RPA32 and BRCA1
(Fig. 1a), indicating significant levels of endogenous DNA
damage in OvCa cells.

Endogenous DNA breaks in OvCa cells were further
solidified by assays in ex vivo culture from fresh surgical
biopsies. We found 63% primary OvCa cells displayed
endogenous 53BP1 foci (> 3 per cell) (Fig. 1b). However, it
seems that the basal level of 53BP1 was not correlated
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with the genomic replication in ex vivo culture, as mani-
fested by the low rate of BrdU-positive OvCa cells (2%).
Thus, we conclude that OvCa cells suffer from strong gen-
otoxic burden that is not accompanied by genomic
replication.

Estrogen triggers DNA breaks in OvCa cells
Ovarian surface epithelium is periodically exposed to high
level of steroid hormones (estrogen and progesterone),
triggering cycles of proliferation, damage and repair
known as ovulation trauma [23]. Besides potent prolifera-
tion stimulation, estrogen also has a direct genotoxic im-
pact on estrogen-positive cells (ie. breast), albeit the
precise mechanism remains elusive [24—26]. We hypothe-
sized that the high level of endogenous DNA lesions ob-
served in above OvCa cells, including a significant fraction
of from replication-independent damage, may largely arise
from exposure to estrogen containing in culturing media.
To determine the impact of steroid hormones on the
origin of DNA lesions in ovarian cells, estrogen was
added to proliferating OVCAR-8TR cells, followed by
the monitoring of 53BP1 and yH2AX-represented DSBs.
Clearly, addition of 50 nM estrogen for 12 h elevated the
endogenous level of 53BP1 and yH2AX foci, indicating a
robust generation of DNA breaks upon steroid stimula-
tion (Fig. 2a-b). These hormone-induced DNA lesions
were correlated to the expression levels of estrogen nu-
clear receptor (ER), as cells originated from non-female
reproductive tissues including L02 (liver) and A549 (lung
cancer) displayed minimal basal level of YH2AX (< 1 per
cell), and did not respond to estrogen treatment (Fig.
2b). Coherently, expression levels of ER in OvCa cells
(OVCAR-8TR, HO-8910 and HO-8910PM) as mea-
sured by RT-PCR were appreciably higher than L02 and
A549 cells (Fig. 2c). Furthermore, addition the same
concentration of tamoxifen, which is the chemical
mimics of estrogen but biologically inactive, did not in-
duce equivalent number of 53BP1 foci in OVCAR-8TR
cells (Fig. 2d). Thus, we conclude that exposure of ER-
positive OvCa cells to estrogen triggers genotoxicity.

Estrogen-induced genotoxicity in different cell cycle phases
Sasanmura et al. detected DSBs in G1 phase upon estrogen
induction20, in which stage HR is not active due to the ab-
sence of homologous sister chromatids. We investigated if
the estrogen-dependent elevation of 53BP1 occurs in cell
cycle phases beyond G1. Although previous work described
foci formation after treatment with 10 nM estrogen for 2 h
in MCF-7 cells, DNA lesions were not detectable shorter
than 6 h in OVCAR-8TR cells. In asynchronized OVCAR-
8TR culture, YH2AX increase (> 10 foci per cell) was ob-
served in 40% of cyclin A-positive cells, which represents
G1 phase cells (Fig. 2e). This is consistent to the estrogen-
induced accumulation of 53BP1 foci in serum starved
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Fig. 1 Uncoupled elevation of DNA damage and genomic replication in ovarian cancer cells. a, Indirect immunofluorescent (IF) staining of
endogenous foci formation of indicated repair factors in OVCAR-8TR and RPE1 cells (upper panel) and quantifications for positive cells (lower
panel). 53BP1, RPA32-pSerine 33 and BRCA1-pSerine1524 were monitored by specific antibodies. ***: p < 0.001, two-tailed unpaired t-test. Three
biological replicates were analyzed. b, Representative images (upper) and quantification (lower) for 53BP1-positive cells (> 3 per cell) in primary
cells isolated from three independent OvCa biopsies after culturing in RPMI1640/Matrigel for 48 h. BrdU-positive cells were quantified in parallel.

OVCAR-8TR cells (Fig. 2f), confirming the impact of estro-
gen on G1 cells. In parallel, we also detected comparable
elevation of 53BP1 in a subpopulation of cyclin A-negative
cells (29%), indicating that non-G1 phase cells (S/G2 and
mitosis) are also liable to the genotoxicity of estrogen (Fig.
2e). Consistently, arresting cell cycle in S phase by pre-
treating OVCAR-8TR with hydroxyurea produced a re-
markable additive elevation of 53BP1 foci on top of estro-
gen exposure, indicating that S-phase cells are sensitive to
estrogen (Fig. 2g). Thus, estrogen-induced genotoxicity can
occur in both G1 and S phases of OvCa cells, implying the
involvement of HR-dependent and independent mecha-
nisms to eliminate these damages.

Activation of HR upon estrogen exposure

In the light of the specific impact of estrogen on ER-positive
OvCa cells, we predict ovary-derived epithelial cells are
more dependent on HR genes (ie. BRCAI/BRCA2) than
ER-negative cell types. We first examined the activation of
BRCAL1 by its phosphorylated form (pS1524), and noticed a
ubiquitous phosphorylation signals in OvCa biopsies of both
borderline and higher malignant stages (moderately differ-
entiated) (Fig. 3a). A complete negativity in normal ovarian
tissues was observed in parallel. Reminiscent of the 53BP1
foci formation in ex vivo culture (Fig. 1b), the ratio of phos-
phorylated BRCAL1 positivity is as high as 85% in cancerous
epithelial cells, while the corresponding proliferation rate

was only 11% as indicated by Ki67 positivity (Fig. 3b). These
observations imply that BRCA1 can be activated in both
resting and proliferative OvCa cells, consistent to its dual
function in G1 phase (cooperating with MRE11 nuclease)
and S/G2 (facilitating resection and committing HR).

Secondly, recruitment of HR factors to DNA lesions in
response to estrogen was examined. Higher level of RPA
phosphorylation was detected in estrogen-treated OVCAR-
8TR cells, indicating a robust generation of single-strand
DNA that is required for recombination (Fig. 3c). In con-
sistence, foci formation of RAD51 recombinase and phos-
phorylated BRCA1 was also increased upon estrogen
exposure (Fig. 3d-e), consistent to the S phase response
under the same condition (Fig. 2g). Therefore, we conclude
that estrogen exposure stimulates homologous recombin-
ation in OvCa cells, and that BRCA1 can function beyond
HR in both resting and replicating cells.

Differential requirement of BRCA genes by OvCa cells
upon estrogen exposure

To establish the role of HR genes in estrogen-induced geno-
toxicity in ovarian cancer cells, we examined DSB formation
upon combined treatment of estrogen and BRCA1/BRCA2
ablation in OvCa cell lines from different cancer origins
(HO-8910, HO-8910 PM, OVCARS8-8TR and SKOV3), as
well as LO2 and A549 from non-reproductive tissue. Al-
though depletion of BRCA1/siBRCA2 caused moderate but
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Fig. 2 Estrogen induces DNA damage in both G1 and S phases of OvCa cells. a-b, Indicated cells were pre-treated with estrogen (E2, 50 nM) for 12 h.
DSBs were detected by IF staining of 53BP1 (a) and yH2AX (b). Estrogen triggers elevation of endogenous DNA damage in OVCAR-8TR instead of
A549 and L02 cells. ¢, Comparison of ER gene expression by semi-quantitative PCR in indicated cell lines. The images were cropped and full-length
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(TAM, 50 nM) for 3 h. There was no DSB induction by TAM. e, Quantification of 53BP1 foci in cyclin A-positive (G1) and negative (non-G1) cells,
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insignificant increase of 53BP1 and yH2AX in L02 and
A549 cells, no additive impact was observed upon estrogen
addition (Fig. 4a-b), indicating the irresponsiveness of these
non-reproductive cell types due to their low ER expression.
In sharp contrast, 53BP1 focal numbers in all OvCa cells
but SKOV3 were significantly induced upon estrogen ex-
posure (Fig. 4c-f). When BRCA1/BRCA2 were depleted by
RNA interference, all cell lines exhibited 53BP1 elevation
relative to scramble transfection.

Intriguingly, BRCA1/BRCA2 silencing caused additive
impact on 53BP1 accumulation in sibling HO-8910 and
HO-8910PM cell lines on top of estrogen addition, as
shown by the comparison of Scramble/E2 versus siBRCA/
E2 (Fig. 4c-d). This indicates that HO-8910/HO-8910 PM
require the function of BRCA genes for efficient elimin-
ation of estrogen-induced DNA breaks. Unlike its sibling
line, HO-8910 PM cells did not display excessive increase

of 53BP1 foci upon double treatment relative to siBRCAI1/
siBRCAZ2 alone. This could be attributable to its higher ER
expression level than HO-8910 (Fig. 2c), conferring a
more rigorous response to the basal level of estrogen in
culture medium in the absence of BRCA1/BRCA2.

For OVCAR-8TR cells, estrogen induced more 53BP1
foci upon ablating BRCA1/BRCA2, but did not exacerbate
the overall number of breaks (Fig. 4e), suggesting that
BRCA genes do not contribute to repair estrogen-induced
DNA damage in OVCAR-8TR. Alternatively, the breaks
have reached plateau upon double treatment, considering
the median number in OVCAR-8TR is ~ 10 foci per cell
compared to 4-5 in other three cells. Taken together, these
data consolidate our speculation that HR are required by
OvCa cells to remove DNA lesions upon estrogen expos-
ure, though differential responses were observed for indi-
vidual cell lines.
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Massive genotoxicity in estrogen-treated epithelium of
ovary and fallopian tubes

It is postulated that OvCa arise from epithelial cells in
epithelial compartments of ovary and fallopian tubes
[27, 28]. Based on the results described above, we hy-
pothesis that storming of steroid hormones may impair
the genomic integrity of non-cancerous cells locating at
these pro-carcinogenic sites. To evaluate the in vivo re-
sponse of ovarian cells to estrogen exposure, we exam-
ined the damage responses of epithelial compartments
after intraperitoneal injection of estrogen (1 mg/Kg) to
mature female mice for 6 h. Indirect immunofluorescent
staining of dissected ovarian cryosections showed that a
vast number of 53BP1 and yH2AX foci emerged in
estrogen-exposed epithelial cells (Fig. 5a). About 86% of
ovarian epithelial cells were positive for 53BP1 foci, that
is in sharp contrast to the mock-treated ovary and con-
trol tissues such as liver (Fig. 5b).

The dramatic DDR response is also observed in fallo-
pian tubes, where similar levels of foci induction were
monitored for 53BP1 and yH2AX (Fig. 5¢). Intriguingly,
we noticed a pronounced cell type specificity in response
to estrogen treatment, in that the estrogen-induced foci
are nearly exclusively detected in fallopian epithelial

monolayer instead of smooth muscle (Fig. 5¢c-d). This is
consistent to the previous detection of BRCAI mutation
and precancerous lesions in fallopian epithelium [27, 29].
Taken together, we conclude that exposure to estrogen
specifically challenges the genome stability of ovarian as
well as fallopian epithelium, making HR mechanisms ob-
ligatory for eliminating the genotoxicity of these cells.

Discussion

Genomic surveillance system is a critical anti-cancer barrier
considering its function in preventing genomic mutations.
Risk for ovarian cancer is remarkably increased in cases los-
ing the DDR genes like BRCA1, BRCA2 and ARIDIA/IB. It
is a long-term mystery how germline BRCA mutations pre-
dominantly affect female reproductive tissues. In this study,
we present evidence that elevation of DNA lesions, corre-
sponding to the ubiquitous activation of BRCA1, is not
tightly associated with active genomic replication in OvCa.
Our data strongly support the genotoxicity of estrogen can
insult genomes of OvCa cells in both G1 and S phase cells,
which is highly dependent on the expression of nuclear re-
ceptors (ie. ER). Moreover, DNA damage induced upon
steroid hormone exposure obligate the function of HR
genes as ablation of BRCAI and BRCA2 significantly
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L02 (b) cells after estrogen treatment (50 nM) for 6 h. No elevation of DSBs was observed in these cells. ¢-f, Quantifications for 53BP1 foci formation in
HO-8910 (a), HO-8910 PM (b), OVCAR-8TR (c) and SKOV3 (d) cells treated for estrogen for 6 h. p values: unpaired t-test. NS: not statistically significant

abrogate the counteraction against estrogen-induced geno-
toxicity in a subset of OvCa cells.

Although this study mainly involves in vitro work, our
data can large reflect the physiological situation of ovarian
and fallopian epithelium. Above all, it is difficult to deter-
mine the ‘physiological concentration’ of estrogen, due to
the natural variation at different menstrual stages, as well
as for different tissues (ie. some labs estimated the estro-
gen concentration in ovary is 100 times higher than other
tissues [30]). The in vitro concentration of estrogen corre-
sponding to physiological dosage is estimated for 1nM
[31], and DNA damage could be induced upon exposure
to estrogen at this dosage [32]. In this study, we applied
higher concentrations of estrogen (50nM) to visualize
DNA damage in OVCAR-8TR cells for the purpose of

accelerating the toxic effect of E2 and obtaining quantifi-
able DNA lesions.

In the light of our in vitro and in vivo data, we con-
clude that genomic integrity of epithelial compartments
in ovarian and fallopian tube is more liable to be chal-
lenged by estrogen, relative to non-female reproductive
tissues. Considering the expressing level of nuclear re-
ceptor and high concentrations of steroids in milieu of
ovarian epithelium, the genotoxicity of estrogen would
generate strong mutagenic effects in ovarian epithelium.
Particularly, given the requirement of HR for eliminating
estrogen-induced DNA damage, pathogenic mutations
in BRCA1, BRCA2 and ARIDIA/IB would dramatically
exacerbate the mutagenic potential of periodical hor-
mone challenge.
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The observation of prevalent induction of DNA breaks
and BRCA1 activation/phosphorylation regardless of pro-
liferation status and cell cycle phases indicates a form of
replication-independent genotoxicity. This phenomenon
is reproduced in OvCa cell lines, primary cancer culture,
as well as non-cancerous murine ovarian and fallopian
epithelium. Combining the potential of genotoxicity upon
estrogen exposure, we conclude that both normal ovarian
epithelium and OvCa cells can rigorously respond to
high-concentration of estrogen in a ER dependent man-
ner. The genomic insult by steroid hormone is significant,
considering the long-term and monthly attack and rela-
tively high dosage of damage (5-15 DSBs per cell in cell
culture and normal epithelium), which is equivalent to
0.5—1 Gy of ionizing radiation.

Although we failed to monitor BRCA1 phosphorylation
in estrogen-treated murine ovarian epithelium, possibly
due to antibody specificity, our data implicate that BRCA1
participates in preventing damage accumulation in both
replicating and non-replicating cells in cancer tissue (Fig.
3a). It is likely that BRCA1 cooperates with MRE11 to
dispose Top2 adducts in G1 phase, but functions with
BRCA2 and RAD51 in S/G2 phase to facilitate HR in
removing breaks caused by replication-transcription colli-
sions. Thus, the role of BRCAI upon estrogen challenges
exceed the HR mechanism, which is also supported by dif-
ferent mutational processes revealed by distinct patterns

of genomic imprints born by BRCAI and BRCA2-mutated
cancers [22]. Nevertheless, we conclude that multiple
functions of BRCAI in counteracting estrogen-induced
genotoxicity reflect its central role in obviating the gen-
omic instability of ovarian epithelium and thus disease
progression of OvCa.

Conclusion

Altogether, our study discloses a mechanistic clue for
the tissue-specific impact of HR deficiency on ovarian
cancers. To counteract the genotoxicity of hormone
storming to ovarian and fallopian epithelial cells, HR is
activated and loss of this function predetermine the can-
cer susceptibility in female organs.
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