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Abstract

Background: In recent years, the differences between left-sided colon cancer (LCC) and right-sided colon cancer
(RCC) have received increasing attention due to the clinicopathological variation between them. However, some of
these differences have remained unclear and conflicting results have been reported.

Methods: From The Cancer Genome Atlas (TCGA), we obtained RNA sequencing data and gene mutation data on
323 and 283 colon cancer patients, respectively. Differential analysis was firstly done on gene expression data and
mutation data between LCC and RCC, separately. Machine learning (ML) methods were then used to select key
genes or mutations as features to construct models to classify LCC and RCC patients. Finally, we conducted
correlation analysis to identify the correlations between differentially expressed genes (DEGs) and mutations using
logistic regression (LR) models.

Results: We found distinct gene mutation and expression patterns between LCC and RCC patients and further
selected the 30 most important mutations and 17 most important gene expression features using ML methods. The
classification models created using these features classified LCC and RCC patients with high accuracy (areas under
the curve (AUC) of 0.8 and 0.96 for mutation and gene expression data, respectively). The expression of PRAC1 and
BRAF V600E mutation (rs113488022) were the most important feature for each model. Correlations of mutations
and gene expression data were also identified using LR models. Among them, rs113488022 was found to have
significance relevance to the expression of four genes, and thus should be focused on in further study.

Conclusions: On the basis of ML methods, we found some key molecular differences between LCC and RCC,
which could differentiate these two groups of patients with high accuracy. These differences might be key factors
behind the variation in clinical features between LCC and RCC and thus help to improve treatment, such as
determining the appropriate therapy for patients.
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Background
Colorectal cancer (CRC) is a common and lethal disease.
Although its mortality has been declining since 1990, its
mortality rate is currently approximately 1.7–1.9% [1].
CRC remains the third most common cancer according
to the World Health Organization. This disease can be
characterized based on the embryological origin [2].
Right-sided colon cancer (RCC) originates from the mid-
gut, including the cecum, ascending colon, and hepatic
flexure. In contrast, left-sided colon cancer (LCC)
originates from the hindgut, including the splenic flex-
ure, descending colon, and sigmoid colon [3]. Over the
past few years, the differences between LCC and RCC
have received increasing attention due to their different
prognoses, outcomes, and clinical responses to chemo-
therapy. In many publications, it has been reported that
there are significant differences regarding the mutations,
epidemiology, survival, pathology, and clinical presenta-
tion between RCC and LCC [4, 5]. Compared with LCC,
RCC was reported to occur more in older patients and
females, having a poorer prognosis [6]. RCC tumors
were also reported to be poorly differentiated, and to be
larger and have more advanced stages [4, 7, 8]. However,
some conflicting results concerning the differences

between RCC and LCC were reported, and it remains a
topic of considerable debate whether tumor location it-
self has a significant impact on prognosis [7]. Further-
more, the differences in molecular features between
LCC and RCC remain unclear [9]. Studies have found
that BRAF was preferentially mutated in RCC, while epi-
dermal growth factor receptor (EGFR) was generally
amplified in LCC [10]. Several studies have also reported
that mutations and protein expression of p53 differed
significantly between LCC and RCC [11–13]. However,
another study showed that p53 protein expression had
no significant difference between LCC and RCC [14].
In light of this background, there is a need to com-

prehensively survey the differences of gene mutations
and expression levels between LCC and RCC.
Knowledge of the differences at the molecular level
would help us to obtain an in-depth understanding of
LCC and RCC and further improve their diagnostic and
treatment strategies in clinical practice. The rapid de-
velopment of high-throughput sequencing technologies
has provided us with opportunities to characterize the
diverse array of genomic changes found within each
cancer type. Projects like The Cancer Genome Atlas
(TCGA) have compiled mutation, gene expression,

Fig. 1 Feature selection and classification model based on mutations between LCC and RCC. a AUC scores of 100 times 10-fold cross-validation
using different feature numbers. b The ROC curve of the classification model on the test dataset. c The importance score of the 30
mutation features
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methylation, and copy number data across cancer types
[15].
As demonstrated by many researchers, machine learn-

ing (ML) is becoming increasingly important in cancer
prognosis and prediction. In this context, we here estab-
lished a study to use ML methods to explore gene muta-
tion and expression data from TCGA to infer the
molecular differences between LCC and RCC.

Methods
Data collection
We initially downloaded gene mutation data of 283
colon cancer patients (from tumor tissue) from TCGA
data portal. Next, we added clinical information of each
patient to the mutation file using the unique patient ID.
Among these patients, 112 had LCC and 171 had RCC.
All level 3 mRNA expression (FPKM) and raw count

Table 1 Information on 30 mutation features

Mutationa avsnp150b Gene.refGenec weightsd Sample Number
in LCC(%)e

Sample Number in
RCC_(%)f

P valueg

chr7_140753336_140753336_A_T rs113488022 BRAF 0.12 2 (1.8) 35 (20.5) 4.72E-15

chr12_25245347_25245347_C_T rs112445441 KRAS 0.09 5 (4.5) 20 (11.7) 4.07E-08

chr5_112839942_112839942_C_T rs121913332 APC 0.09 1 (0.9) 18 (10.5) 2.93E-07

chr12_25245350_25245350_C_G rs121913529 KRAS 0.09 1 (0.9) 6 (3.5) 0.02

chr12_25245350_25245350_C_T rs121913529 KRAS 0.07 8 (7.1) 26 (15.2) 8.74E-11

chr17_7674220_7674220_C_T rs11540652 TP53 0.06 10 (8.9) 2 (1.2) 0.56

chr7_135929761_135929762_AT_A . LUZP6;MTPN 0.06 4 (3.6) 2 (1.2) 0.56

chr3_179234297_179234297_A_G rs121913279 PIK3CA 0.05 5 (4.5) 7 (4.1) 0.01

chr12_25245350_25245350_C_A rs121913529 KRAS 0.04 11 (9.8) 13 (7.6) 3.46E-05

chr3_179218294_179218294_G_A rs121913273 PIK3CA 0.04 4 (3.6) 5 (2.9) 0.04

chr12_25225628_25225628_C_T rs121913527 KRAS 0.03 2 (1.8) 6 (3.5) 0.02

chr5_112780895_112780895_C_T rs587781392 APC 0.03 4 (3.6) 4 (2.3) 0.08

chr5_78039082_78039083_GT_G . AP3B1 0.03 2 (1.8) 10 (5.8) 5.37E-4

chr15_23567535_23567536_CT_C . MKRN3 0.02 1 (0.9) 15 (8.8) 5.29E-06

chr17_7673802_7673802_C_T rs28934576 TP53 0.02 5 (4.5) 6 (3.5) 0.02

chr3_46375665_46375666_TG_T rs939905165 LOC102724297 0.02 0 (0) 15 (8.8) 5.29E-06

chr1_244056271_244056272_GA_G rs972665297 ZBTB18 0.02 2 (1.8) 17 (9.9) 7.77E-07

chr7_1747914_1747915_TA_T . ELFN1 0.02 2 (1.8) 8 (4.7) 3.08E-3

chr12_109581434_109581435_GC_G . MVK 0.02 0 (0) 11 (6.4) 2.16E-4

chr4_105242265_105242266_CT_C . TET2-AS1 0.02 1 (0.9) 8 (4.7) 3.08E-3

chr8_13568071_13568072_CT_C rs1014242184 C8orf48 0.01 1 (0.9) 14 (8.2) 1.36E-05

chr17_58357799_58357800_AC_A rs781215815 RNF43 0.01 0 (0) 17 (9.9) 7.77E-07

chr2_68464196_68464197_AT_A . FBXO48 0.01 0 (0) 9 (5.3) 1.29E-3

chr4_154609909_154609910_GT_G . FGG 0.01 0 (0) 10 (5.8) 5.32E-4

chr17_7675088_7675088_C_T rs28934578 TP53 0.01 10 (8.9) 13 (7.6) 3.46E-05

chr2_147926116_147926117_TA_T rs764719749 ACVR2A 0.01 1 (0.9) 11 (6.4) 2.16E-4

chr5_112838220_112838220_C_T rs121913333 APC 0.01 3 (2.7) 7 (4.1) 7.22E-3

chr13_108232109_108232110_CA_C rs977361714 ABHD13 0.003 1 (0.9) 9 (5.3) 1.29E-3

chr4_44698597_44698598_GA_G . GUF1 0.003 1 (0.9) 11 (6.4) 2.16E-4

chr6_98837428_98837429_CT_C rs898072886 POU3F2 0.003 1 (0.9) 10 (5.8) 5.32E-4
aPosition of variants. For example, chr7_140753336_140753336_A_T represents base A being replaced by T at position 140,753,336 of chromosome 7
bThe annotation of variants with dbSNP identifiers by ANNOVAR
cThe annotated genes of the variants by ANNOVAR
dThe weights (importance) of the mutation features for the classification model
eThe number of samples (percent of samples) with the variants among LCC samples
fThe number of samples (percent of samples) with the variants among RCC samples
gThe P-value from Fisher’s exact test for each variant
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Fig. 2 Heatmaps of the selected mutations and gene expression data. a Information of 30 mutations in LCC and RCC samples. Red represents an
mutation being present in the sample, while blue represents no corresponding mutation in the sample. b Gene expression of 17 DEGs in LCC
and RCC samples. Color represents log10(FPKM+ 1)

Jiang et al. BMC Cancer         (2020) 20:1012 Page 4 of 11



data of 323 colon cancer patients (from tumor tissue)
were also obtained from TCGA, of whom 189 had RCC
and 134 had LCC. The descending colon, sigmoid colon,
and splenic flexure of colon were classified as LCC and
the ascending colon, cecum, and hepatic flexure of colon
were classified as RCC [3].

Differential analysis and annotation
Analysis of the differential expression of genes was im-
plemented using the R package DEseq2 using raw count
data [16]. Genes with adjusted P-values of less than 0.01
and absolute values of log2 fold change (log2FC) above 1
were considered to be differentially expressed genes
(DEGs). Fisher’s exact test was used to calculate the sig-
nificance of differences in the frequency of each muta-
tion between LCC and RCC samples. Annotation of the
mutations was conducted by ANNOVAR [17]. The path-
way annotation of DEGs was performed using the R
package clusterProfiler with adjusted P-values less than
0.05 [18]. Mann-Whitney test was used to compare the
difference of mutation number between LCC and RCC.
To compare the mean mutation number of each sample
among LCC and RCC groups, we divided the total
number of mutations in each group by sample size.

Machine learning methods
Extreme Gradient Boosting (XGBoost) is a boosted tree
method that is often used for supervised learning prob-
lems [19]. It has excellent scalability and performance
and has become an outstanding machine learning

method in many fields of study. In this study, we
attempted to use it to classify LCC and RCC patients
based on mutation data and gene expression data
(FPKM). The mutations existing in at least two samples
and DEGs were separately used as raw features for
XGBoost to do the following feature selection. To find
the most appropriate feature number, for each iteration,
we fed XGBoost with different number of features and
evaluated its performance using the mean area under
the curve (AUC) score of 100 times 10-fold cross-
validation. The selected features were further used to
construct the final classifier model. Owing to the rela-
tively small sample sizes, we controlled the complexity
of the models to avoid overfitting; an L2 regularization
term was applied and the maximum depth of each tree
was set to 3. Other hyper-parameters in the XGBoost
models were assigned the default settings. For each type of
data, 65% of samples were randomly selected as a training
dataset, and the remaining 35% of samples were selected
as a testing dataset using a stratified sampling method.
AUC was used to evaluate the models. All of the functions
were accomplished using the Python package Scikit-learn
(sklearn). The significance of AUC was estimated by a
permutation test using the R package sigr.

Network construction
We used STRING to identify the correlations between all
DEGs and genes with selected mutations by XGBoost, as
shown in Cytoscape [20, 21]. Owing to the fact that muta-
tion features were discrete variables and gene expression

Fig. 3 Volcano plot and MA plot for DEGs. Red dots represent upregulated genes in RCC compared with the level in LCC, while green dots
represent downregulated genes
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data were continuous variables, we analyzed the correla-
tions of mutations with DEGs using logistic regression
(LR), the type of colon cancer (LCC or RCC) was used as
a confounder. If the false discovery rate (FDR) of the
coefficient for each gene (x) to a mutation (y) was
below 0.05, it was considered that a significant correl-
ation existed between the gene and mutation. The
idea behind using LR to calculate correlations be-
tween the two types of variable is that, if there is a
relationship between continuous and discrete vari-
ables, an accurate predictor of the discrete variable
would be constructed using the continuous variable.
If the coefficient of the variable in the model is

significant, we can conclude that the two variables
have a relationship and are indeed correlated. The LR
models were constructed using the R function glm.

Results
The 30 most important mutations classifying LCC and
RCC
Among the 283 samples, there were 169,298 mutations
in total. The mean number of mutations in each sample
of RCC group was 2.86 times that in LCC (P-value<
0.001). We initially used Fisher’s exact test to calculate
the significance of the difference between LCC and RCC
samples in the frequency each mutation. The results are

Fig. 4 Annotation results of DEGs in KEGG (a) and GO analyses (b). Only genes that were upregulated in RCC compared with the level in LCC
were enriched in KEGG pathways and GO analyses (adjusted P-value< 0.05)
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shown in Fig. S1. Among the mutations, the most sig-
nificant ones were rs113488022 (BRAF, V600E, P-value,
4.72e-15) and rs112445441 (KRAS, P-value, 8.74e-11).
The rs113488022 mutation was only found in 2 (1.8%)
LCC patients, but in 35 (20.5%) RCC patients. The
BRAF V600E mutation was reportedly found in 8–10%
of colorectal tumors and was associated with a more ag-
gressive tumor phenotype, lymph node metastasis, and
high microsatellite instability (MSI) [20]. It was also
found to be associated with less benefit from treatment
[22]. In our study, the rs112445441 mutation in the
KRAS gene was present in 8 LCC (7.1%) patients and 26
RCC (15.2%) patients.
To select the most appropriate feature number to

construct the model that could classify LCC and RCC
patients, the AUC scores of 100 times 10-fold cross-
validation for models with different feature numbers
were obtained, as shown in Fig. 1a. Finally, we chose
30 features to construct the final model; its AUC
score in the test dataset was 0.8 (p < 1e-05). Receiver

Operating Characteristic (ROC) curves and the im-
portance score of the 30 features are shown in Fig. 1b
and c. The BRAF V600E mutation was the most im-
portant feature for the classifier model. Detailed infor-
mation and the heatmap of the 30 mutation features
are presented in Table 1, Supplementary File 1 and
Fig. 2a.

The 17 most important DEGs classifying LCC and RCC
Overall, 144 genes were upregulated and 60 were down-
regulated in RCC compared with the levels in LCC. A vol-
cano plot and MA plot of DEGs are shown in Fig. 3. The
genes with a higher expression level in RCC were particu-
larly associated with the vitamin digestion and absorption
pathway, cholesterol metabolism pathway, and Staphylo-
coccus aureus infection pathway (Fig. 4a). The Gene
Ontology (GO) annotation results for the main cat-
egory of biological process (BP) are shown in Fig. 4b.
Among these results, some immunity-related pro-
cesses such as positive regulation of T-cell chemotaxis

Fig. 5 Feature selection and classification model based on DEGs between LCC and RCC. a AUC scores of 100 times 10-fold cross-validation using
different feature numbers. b The importance score of the 30 mutation features. c The ROC curve of the classification model on the test set. d
Boxplot of the top four genes with the highest importance score in LCC and RCC
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(GO:0010820), which could increase the rate, fre-
quency, or extent of T-cell chemotaxis; lymphocyte
chemotaxis (GO:0048247), which could direct the
movement of a lymphocyte in response to an external
stimulus; and granulocyte chemotaxis (GO:0071621),
which could induce the movement of a granulocyte in
response to an external stimulus, were particularly
associated with the upregulated DEGs.
On the basis of these DEGs, we further selected 17 fea-

tures to construct a model that could accurately classify
LCC and RCC samples. Figure 5a shows the AUC scores
of 100 times 10-fold cross-validation, with the feature
number varying from 2 to 30. For the final model, the
AUC score in the test dataset (35%) was 0.96 (Fig. 5c, p <
1e-5). Among the 17 features, PRCA1 obtained the high-
est score for the model (Fig. 5b); PRCA1 is a novel small
nuclear protein that is specifically expressed in the human
prostate and colon [23]. The relative expression value
(Fragments Per Kilobase Million, FPKM) of the top 4
genes with the highest scores from the classifier model
among LCC and RCC groups is shown in Fig. 5d. The
FPKM of all 17 genes in the LCC and RCC groups are
shown in Fig. S2. A heatmap of the expression of the 17
genes in LCC and RCC is shown in Fig. 2b.

Analysis of the correlations of DEGs with mutations
A network of the correlations of all DEGs with mutant
genes (genes containing the 17 selected mutations) was
constructed using STRING [20] (Fig. 6). TP53 and KRAS
are hub genes that were found to be connected to many
DEGs such as WIF1 and KRT17.
The correlations of 30 mutations with 17 DEGs se-

lected by ML were determined by logistic regression
(LR) and visualized using Cytoscape [21] (Fig. 7). Five re-
lationships were found (two mutations, four DEGs,
FDR < 0.05). Among them, the BRAF V600E mutation
was correlated with four DEGs (ULBP2, CA8, HOXC6,
AFAP1-AS1). The coefficients and FDR values of the
correlations for BRAF V600E mutation to the four genes
are listed in Table 2.

Discussion
It has been hypothesized that there are significant differ-
ences between RCC and LCC in terms of the molecular
features, which might be the cause of clinicopathological
differences [24]. However, the differences of molecular
features between RCC and LCC patients have remained
unclear. Using ~ 300 LCC and RCC samples from
TCGA, we attempted to unearth more valuable

Fig. 6 Network of all of the DEGs and genes with the selected 30 mutations (Produced by Cytoscape Version 3.7.1). Circle nodes represent DEGs,
while triangles represent mutated genes. Nodes with a light yellow color represent genes with mutations, dark turquoise represents
downregulated DEGs, while dark orange represents upregulated DEGs. The line color represents the score of the connection between two nodes,
ranging from 0.4 to 0.99. Node size represents the degree of the node: the larger the node size, the higher the degree of the node
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information on the differences between LCC and RCC
by applying ML methods. It has been reported that RCC
has a higher incidence of KRAS mutation than LCC
(57.3% vs. 40.4%; P-value < 0.0001) [25], and a higher
frequency of BRAF mutation (18.4–22.4% vs. 1.3–7.8%)
[26]. However, other studies found no significant differ-
ences in BRAF and KRAS mutation rates [27]. In our
study, RCC was also found to have higher incidences of
KRAS mutation (49.7% vs. 33.0%, P-value = 0.007) and
BRAF mutation (23.4% vs. 3.6%, P-value = 2.8e-6) than
LCC. However, no significant difference was found in
the expression of BRAF (FDR = 1, log2FC = 0.1) and
KRAS (FDR = 0.92, log2FC = − 0.04) in our study, which
implies that the mutations may have no impact on the
transcription of KRAS and BRAF. The top four genes
with the highest mutation rates in LCC were APC
(84.8%), TP53 (68.8%), TTN (54.5%), and KRAS (33%).
In RCC, the top four again included APC as the most
common (63.2%), followed by TTN (63.2%), KRAS
(49.7%), and TP53 (49.7%).
Using ML methods, we selected 30 mutations to build

an XGBoost classifier with AUC of 0.80 in the test data-
set. The feature with the highest score in the model was
rs113488022 in BRAF. The top seven mutations scored
by XGBoost were in the BRAF, KRAS, APC, and TP53
genes. APC and TP53 are tumor suppressor genes, while
KRAS and BRAF are oncogenes. The differences in the
frequencies of these mutations may be the reason for the
clinicopathological differences between the two types of
colon cancer.

The genes that were upregulated in RCC compared
with the levels in LCC were particularly associated with
some immunity-related processes. Using DEGs, we con-
structed a model with AUC of 0.96 in the test set using
only 17 features, implying large differences between
LCC and RCC at the level of gene expression. Among
these features, small nuclear protein PRAC1 (FDR <
0.001, log2FC = − 4.1) was the most important, which
was highly expressed in LCC. The higher expression of
PRAC1 in LCC than RCC was also identified in other
studies [5]. However, the function of PRAC1 in colon
cancers remains elusive. Mutations in this gene have
been found to be associated with a predisposition to
prostate cancer and it is a candidate for the hereditary
prostate cancer 1 (HPC1) allele. The second most im-
portant feature in the model, HOXC6 (FDR < 0.001,
log2FC = 1.03), was highly expressed in RCC; it belongs
to the homeoprotein family of transcription factors,
members of which play important roles in morphogen-
esis and cellular differentiation during embryonic devel-
opment [28]. The higher expression of HOXC6 in RCC
than LCC was also described in another study [5].
Furthermore, the overexpression of HOXC6 has been
detected in several human carcinomas, including breast,
gastrointestinal, and lung cancers, as well as leukemia
[29]. High expression levels of HOXC6 have also been
found to be associated with lymph node metastasis [30].
The differential expression of PRAC1 and HOXC6 and
other genes may be the reason for the different charac-
teristics between LCC and RCC, which warrants more
attention in further study.
In the correlation network, it was shown that some of

the mutant genes, such as TP53 and KRAS, were the
hub nodes. The LR analysis also showed a close relation-
ship between BRAF V600E mutation and the expression
of four genes such as HOXC6 and CA8. These findings
suggest that the differences of gene mutations and ex-
pression, and the associations between them may be the
key reasons for the differences in clinical features
between LCC and RCC.

Conclusions
In this study, we used ML methods to clarify some of
the key molecular differences between LCC and RCC.

Fig. 7 The correlation network of 30 mutations and 17 DEGs
calculated by logistic regression model (FDR < 0.05, Produced by
Cytoscape Version 3.7.1). Nodes with red color represent mutations,
mutation1 represents rs113488022 (BRAF, V600E mutation),
mutation2 represents mutation in the 3′-UTR of
ELFN1(chr7_1747914_1747915_TA_T- represents the chromosome,
the position, and the mutated base). Nodes with a blue color
represent DEGs

Table 2 The correlations of rs113488022 with DEGs

Mutation Gene Coefficienta FDRa

rs113488022 ULBP2 0.31 0.01

CA8 0.18 0.04

HOXC6 0.68 0.002

AFAP1-AS1 0.13 0.001
aThe coefficients and adjusted P-values (FDR) of the correlations of
rs113488022 with genes from logistic regression model
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Two classification models were constructed using the se-
lected 17 DEGs and 30 mutations separately with good
performance in the prediction of the two types of colon
cancers. The expression of PRCA1 and the BRAF V600E
mutation were the most important features for the two
classifier models. Furthermore, BRAF V600E mutation
was found to correlate with four genes among the 17
DEGs which should be paid more attention in further
studies about colon cancer. Overall, the classifier models
and the identified different mutations and genes in LCC
and RCC might help us to obtain an in-depth under-
standing and further improve the diagnostic and therapy
for patients.
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