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Abstract

Background: Extensive research has revealed that genes play a pivotal role in tumor development and growth.
However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further.

Methods: In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue
with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database.

Results: Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and
prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene,
ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and
immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of
action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC
samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low
expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated
that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4.

Conclusion: We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy
of GC, and also as an independent predictive marker for the prognosis of GC.
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Background
GC arises from the epithelial cells of the gastric mucosa
and is a common malignancy of the digestive system that
results in an estimated 990,000 new cases and 738,000
deaths each year [1]. The onset of GC can be seen at any
age but is typically more common in men with an

approximately 2:1 male-to-female ratio [1]. Approximately
90% of GC are adenocarcinomas (STAD; stomach adeno-
carcinomas), of which the two most frequent histological
subtypes are classified as well-differentiated (or intestinal
type) and undifferentiated (or diffuse type). GC is known to
be a multifactorial disease, and the incidence of GC is asso-
ciated with a range of factors, including helicobacter pylori
infection, dietary factors, tobacco, obesity, and others [2].
The incidence and mortality of GC have dropped dramatic-
ally in the past few decades due to increases in early screen-
ing and planned prevention [3]. However, despite the
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reduction in incidence and mortality, GC remains a serious
public health problem worldwide.
Presently, the combined application of multiple treat-

ments, including surgery, chemotherapy, radiotherapy,
and targeted gene therapy, has markedly improved the
survival rate of GC. Unfortunately, the overall 5-year rela-
tive survival rate is still below 20% worldwide, except in
Japan [4]. Increasingly, the investigation of GC has been
focused at the molecular level. For example, studies from
Wong et al. and Sawaoka H et al. indicated that COX2, a
membrane conjugated protein, might play a pivotal role in
cell proliferation, apoptosis, angiogenesis, and gastric car-
cinogenesis [5, 6]. Vascular endothelial growth factor
(VEGF), matrix metalloproteinase (MMP)-2, and MMP-9
also were found to be related to the metastasis of GC [7].
Moreover, according to recent studies, the abnormal ex-
pression of non-coding RNAs, especially microRNAs
(miRNAs) and long non-coding RNAs (LncRNAs), target
specific mRNAs to form a complex regulatory network
that influences gene expression [8, 9]. Therefore, it is crit-
ical to identify useful biomarkers that can be used for the
early diagnosis and prognosis of GC.
Recently, the rapidly developing, high-throughput plat-

forms for gene expression have been widely applied for
molecular classification, prognosis prediction, and tar-
geting new drug discovery [10]. The broad discipline of
bioinformatics can be applied to capture, store, analyze,
and interpret biological data utilizing specific algorithms
and software. This wide range of functions provided by
bioinformatics allows us to identify DEGs of interest as
well as functional pathways that are correlated with the
occurrence and development of carcinomas. We con-
ducted a series of bioinformatics analyses based on
mRNA data obtained from the GEO and TCGA data-
bases to investigate the molecular mechanisms that
underly GC. The essential genes we identified were
found to be directly associated with the prognosis of GC
and are likely candidate biomarkers for GC.

Methods
Gene expression profile data
Two independent GC gene expression profiles,
GSE54129 and GSE79973, consisting of 121 primary
gastric tumor samples and 31 normal gastric tissue sam-
ples, were selected from the GEO database. The plat-
forms of these two datasets were identical to GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array). We
simultaneously obtained clinical information and gene
expression profiles from patients by collecting GC infor-
mation and non-cancerous samples from the TCGA
database (TCGA-STAD) and GSE84437 (433 GC pa-
tients). The flowchart for the bioinformatics analysis is
shown in Fig. 1.

Data preprocessing and DEG identification
The “affy” package of R (version 3.6.3 http://r-project.
org/), which allows exploratory analysis of oligonucleo-
tide arrays, was used to read CEL files from the GEO
database. Two professional bioinformatics analysts car-
ried out the data preprocessing, including background
correction, data normalization, removing batch effects,
combining normal and tumor group data, ID transform
gene symbols, and probe supplemental missing values
[11]. Then, we identified DEGs using the “limma” pack-
age from Bioconductor [12]. Only genes with |logFC(fold--
change)| > 2 and adj. P < 0.01 were selected. The volcano
plot and Venn diagram were generated using “ggplot2”
and “Venn diagram” packages, respectively.

Identification of prognosis genes
Based on all the annotated genes (56,536 genes), the
prognosis-related genes were identified using the “sur-
vival” package. The prognosis model was established
using the Cox model of “Risk scores = ∑coef ∗ Exp(genes)
” in the “survival” package and optimized using the AIC
value. The patients with TCGA with risk scores above
the median were defined as the “high-risk group”, and
the remaining patients were defined as the “low-risk
group”. Singular and multiple factor analysis were uti-
lized to estimate the independence and validity of the
prognosis model.

Clinical relevance and GSEA enrichment analysis
The correlations between the final filtered genes and
clinical parameters were explored using TCGA, which
included stage, T stage, age, grade, M stage, and N
stage. Subsequently, the samples were divided into
high and low expression groups, and GSEA was con-
ducted to link genes with likely pathways [13]. Gene
set permutations were performed 1000 times for each
analysis. Based on the premise of FDR < 0.25 and
NOM P-value < 0.05, we selected the enriched path-
ways of interest.

Immune infiltration analysis
CIBERSORT, an analytical tool developed by Newman
et al., uses gene expression data to estimate the abun-
dance of member cell types in a mixed cell population
[14]. We used the “CIBERSORT” package in R software
to analyze possible associations between the genes and
immune cells. Then TIMER, a comprehensive tool that
systematically analyzes the infiltration of immune cells
in various cancers, was used to analyze the relationships
among the identified genes and five immune evaluation
points (TOX, CD274, PDCD1LG2, CTLA4, and PDCD1)
[15]. Additionally, we analyzed the association between
ALDH3A2 copy number alterations and the STAD infil-
tration level. Finally, we used the cBioportal database to
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analyze the correlation between copy number alterations
and the gene mRNA levels [16].

Immunohistochemical staining
IHC staining was carried out on tissue sections ob-
tained from 140 paraffin-embedded GC samples. Ten
micron-thick sections of GC tissue were mounted on
glass microscope slides, deparaffinized in xylene, and
then rehydrated in a graded alcohol series. Antigen
retrieval was performed at a high temperature using a
water bath. The sections were cooled, rinsed, and en-
dogenous peroxidases were quenched using 3% H2O2.
After incubation in 5% BSA for 45 min at room
temperature, the sections were incubated overnight in

the ALDH3A2 antibody (dilution: 1:350; Abcam, city,
state) at 4 °C. The sections were washed and incu-
bated in secondary antibody for 60 min at room
temperature. The antibody staining was visualized
using the Dako EnVision System (Dako, Glostrup,
Denmark). The IHC staining results were analyzed
and scored by two pathologists who were blinded to
the sources of the clinical samples. A semi-
quantitative integration method was used to analyze
the area and intensity of staining [17]. The proportion
of cells that stained positive for ALDH3A2 was scored
as 1 = 0 ~ 10%, 2 = 10% ~ 25%, 3 = 50% ~ 75%, and 4 =
75% ~ 100%. The intensity of staining was scored as
0 = no staining, 1 = weak staining, 2 = moderate

Fig. 1 The flowchart of our bioinformatics analysis. Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEGs,
Differentially expressed genes
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staining, and 3 = strong staining. The final IHC score
was calculated by multiplying one score by the other.
Scores larger than six were regarded as a high score,
and scores equal to or less than six were considered
to be a low score.

Quantitative PCR (qPCR)
Patient tissues used for PCR analysis were obtained from
the Shanghai Pudong Hospital of Fudan University. This
study was allowed by the Ethics Committee of the
Shanghai Pudong Hospital of Fudan University. All patients
had approved for the use of clinical tissues for research

purposes. Total RNA was isolated using Trizol (Invitrogen).
PrimeScript RT Master Mix (Takara, JPN) was used for
first-strand cDNA synthesis. For the analysis of the
ALDH3A2 mRNA levels, qPCR was performed using SYBR
Green according to the manufacturer’s instructions (Ap-
plied Biosystems, USA). The primers that were used in-
cluded: ALDH3A2, forward: 5-CTTGGAATTACCCCTT
CGTTCTC-3; ALDH3A2, reverse: 5-TCCTGGTCTA
AATACTGAGGGAG-3; PDCD1, forward: 5-ACGAGG
GACAATAGGAGCCA-3; PDCD1, reverse: 5-GGCATA
CTCCGTCTGCTCAG-3; PDCD1LG2, forward: 5-ACCC
TGGAATGCAACTTTGAC-3; PDCD1LG2, reverse: 5-
AAGTGGCTCTTTCACGGTGTG-3; CTLA4, forward: 5-

Fig. 2 Identification of DEGs shared between the three databases. a The volcano plot of TCGA-STAD; b The volcano plot of GSE54129; c The
volcano plot of GSE79973; d The venn diagram of up-regulated DEGs; e The venn diagram of down-regulated DEGs; f The heatmap of all 89
DEGs in TCGA-STAD. Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEGs, Differentially expressed genes
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GCCCTGCACTCTCCTGTTTTT-3; CTLA4, reverse: 5-
GGTTGCCGCACAGACTTCA-3; GAPDH, forward: 5-
ACCACAGTCCATGCCATCAC-3; GAPDH, reverse: 5-
TCCACCACCCTG TTGCTGTA-3.

Protein extraction and Western blotting
Total proteins were extracted from human GC tissues
using Western and IP lysis buffer (Beyotime, P0013;
Beijing, China). The protein concentrations were

measured using a BCA reagent kit (Pierce, 23,227). The
proteins were resolved with 8–12% SDS-PAGE gels, then
blotted onto polyvinylidene fluoride (PVDF) membranes.
The membranes were blocked in TBS/0.1% Tween-20
(TBST) containing 5% powdered skim milk for 1 h at
room temperature (RT). Primary antibodies, ALDH3A2,
PDCD1, PDCD1LG2, CTLA4, and GAPDH (AtaGenix,
Wuhan, China), were diluted to concentrations of 1:300
or 1:2000 before incubation with the membranes for 2 h
at RT. Then the membranes were incubated in secondary

Fig. 3 Visualization of prognosis-model in TCGA patients. a The high and low risk group of TCGA patients; b The survival status of high and low
risk group; c The heatmap of prognosis-model genes in high and low risk group; d The ROC curve of prognosis-model; e The Kaplan-Meier
survival curve of prognosis model. Abbreviations: TCGA, The Cancer Genome Atlas

Table 1 A total of 89 DEGs were identified from the TCGA and GEO datasets, with 79 up-regulated and 10 down-regulated

DEGs Gene names

Down-regulated SYNJ2BP-COX16, CD36, P3H2, TNNI3K, ALDH3A2, TMEM37, BDH2, PMM1, RIMBP2, CPEB2

Up-regulated OLFML2B, SPARC, CLDN1, HOXA10, COMP, CDH3, PLAU, SALL4, CLEC5A, IL13RA2, FAM19A5, LZTS1, PDGFRB, SFRP4,
FNDC1, COL4A1, ADAM12, COL8A1, AJUBA, HOXB7, LY6E, CEMIP, THY1, SERPINH1, APOE, ECT2, HOXC9, WNT2, HOXC6,
MSR1, RARRES1, INHBA, COL1A1, COL1A2, BMP1, COL5A1, TNFSF4, P4HA3, COL5A2, NOX4, FKBP10, COL18A1, CXCL8,
WISP3, SNX10, TREM2, HOXC10, WISP1, ADAMTS2, PMEPA1, COL10A1, CPXM1, TIMP1, TEAD4, BGN, MMP11, VCAN, DTL,
FOXC1, COL11A1, LEF1, THBS2, LRP8, CST4, CST2, CST1, SPP1, E2F3, IGF2BP3, FCGR1B, BUB1, CTHRC1, ANGPT2, SULF1,
MYO1B, TMEM158, FAP, APOC1, MFAP2
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antibodies [anti-rabbit or anti-mouse IgG (H + L) biotinyl-
ated antibodies (CST, USA)] for 2 h at RT.

RNA interference studies
RNA interference of ALDH3A2 was carried out using
small interfering RNA (siRNA). HGC-27 and MGC-803
cells were transfected with control siRNA and siRNA-
ALDH3A2 using Lipofectamine 3000 (Invitrogen). The
target sequence used for siRNA against ALDH3A2 was
5-GCATTGCACCCGACTATAT − 3. Western blots and
qPCR were used to evaluate the efficiency of the siRNA
interference.

Statistical analysis
All statistical analyses and Kaplan-Meier survival
curves were conducted using R software 3.6.3 [18].
P < 0.05 was deemed statistically significant. The
relevance between ALDH3A2 and overall survival
(OS) and other clinical variables were analyzed using
multivariate Cox analysis. The area under the ROC
curve (AUC value) was regarded as excellent for sur-
vival predictions when the value was greater than

0.7, and acceptable when the value was greater than
0.6. All the microscopy images were obtained in 300
dpi.

Results
Identification of DEGs in STAD
We compared the gene expression profiles between the
cancerous and adjacent normal tissues using the GSE
(GSE54129, GSE79973) and TCGA databases, with
|logFC(fold-change)| > 2 and adj. P < 0.01. We identified 79
up-regulated and 10 down-regulated overlapping genes,
which are shown as a volcano plot (Fig. 2a, b, c) and
Venn diagram (Fig. 2d, e). These 89 differential genes
also were mapped as a heatmap using the data from
TCGA-STAD (Fig. 2f). The 79 upregulated and 10
downregulated DEGs are listed in Table 1.

Identification of the prognosis genes
We combined the gene expression matrix with the
survival data from the TCGA patients and identified
1672 prognosis-related genes using the FM test and
single factor Cox analysis (Table S1). After

Fig. 4 Sensitivity, specificity and predictive value in survival of ALDH3A2, BDH2, CTHRC1 and FNDC1. a Sensitivity, specificity and predictive value
of these four genes in TCGA; b Sensitivity, specificity and predictive value of these four genes in GSE84437; c The Kaplan-Meier survival curve of
these four genes in TCGA. Abbreviations: TCGA, The Cancer Genome Atlas
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optimization using the “AIC” value, 31 genes were
chosen to establish a prognostic model (Table S2).
Each patient was placed in a high- or low-risk group
based on risk scores computed using the “ ∑coef ∗

Exp(genes) ” formula (Fig. 3a, b). Figure 3c shows the
expression of these 31 genes in the high- and low-risk
groups. The area under the ROC curve (AUC value) was
0.879 (> 0.7), which proved the effectiveness of our

Fig. 5 Clinical correlation and GSEA enrichment analysis of ALDH3A2. a Multivariate analysis of ALDH3A2 and clinical parameters; b The relevance
between clinical characteristics and ALDH3A2 in TCGA patients; c S GSEA enrichment analysis of ALDH3A2. Abbreviations: GSEA, Gene Set
Enrichment Analysis; TCGA, The Cancer Genome Atlas
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prognosis model (Fig. 3d). Patients with high-risk scores
exhibited a significantly worse prognosis compared to pa-
tients with low-risk scores (p < 0.0001) (Fig. 3e).

Identification of candidate genes
Comparison of the 89 differential genes and 31 prognostic
genes identified four genes (ALDH3A2, BDH2, CTHRC1,
and FNDC1) that were likely to have an important role in
the development and progression of STAD. Figure 4a-b
illustrates the sensitivity, specificity, and the AUC value
for these four genes concerning their ability to predict the
prognosis. Among these genes, ALDH3A2 exhibited the
best results, and was selected for further analysis (TCGA,

All patients: AUC = 0.746; 5 years: AUC = 0.747; 3 years:
AUC = 0.739; 1 year: AUC = 0.722; GSE84437, All patients:
AUC = 0.695; 5 years: AUC = 0.674; 3 years: AUC = 0.655;
1 years: AUC = 0.611). The KM survival curves for OS for
these four genes are shown in Fig. 4c. Of these genes, the
expression of ALDH3A2 was highly associated with a bet-
ter prognosis. However, BDH2, CTHRC1, and FNDC1 in-
dicated a worse prognosis.

Clinical correlation and GSEA analysis
The results of the multivariate Cox analysis revealed that
age, N stage, and ALDH3A2 independently correlated
with OS. This observation indicated that ALDH3A2 was

Fig. 6 Tumor immune correlation analysis of ALDH3A2. a Relationship between ALDH3A2 expression and immune cells in TCGA patients; b&c
Comparison between ALDH3A2 high and low expression in immune cells; d The co-expression relationship of diverse immune cells; e The
association between immune cells and prognosis in TIMER website; f The association between ALDH3A2 and immune checkpoints. Abbreviations:
TCGA, The Cancer Genome Atlas
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an independent prognosis factor of STAD (Fig. 5a). To
learn more about the impact of ADLH3A2 gene expres-
sion on GC, we examined the association of its expression
with clinical characteristics in TCGA patients (Fig. 5b).
However, the association was not significant except for
the tumor grades (P < 0.05). To further explore the bio-
logical functions of ALDH3A2 in GC, we performed a
GSEA enrichment analysis on the high and low
ALDH3A2 expression datasets. As seen in Fig. 5c, the
ALDH3A2 high expression phenotype, the signaling path-
ways of β-alanine metabolism, butanoate metabolism, fatty
acid metabolism, propanoate metabolism, and valine leu-
cine and isoleucine degradation were enriched (FDR <
0.25 and NOM P-value < 0.05).

ALDH3A2 acts as an immune-related gene in STAD
The “CIBERSORT” package in R software and TIMER
website was used to investigate the relationship between
ALDH3A2 and tumor immunity (Fig. 6). One hundred
seventy-eight samples met the criteria for immune infil-
tration analysis (Fig. 6a). These samples were divided
into high and low ALDH3A2 groups (Fig. 6b, c). The re-
sults revealed that, compared with the low expression
group, M1-type macrophages were highly expressed in
the ALDH3A2 high expression group (Fig. 6b). The co-
expression heatmap of diversified immune cells seen in
Fig. 6d shows that CD4 memory resting T cells might be
negatively associated with CD8 T cells, and neutrophils
might be positively correlated with activated mast cells
in STAD. We also examined the relationship between
immune cell expression and survival, and discovered that
elevated numbers of macrophages might predict a worse
prognosis in STAD (P = 0.004; Fig. 6e). The immuno-
logical checkpoint analysis indicated that TOX, CD274,
PDCD1LG2, CTLA4, and PDCD1 play a pivotal role in
immunotherapy. Therefore, we analyzed the association
between ALDH3A2 and these checkpoint-related genes
(Fig. 6f). Interestingly, we found that ALDH3A2 co-
expression might be negatively correlated with the
PDCD1, PDCD1LG2, and CTLA4 genes, and positively
associated with tumor purity. Furthermore, as seen in
Figures S1 and S2, we found that ALDH3A2 copy num-
ber alterations might have an appreciable impact on the
level of immune cell infiltration and mRNA expression.
These results suggest that ALDH3A2 might influence
the immune cell infiltration level through alterations in
copy number, affecting the prognosis of STAD. In con-
clusion, ALDH3A2 showed a potential value for STAD
remission and immunotherapy.

High ALDH3A2 expression in GC tissues is associated with
better survival
IHC was used to reveal ALDH3A2 expression in 140
paraffin-embedded human GC samples. Of the 140 GC

samples, 8 cases were identified as grade I, 48 cases as
grade II, 68 cases as grade III, and 16 cases as grade IV
(Table 2). Compared with the high-grade GC cases
(grades III and IV), ALDH3A2 was over-expressed in
low-grade GC cases (grades I and II) (Fig. 7a-b). Kaplan-
Meier survival curves demonstrated that the OS of pa-
tients with low expression of ALDH3A2 was significantly
shorter than patients with high ALDH3A2 expression
(Fig. 7c, P < 0.05).

The expression of ALDH3A2 was negatively correlated
with PDCD1, PDCD1LG2, and CTLA-4
We used qPCR to analyze the ALDH3A2, PDCD1,
PDCD1LG2, and CTLA-4 mRNA expression levels in 52
tumor tissues, which indicated a negative spatial correl-
ation between ALDH3A2 and PDCD1 (Fig. 8a, R2 =
0.3576), PDCD1LG2 (Fig. 8b, R2 = 0.3878), and CTLA-4
(Fig. 8c, R2 = 0.2556). HGC-27 and MGC-803 cell lines
exhibited the highest expression of ALDH3A2 and were

Table 2 Clinicopathological characteristics of patient samples
and expression of ALDH3A2 in gastric cancer

Characteristics
of ALDH3A2

Number
of cases
(%)

ALDH3A2 P.value

Lowa Highb

Age (y)

> = 60 79 21 58 0.072

< 60 81 39 42

Gender

Male 106 48 58 0.302

Female 34 12 22

T classification

T1 12 7 5 0.502

T2 26 10 16

T3 103 43 60

N classification

N0 62 26 36 0.456

N1 40 20 20

N2 12 6 6

N3 26 8 18

Grade

Grade I 8 2 6 < 0.001

Grade II 48 11 32

Grade III 68 43 25

Grade IV 16 12 4

Clinical stage

Stage I 30 12 18 0.724

Stage II 72 34 38

Stage III 38 14 24
a scores <=6; b scores> 6
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selected for siRNA interference (Fig. 8d). Western blot-
ting and qPCR revealed the successful knockdown of
ALDH3A2 with siRNA interference (Fig. 8e-f). The
Western blots revealed that, in the HGC-27 and MGC-
803 cell lines, the knockdown of ALDH3A2 significantly
increased the mRNA expression of PDCD1, PDCD1LG2,
and CTLA-4 (Fig. 8g-h), which also was verified at the
protein level (Fig. 8i-k). Full-length blots/gels are pre-
sented in Figure S3.

Discussion
As the third most common cause of cancer-associated
deaths, GC is a severe health problem worldwide. Despite
the increase in early screening and planned prevention,
the GC patients frequently are identified only towards the
end of their terminal illness. These observations under-
score the urgency of identifying new biomarkers for the
diagnosis and prognosis of GC [19].
We gained a deeper understanding of GC gene expres-

sion through the present study by analyzing multiple
gastric cancer data sets (GSE54129, GSE79973, and
TCGA-STAD). A total of 89 DEGs were identified with
79 that were up-regulated, and 10 that were down-
regulated. Moreover, 31 prognosis genes were identified
using multivariate Cox analysis, followed by AIC

optimization. Four genes, ALDH3A2, BDH2, CTHRC1,
and FNDC1, were identified through analysis of the
intersection of the 89 DEFs and 31 prognosis genes. We
identified genes that could be used to predict the devel-
opment of GC, guide therapy strategies, and might be
novel prognostic biomarkers.
We explored the predictive value of ALDH3A2, BDH2,

CTHRC1, and FNDC1 in prognosis (sensitivity, specificity,
and AUC). ALDH3A2 was selected for further analysis.
ALDH3A2, which is in the aldehyde dehydrogenase 3 fam-
ily, member A2, is critically important in the detoxification
of aldehydes generated by alcohol metabolism and lipid
peroxidation, and mutations in this gene cause Sjogren-
Larsson syndrome [20]. Few studies have focused on the
role of ALDH3A2 in GC. Thus, to further study the effect
of ALDH3A2 in GC, we examined the clinical features and
conducted GSEA analysis in the high and low ALDH3A2
groups. ALDH3A2 had little effect on the clinical character-
istics; only the grade of the tumor showed a significant cor-
relation. Based on the GSEA analysis, several metabolic
pathways were enriched, indicating that high expression of
ALDH3A2 might improve the prognosis of GC by regulat-
ing metabolism. Even though metabolomics has great po-
tential to help elucidate the complex mechanisms involved
in the pathogenesis of disease, it remains relatively

Fig. 7 High ALDH3A2 expression in gastric cancer tissue correlates with good patients survival. a Representative images of ALDH3A2 expression
in different grades of gastric cancer; b IHC score in different grades of gastric cancer; c Kaplan-Meier overall survival curves for all 140 patients
with gastric cancer stratified with low and high expression of ALDH3A2
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underutilized in studies of GC. By analyzing the aqueous
metabolite liquid using chromatography-mass spectrom-
etry, Tsai et al. found distinctive metabolomic profiles for
GC compared to adjacent normal tissue [21]. Also, using
chromatography-mass spectrometry, Liang et al. found that
urine metabolic profiles were useful in detecting GC, which

also might help to understand the underlying mechanisms
of the pathogenesis of GC [22]. Our results elucidated the
significance of ALDGH3A2 in GC metabolomics.
Considering the connections between metabolism and

immunity, we evaluated the effect of ALDH3A2 on im-
mune cell infiltration. Our results revealed that ALDH3A2

Fig. 8 The expresasion of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4. a The negative correlation between
ALDH3A2 and PDCD1 by qPCR; b The negative correlation between ALDH3A2 and CTLA-4 by qPCR; c The negative correlation between
ALDH3A2 and PDCD1LG2 by qPCR; d qPCR of ALDH3A2 mRNA expression in GES-1, SGC-7901, MKN45, HGC-27, MGC-803 and AGS cell lines;
e qPCR of indicated cells transfected with ALDH3A2-RNAi-vector, ALDH3A2-RNAi; f Western blotting of indicated cells transfected with ALDH3A2-
RNAi-vector, ALDH3A2-RNAi; g qPCR revealed that downregulation of endogenous ALDH3A2 significantly decreased the mRNA level of PDCD1,
CTLA-4 and PDCD1LG2 in HGC-27 cell lines; h qPCR revealed that downregulation of endogenous ALDH3A2 significantly decreased the mRNA
level of PDCD1, CTLA-4 and PDCD1LG2 in MGC-803 cell lines; i-k Western blotting revealed that downregulation of endogenous ALDH3A2
significantly decreased the protein level of PDCD1, CTLA-4 and PDCD1LG2 in indicated cell lines
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remarkably increased the numbers of M1 macrophages in
the tumors. M1 macrophages (or activated macrophages),
release pro-inflammatory cytokines, and induce an anti-
tumor immune response that kills tumor cells and inhibits
the formation of tumor lymphatics [23]. Although the
specific mechanism is unclear, the positive regulatory ef-
fect of ALDH3A2 on M1 macrophages may partly explain
the more positive prognosis of GC patients with high
ALDH3A2 expression.
Finally, significant negative co-expression correlations

were found among immune checkpoints, including PDCD1
(or PD-1), PDCD1LG2 (or PD-L2), CTLA4, and
ALDH3A2. As a new field in tumor treatment, ther-
apy that targets immune checkpoints has provided
tremendous breakthroughs in cancer therapeutics
[24]. Concerning GC, the influence of immune check-
points on the prognosis is broad and complicated
[25]. A previous study conducted by Kono et al. ar-
gued that the increased frequency of PD-1 positive
macrophages might lead to a worse prognosis for GC
patients [26]. Meanwhile, another cohort study from
Egg et al. reported an elevated cancer risk in patients
with CTLA-4 dysfunction [27]. We believe that
ALDH3A2 may affect the development of GC as well
as patient survival by affecting immune checkpoints
such as PDCD1, PDCD1LG2, and CTLA4.
Furthermore, despite the overall robust statistical evi-

dence generated by this analysis, this study lacked
in vivo and in vitro investigations of the related mecha-
nisms. Consequently, based on the direction provided by
our results, our future studies will focus on a more in-
depth analysis of the function and mechanisms of
ALDH3A2, using a series of cellular, tissue, and animal
experiments.

Conclusions
In summary, from serial bioinformatics analysis of the
TCGA, GSE database and IHC staining, we found that
ALDH3A2 could effectively predict the prognosis of GC
patients and might become an independent prognostic
biomarker. Also, the interaction between ALDH3A2 and
metabolism, M1 macrophages, and immune checkpoints
(PDCD1, PDCD1LG2, and CTLA4) might underlie the
prognostic impact.
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