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Abstract

Background: Immune-related genes is closely related to the occurrence and prognosis of head and neck squamous
cell carcinoma (HNSCC). At the same time, immune-related genes have great potential as prognostic markers in many
types of cancer. The prognosis of HNSCC is still poor currently, and it may be effective to predict the clinical outcome
of HNSCC by immunogenic analysis.

Methods: RNASeq and clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA), the
MINiML format GSE65858 chip expression data was downloaded from NCBI, and immune-related genes was downloaded
from the InnateDB database. Immune-related genes in 519 HNSC patients were integrated from TCGA dataset. By using
multivariate COX analysis and Lasso regression, robust immune-related gene pairs (IRGPs) that predict clinical outcomes of
HNSCC were identified. Finally, a risk prognostic model related to immune gene pair was established and verified by
clinical features, test sets and GEO external validation set.

Results: A total of 699 IRGPs were significantly correlated with the prognosis of HNSCC patients. Fourteen robust IRGPs
were finally obtained by Lasso regression and a prognostic risk prediction model was constructed. Risk score of each
sample were calculated based on Risk models and divided into the high-risk group (Risk-H) and low Risk group (Risk-L).
Risk models were able to stratify the risk in patients with TNM Stage, Age, gender, and smoking history, and the AUC >
0.65 in training set and test set, shows that 14-IRGPs signature in patients with HNSCC has excellent classification
performance. In addition, 14-IRGPs had the highest average C index compared with the prognostic characteristics and T,
N, and Age of the 3 previously reported HNSCC.

Conclusion: This study constructed 14-IRGPs as a novel prognostic marker for predicting survival in HNSCC patients.
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Background
Human head and neck squamous cell carcinoma (HNSC
C) is one of the most common tumors today, with ap-
proximately 550,000 people worldwide suffering from
this disease each year, and approximately 300,000 pa-
tients die [1]. Long-term repeated inflammatory stimuli
are considered to be one of the main causes of the dis-
ease, including smoking, drinking, repeated trauma, and
human papillomavirus (HPV) infection [2]. HNSCC is
characterized by high proliferative, regional lymph node
metastasis and poor prognosis [3]. It is urgent to investi-
gate the development of novel and sensitive HNSCC
tumor prognostic markers to reduce the number of
HNSCC patients not diagnosed prior to the onset of in-
vasive disease.
Cancer immunotherapy aims to enhance the activity

of the immune system to fight cancer, has always
been the main driving force of personalized medicine
[4, 5]. In recent decades, immunotherapy has devel-
oped rapidly and has become a treatment for many
cancers [6]. The expression of PD-L1 is usually higher
in HNSCC tumors with a positive rate of 46 to 100%
in several studies [7]. Tadalafil and anti-tumor vaccine-
mediated immune rejection reversal also lead to up-
regulation of PDL1 in recurrent HNSCC, suggesting that
immunological checkpoint treatment may be effective in
patients with HNSCC [8]. In 2016, the US food and drug
administration (FDA) approved the first immunotherapy
treatments- nivolumab and pembrolizumab for patients
with recurrent (HNSCC with platinum-based regimens that
are difficult to treat) [9]. Although these findings support
the importance of immunology in HNSCC, the molecular
mechanisms remain unclear, especially for immune-related
genomic effects. With the advent of public large-scale gene
expression data sets, cancer researchers have been able to
accurately identify tumor-related prognostic biomarkers
[10]. Li et al analyzed the prognostic value of IRGPs to de-
velop individualized immune features that improve progno-
sis in patients with non-squamous non-small cell lung
cancer [11]. However, the clinical relevance and prognostic
significance of IRGPs in HNSCC have not been studied in
depth.
In this study, we integrated immune-related genes in

519 HNSCC patients based on the TCGA dataset. Multi-
variate COX analysis and Lasso regression were used to
identify robust IRGPs that predicted HNSCC clinical
outcomes and establish a risk prognosis model related to
immune gene pairs. IRGPs was found to be a strong
prognostic biomarker and predictor of HNSCC.

Methods
Data collection and processing
In April 30, 2019, RNA-seq data and the latest clinical
follow-up information were downloaded from TCGA

using GDC API, including 612 RNA-seq data samples.
Similarly, a set of chip data set GSE65858 in MINiML
format were downloaded from NCBI, including the ex-
pression profile data and clinical follow-up information
of 270 HNSCC sample. All patients underwent surgery
with a negative surgical margin, receive no adjuvant or
neoadjuvant therapy. A total of 1039 immune-related
genes (removing the name-repeated gene) were down-
loaded from the InnateDB database (https://www.inna-
tedb.com/).
For the TCGA RNAseq data, we screened 517 tumor

samples with follow-up information and OS > 0, ex-
tracted the expression profile of the immune-related
gene set and removed the gene with 0 expression level
in 50% of the samples. For chip data sets, we screened
samples with follow-up information and OS > 0, R pack-
age GEOquery was used to map the chip probes to Gen-
eSymbol, the probes was mapped to multiple genes were
removed, multiple probes were mapped to a single gene
to take the median, gene expression profile were ob-
tained, and the expression profile of the immune gene
set were extracted. The clinical information of TCGA
and GEO patients is shown in Table 1. The workflow is
shown in Fig. 1.

Sample grouping
For better model building and validation, we randomly
divided the TCGA data set into two groups, one as a
training set (N = 260), one as an internal validation set
(N = 259), and the GSE65858 data set as an independent
external validation set. During the random grouping
process of TCGA, we kept the two groups of samples
similar in age distribution, clinical stage, follow-up time,
and proportion of patient deaths, while the number of
samples after clustering the gene expression profiles of
the two groups was close to each other, and the statis-
tical characteristics of the two samples are shown in
Table 2.

Construction of IRGPs
A total of 539,241 gene pairs were obtained by randomly
permutation and combination of 1039 immune genes.
For arbitrary gene i (IRGi) and gene j (IRGj), IRGPij,were
calculated. The IRGP values were defined as follows:

IRGPij ¼ 1; IRGi < IRG j

0; IRGi≥ IRG j

�

Where IRG indicates the amount of gene expression, we
calculated all IRGPs values for all samples and further
filtered IRGPs with a standard deviation of 0, a total of
18,182 IRGPs were obtained.
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Univariate cox survival analysis
Univariate Cox proportional hazard regression analysis
was performed on each IRGPs as in Jin-Cheng et al. [12]
to screen for those genes that were significantly associ-
ated with OS in the training data set, with p < 0.05 as the
threshold.

Screening for robust immune-related prognostic features
LASSO is a popular method for regression modeling
with a large number of potential prognostic features, be-
cause it can perform automatic feature selection in a
manner that results in signatures with generally good
prognostic performance [13]. The LASSO method has
been extended to the Cox model for survival analysis
and has been successfully applied for the purpose of
building sparse signatures for survival prognosis in many
application areas including oncology [14–16], First, we
used training set samples to conduct univariate Cox pro-
portional risk regression analysis for each IRGPs, with
log rank p < 0.05 as the threshold, 669 IRGPs with

significantly correlated prognoses were identified. Fur-
thermore, R software package glmnet [17] was used to
screen robust prognostic immune-related gene pairs,
and 3-fold cross validation was used to evaluate the opti-
mal characteristics. The degree of LASSO regression
complexity adjustment is controlled by the parameter λ,
where the larger λ is, the greater the penalty for a linear
model with more variables, so that a model with fewer
variables is eventually obtained. In this study, the opti-
mal model is obtained when λ = 0.1218186, and we
choose the features incorporated in the model at this
time as the optimal combination of features, i.e., 14-
IRGPs. Multivariate Cox regression analysis was con-
ducted using the stepwise regression method to deter-
mine the coefficient of each IRGPs in the 14-IRGPs, and
the following risk score model was constructed:

RiskScore ¼
Xn
k¼1

Expk�eHRk

Table 1 Clinical information of data sets

Characteristic TCGA dataset (n = 517) GSE65858 (n = 270)

Age (years) <=60 256 41

> 60 261 229

Survival status Living 297 176

Dead 220 94

Gender female 136 47

male 381 223

Grade G 1 61 –

G 2 303 --

G 3 124 --

G 4 7 --

pathologic_T T 1 36 35

T 2 149 80

T 3 136 58

T 4 184 97

pathologic_N N 0 244 94

N 1 83 32

N 2 162 132

N 3 9 12

pathologic_M M 0 491 263

M 1/ M X 23 7

Tumor stage Stage I 27 18

Stage II 81 37

Stage III 93 37

Stage IV 316 178

Smoking Non-Smoking 117 48

Smoking 388 222
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Where N is the number of prognostic IRGPs, Expk is the
IRGP value of prognostic IRGPs, and eHRk is the esti-
mated regression coefficient of IRGPs in the multivariate
Cox regression analysis.

Validation and assessment of the IRGPs signature
To validate the IRGPs signature, patients in test datasets
were divided into low risk and high risk group according
to the median value of the risk score, which calculated
according to the prognostic signature. The log-rank test
and Cox regression analysis were conducted to evaluate
overall survival difference between the low risk and
high risk groups. Receiver operating characteristic curve
(ROC) curve was used to assess the categorization of
IRGPs signature. The IRGPs signature was also com-
pared with the published signature by KM survival
curve, ROC curve, and C-index.

RiskScore and clinical characteristics
In order to observe the relationship between riskScore
and clinical phenotype, the samples were divided into
two groups based on the riskScore median of the sam-
ples, and the prognosis differences between high risk-
Score and low riskScore were compared respectively.
Similarly, the relationship Grade, Age and Stage in High
and Low TMEScore was analyzed.

Functional enrichment analysis
We used R package clusterProfiler, v3.8 [18] for GO and
KEGG enrichment analysis with a p value of less than
0.05 as the threshold. GSEA [19] was performed by R
package GSVA using the MSigDB [20]. Gene sets with a
false discovery rate (FDR) value less than 0.05 after per-
forming 1000 permutations were considered to be sig-
nificantly enriched.

Fig. 1 Work flow chart
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Statistical analysis
The Kaplan-Meier (KM) curve was plotted when the
median risk score in each data set was used as a
cutoff to compare the risk of survival between the
high risk group and the low risk group. Multivariate
Cox regression analysis was performed to test
whether gene markers are independent prognostic
factors. Significance was defined as P < 0.05. AUC
analysis was performed using the R package pROC.
All analyses use default parameters except for special
instructions, which are performed in R software ver-
sion 3.4.3.

Results
Identification of IRGPs in patients with HNSCC
For the TCGA training set samples, we used a uni-
variate Cox proportional hazard regression model to
establish the relationship between patient overall
survival and immune-related gene expression, and
obtained 164 prognostic genes. According to the

calculation rule of the IRGPs value, a total of 7374
IRGPs are obtained. The univariate Cox proportional
hazards regression model was used to establish the
relationship between IRGPs and overall patient sur-
vival. Finally, we obtained 699 IRGPs with significant
prognostic differences (Fig. 2a). In order to screen
robust immune-related prognostic gene pairs, we
used lasso regression to perform dimensionality re-
duction analysis on these 699 IRGPs. The results
show that as the lambda increases, the number of
independent coefficients tends to 0 (Fig. 2b), 3-fold
cross-validation was used to build the model, and
the model is optimal when lambda = 0.1218186 (Fig.
2c). We select the model when lambda = 0.1218186
as the final model, which contains a total of 14
IRGPs, 19 genes (Table 3). The risk scores of these
14 IRGPs in each sample are shown in Fig. 2d. Fur-
thermore, we calculated the Risk Score of each sam-
ple based on the Risk model, and the formula is as
follows:

Table 2 Sample statistics for training set and validation set

Characteristic TrainingSet (n = 260) TestingSet (n = 257) p value

Age (years) <=60 124 132 0.38

> 60 136 125

Survival status Living 148 149 0.878

Dead 112 108

Gender female 69 67 0.983

male 191 190

Grade G 1 29 32 0.653

G 2 152 151

G 3 65 59

G 4 5 2

pathologic_T T 1 19 17 0.886

T 2 72 77

T 3 70 66

T 4 95 89

pathologic_N N 0 131 113 0.004

N 1 50 33

N 2 64 98

N 3 6 3

pathologic_M M 0 244 247 0.1

M 1/ M X 16 7

Tumor stage Stage I 16 11 0.444

Stage II 40 41

Stage III 52 41

Stage IV 152 164

Smoking Non-Smoking 55 62 0.511

Smoking 198 190
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Fig. 2 a: The relationship between the P value of 699 IRGPs and HR. Red indicated log rank p < 0.05 IRGPs. b: The trajectory of each independent
variable, the horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the
independent variable. c: The confidence interval under each lambda. d: Relationship between 14 IRGPs and risk scores

Table 3 14 IRGPs associated with prognosis

IRGPs Coef P value HR Low.95.CI. High.95.CI.

ARHGAP15_VS_CTSG −0.0415 0.001833936 0.507 0.331 0.778

BTK_VS_CCR7 −0.0015 0.000471643 0.512 0.352 0.745

BTK_VS_CTSG −0.0371 0.00101336 0.512 0.343 0.763

CAMK2A_VS_CLEC6A −0.0728 0.001000155 0.335 0.175 0.642

CAMK2A_VS_MASP1 −0.1535 2.82E-05 0.452 0.312 0.656

CCL17_VS_SEMA3A 0.0242 0.00023524 2.019 1.388 2.935

CDKN2A_VS_CLTC 0.1432 0.000924265 2.866 1.537 5.344

DUSP16_VS_TRIM6 0.1202 7.15E-05 4.076 2.037 8.154

IKBKB_VS_TRIB3 0.007 0.001015171 1.879 1.290 2.738

MASP1_VS_SEMA3A 0.0033 0.000200249 2.122 1.427 3.154

MASP1_VS_TRIM6 0.0728 0.000288898 2.307 1.468 3.626

ORAI1_VS_SUGT1 0.0751 0.000457145 2.617 1.528 4.481

SEMA3A_VS_SLAMF1 −0.0663 0.000190953 0.459 0.305 0.691

STAP2_VS_TRIB3 0.1549 1.47E-05 5.593 2.567 12.186
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RiskScore14 ¼ − 0:0415�ARHGAP15 VS CTSG

− 0:0015�BTK VS CCR7 − 0:0371�BTK VS CTSG

− 0:0728�CAMK2A VS CLEC6A

− 0:1534�CAMK2A VS MASP1

þ0:0241�CCL17 VS SEMA3A

þ0:1431�CDKN2A VS CLTC

þ0:1202�DUSP16 VS TRIM6

þ0:0069�IKBKB VS TRIB3

þ0:00325�MASP1 VS SEMA3A

þ0:0727�MASP1 VS TRIM6

þ0:0751�ORAI1 VS SUGT1

− 0:0662�SEMA3A VS SLAMF1

þ0:1548�STAP2 VS TRIB3

14-IRGPs signature could be used as a prognostic marker
Multivariate regression analysis was used to establish
a risk model for 14 IRGPs in the training set, valid-
ation set, TCGA dataset and independent test set data
(GSE65858 dataset) for 1, 3, and 5 years. The results
suggest that the average AUC of the training set is
0.758, the average AUC of the validation set is 0.659,
the average AUC of the TCGA dataset is 0.709, and
the average AUC of the independent test set data is
0.685 (Fig. 3a-d). With the median risk score as the
threshold, the training set samples were divided into
risk-H and risk-L, and the KM survival curves of 14-
IRGPs in training set, validation set, all data sets of
TCGA and one independent GEO testsets (GSE65858
dataset) were drawn. The results showed that the
prognosis of the risk-L group of all data sets was sig-
nificantly better than that of the risk-H group (Fig.
3e-h). In summary, IRGPs have great potential as
prognostic markers.

Predictive power of risk models in different clinical
samples
In order to observe the robustness of risk models in dif-
ferent clinical characteristics, we observed the predictive
power of risk models in different TNMstages, Age, gen-
der and smoking history. We found that the 14-IRGPs
signature model can be significantly distinguished into
high-risk group and low-risk group not only in early pa-
tients and late-stage patients (Fig. 4a, b) (log rank p =
0.00023, log rank p < 0.0001), but also in young data sets
and elderly data sets (Fig. 4c, d) (logrank p < 0.0001, log
rank p < 0.0001), and in female data sets and male data
sets (Fig. 4e, f) (log rank p = 0.01, log rank p < 0.0001).
Finally, our analysis of the samples with and without
smoking history shows that 14-IRGPs signature can also
significantly distinguish the high-risk group from the

low-risk group (Fig. 4g, h) (log rank p = 0.002, log rank
p < 0.0001), those results indicated that our model has a
very stable predictive power in patients of different ages,
stages and genders.

Univariate and multivariate analysis of 14-IRGPs signature
In order to identify the independence of 14-IRGPs signa-
ture model in clinical application, we used univariate
and multivariate COX regression analysis to analyze
relevant HR, 95%CI of HR, p value in TCGA training
set, TCGA verification data set and all data of TCGA.
We systematically analyzed clinical information recorded
by TCGA patients, including age, T, N, AJCC Stage,
Grade, Smoking, and our 14-IRGPs signature grouping
information (Table 4).
In the training set of TCGA, univariate COX regres-

sion analysis found that Risk score, AJCC Stage and
Smoking were significantly correlated with survival, but
the corresponding multi-factor COX regression analysis
found that Risk score (HR = 2.53, 95%CI = 1.54–4.13,
p = 0.0002), T Stage and AJCC Stage were significantly
correlated with survival.
In the verification set of TCGA, univariate COX re-

gression analysis found that Risk score and T staging
were significantly correlated with survival, but the corre-
sponding multivariate COX regression analysis found
that Risk score (HR = 1.72, 95%CI = 1.12–2.62, p =
0.0123) and T staging were significantly correlated with
survival.
In all data sets of TCGA, univariate COX regression

analysis found that Risk score, age, gender and AJCC
stage were significantly correlated with survival, but the
corresponding multivariate COX regression analysis
found that Risk score (HR = 2.01, 95%CI = 1.41–2.84,
p < 0.0001), age and AJCC stage staging were signifi-
cantly correlated with survival.
Finally, in the GEO external data set, univariate COX

regression analysis found that Risk score, age, T stage, N
stage and AJCC stage were significantly correlated with
survival, but the corresponding multivariate COX regres-
sion analysis found that Risk score (HR = 1.90, 95%CI =
1.23–2.92, p = 0.0035), age and T stage were significantly
correlated with survival.
The above conditions indicate that our model 14-

IRGPs signature has a good predictive performance in
terms of clinical application value in TCGA data set, and
our model may be a prognostic indicator independent of
other clinical factors and has an independent predictive
performance in terms of clinical application value.

Functional analysis and immune analysis of IRGPs
In order to further analyze the functions of 14-IRGPs,
we first used clusterProfiler to conduct GO and KEGG
enrichment analysis on 19 genes, and finally retained the
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results of p < 0.05. The results showed that these path-
ways were enriched to 356 GO BP, which were mainly T
cell receptor signaling pathway, stress-activated MAPK
cascade and other biological processes, and we show the

most significant top 20 (Fig. 5a), Furthermore, we found
that these 19 genes were significantly enriched in 39 GO
CCs and 73 GO MFs, the most prominent of which were
the top 20 (Fig. 5b, c).

Fig. 3 a: The risk model ROC of 14 IRGPs after lasso regression in TCGA training dataset. b: The risk model ROC of 14 IRGPs after lasso regression in
TCGA validation dataset. c: The risk model ROC of 14 IRGPs after lasso regression in TCGA dataset. d: The risk model ROC of 14 IRGPs after lasso
regression in GSE65858 dataset. e: KM survival curve of 14 IRGPs in TCGA training dataset. f: KM survival curve of 14 IRGPs in TCGA validation dataset. g:
KM survival curve of 14 IRGPs in TCGA dataset. h: KM survival curve of 14 IRGPs in GSE65858 dataset
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Fig. 4 a: KM curve of 14-IRGPs signature in early samples. b: KM curve of 14-IRGPs signature in advanced cancer sample. c: KM curve of 14-IRGPs
signature in young. d: KM curve of 14-IRGPs signature in age. e: KM curve of 14-IRGPs signature in female. f: KM curve of 14-IRGPs signature in
male. g: KM curve of 14-IRGPs signature in No smoking history sample. h: KM curve of 14-IRGPs signature in smoking history sample
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ssGSEA was used to analyze the enrichment scores of
each sample in each pathway in the TCGA data set, cal-
culate the correlation between these pathways and risk

scores, and 26 pathways with correlation > 0.25 were se-
lected (Fig. 5d), we found that most of the samples with
risk score present negative correlation, a small number

Table 4 Univariate and multivariate COX regression analysis identified clinical factors associated with prognosis

Variables Univariate analysis Multivariable analysis

HR 95%CI of HR P value HR 95%CI of HR P value

TCGA training datasets

14-IRGPs signature

Risk score (High/Low) 2.97 1.99–4.43 7.79E-08 2.53 1.54–4.13 0.0002

Age 1.02 1.01–1.04 0.009 1.02 0.99–1.04 0.0550

Gender (Male vs Female) 0.70 0.47–1.04 0.077 0.94 0.56–1.5 0.8236

T3/T4 vs T1/T2 0.97 0.66–1.43 0.895 0.43 0.24–0.74 0.0025

N1/N2/N3 VS N0 1.21 0.78–1.85 0.39 1.00 0.59–1.68 0.9985

Stage IV vs Stage I/ II/III 1.97 1.31–2.95 0.001 2.65 1.46–4.78 0.0012

G3/G4 vs G1/G2 1.16 0.76–1.77 0.491 0.94 0.57–1.52 0.7969

Smoking vs Non-smoking 0.95 0.59–1.52 8.35E-01 0.85 0.48–1.49 0.5707

TCGA validation datasets

14-IRGPs signature

Risk score (High/Low) 1.96 1.32–2.91 7.93E-04 1.72 1.12–2.62 0.0123

Age 1.02 0.99–1.04 0.064 1.02 0.99–1.03 0.1549

Gender (Male vs Female) 0.77 0.51–1.17 0.223 0.79 0.47–1.31 0.3577

T3/T4 vs T1/T2 1.75 1.13–2.71 0.011 2.05 1.17–3.59 0.0120

N1/N2/N3 VS N0 1.29 0.87–1.91 0.209 1.39 0.86–2.23 0.1674

Stage IV vs Stage I/ II/III 1.36 0.90–2.05 0.142 0.87 0.49–1.53 0.6379

G3/G4 vs G1/G2 1.22 0.77–1.93 0.393 1.20 0.74–1.93 0.4439

Smoking vs Non-smoking 1.33 0.82–2.15 0.247 1.34 0.77–2.31 0.2987

TCGA entire datasets

14-IRGPs signature

Risk score (High/Low) 2.54 1.92–3.35 6.51E-11 2.01 1.41–2.84 9.36E-05

Age 1.02 1.01–1.03 0.0013 1.02 1.01–1.04 0.0087

Gender (Male vs Female) 0.74 0.55–0.97 0.034 0.97 0.66–1.41 0.8830

T3/T4 vs T1/T2 1.28 0.96–1.70 0.093 0.72 0.47–1.09 0.1107

N1/N2/N3 VS N0 1.20 0.87–1.66 0.271 1.07 0.73–1.54 0.7276

Stage IV vs Stage I/ II/III 1.65 1.24–2.20 6.20E-04 1.85 1.21–2.82 0.0046

G3/G4 vs G1/G2 1.15 0.84–1.57 0.365 0.83 0.58–1.18 0.3067

Smoking vs Non-smoking 1.14 0.81–1.59 0.45 1.07 0.7–1.63 0.7539

GSE65858

14-IRGPs signature

Risk score (High/Low) 1.94 1.27–2.97 0.0021 1.90 1.23–2.92 0.0035

Age 1.03 1.01–1.05 0.0130 1.04 1.01–1.06 0.0036

Gender (Male vs Female) 1.05 0.62–1.77 0.8680 1.06 0.62–1.82 0.8378

T3/T4 vs T1/T2 2.92 1.81–4.72 1.23E-05 2.16 1.26–3.69 0.0049

N1/N2/N3 VS N0 2.14 1.38–3.32 0.0007 1.39 0.73–2.65 0.3216

Stage IV vs Stage I/ II/III 2.92 1.72–4.95 7.22E-05 1.55 0.68–3.55 0.2987

Smoking vs Non-smoking 0.94 0.55–1.59 0.8210 1.14 0.64–2.03 0.6493
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of positively related with risk score. Cluster analysis was
conducted according to the 26 KEGG pathway enrich-
ment scores (Fig. 5e), it can be seen that among the 26
pathways, B CELL SIGNALING PATHWAY, PRIMARY
IMMUNODEFICIENCY and other pathways increase
with the increase of RiskScore, and FOCAL ADHESION,
GALACTOSE_METABOLISM and other metabolism-
related pathways decrease with the increase of RiskScore.
Results suggested that the imbalance of these pathways
is closely related to the development of tumors.
In addition, we obtained the signature genes of three

immune cells, Activated B cell, Activated CD4 T cell,
and Activated CD8 T cell, from a previous study [21],
and calculated enrichment scores in each sample using
the method of ssGSEA to assess the sample’s corre-
sponding Immune cell scores. The differences in these

three immune cell scores in the high and low risk groups
of patients were analyzed and observed that B cell and T
cell activation scores were all significantly lower in high
risk patients with poor prognosis (Fig. 5f). Current
immunotherapy-related datasets are rare. We found a
cohort of PD-L1-treated patients with metastatic uroe-
pithelial carcinoma shared by Sanjeev Mariathasan et al
[22] and analyzed the differential expression of 19 genes
in 14 IRGPs in patients with different response states
after PD-L1 treatment. We observed a significant differ-
ential expression of 14 (73.6%) genes (Fig. 5g), suggest-
ing that these genes are associated with immunotherapy.

Establishment and evaluation of nomogram model
In addition to 14-IRGPs, clinical features Stage and Age
are also independent prognostic factors, indicating that

Fig. 5 a: Top 20 GO BP enrichment results of 19 immune-related genes. b: Top 20 GO CC enrichment results for 19 immune-related genes. c:
Top 20 GO MF enrichment results for 19 immune-related genes. d: Clustering of correlation coefficients between KEGG pathways and RiskScores
with a risk score correlation > 0.25. e: The KEGG pathway with a correlation with risk scores greater than 0.25 has a relationship with the ssGSEA
score in each sample as the risk score increases. The horizontal axis represents the sample, and the risk score from left to right increases in turn. f:
The difference of B cell and T cell activation scores between high and low risk groups. g: Expression differences of 19 genes in 14-IRGPs in patients
with different response states after PD-L1 treatment; CR: complete response, PD: progressive disease, SD: stable disease, PR: partial response
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they have complementary values. In order to further im-
prove the accuracy of prediction, a new nomogram was
established by integrating Stage, Age and 14-IRGPs
using Cox model. According to this model, 14-IRGPs
contribute the most to OS, followed by Age and Stage
(Fig. 6a). By calculating the total score, oncologists could
easily obtain the OS probability predicted by the nomo-
gram of an individual patient. Furthermore, we used the
calibration curve to evaluate the prediction accuracy of
the model (Fig. 6b), results show that the predicted cali-
bration curves of the three calibration points in 1, 3, and
5 years were close to the standard curve, which indicated
that the model has good prediction performance. In
addition, we also used DCA (Decision curve) to evaluate

the reliability of the model (Fig. 6c). It was observed that
RiskScore (14-IRGPs) and nomogram benefit signifi-
cantly higher than the extreme curve, and nomogram is
higher than RiskScore, and Age and Stage are close to
the extreme curve. This suggests that RiskScore (14-
IRGPs) and nomogram have good reliability.

14-IRGPs was compared with other signatures and clinical
features
In order to observe the performance of 14-IRGPs, the
prognostic signature of three head and neck cancers re-
ported in the past (3-gene signature of Cui L et al [23],
6-gene signature of Weidong Zhang et al [24] and 3-
gene signature of Hongbo Zhou et al [25]) and four

Table 5 Comparision for 4 models and clinical features

Characteristics C-index (95%CI) 1-year AUC (95%CI) 3-year AUC (95%CI) 5-year AUC (95%CI)

T 0.50 (0.426–0.583, 0.571) 0.53 (0.47–0.6) 0.52 (0.46–0.58) 0.6 (0.52–0.67)

N 0.53 (0.452–0.610,0.835) 0.52 (0.47–0.59) 0.53 (0.47–0.59) 0.45 (0.46–0.54)

Age 0.56 (0.490–0.626,0.0096) 0.62 (0.53–0.71) 0.55 (0.48–0.62) 0.51 (0.42–0.6)

AJCC stage 0.52 (0.434–0.600,0.412) 0.56 (0.5–0.63) 0.58 (0.52–0.64) 0.5 (0.41–0.59)

14-IGPS signature 0.78 (0.693–0.859,3.65E-08) 0.73 (0.66–0.8) 0.82 (0.77–0.87) 0.75 (0.66–0.82)

3-gene signature 0.67 (0.579–0.767, 0.002) 0.56 (0.48–0.63) 0.64 (0.57–0.71) 0.63 (0.52–0.74)

6-gene signature 0.65 (0.560–0.750, 7.07E-5) 0.56 (0.48–0.63) 0.63 (0.56–0.7) 0.71 (0.62–0.81)

3-gene signature 0.62 (0.519–0.715,0.043 0.59 (0.50–0.67) 0.58 (0.51–0.66) 0.51 (0.40–0.61)

Fig. 6 Establishment and evaluation of nomogram model. a: The nomogram model combined with Stage, Age and 14-IRGPs. b: Calibration
curves of the nomogram for 1, 3 and 5 years. c: Decision curves for Stages, Ages, 14-IRGPs and nomograms
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clinical features of T, N, age and Stage were selected. In
order to make the model comparable, we calculated the
Risk score of each head and neck cancer sample in the
TCGA training set with the same method according to
the corresponding genes in the 3 models, evaluated the
ROC of each model and C-index (Table 5). We observe
that the 6-gene signature model has the highest AUC
above among the three models, while the average AUC
for 1, 3 and 5 years is 0.63. The 1, 3, and 5 years AUC of
14-IRGPs signature were all above 0.73. In addition, in
the C-index of all models, 14-IRGPs was significantly
higher than other clinical features and models, indicating
that our model has good application value.

Discussion
Due to the heterogeneity of HNSCC, patients are still at
great risk of recurrence and death even after complete sur-
gical resection. The management of adjuvant chemotherapy
for early HNSCC remains controversial. Therefore, it is im-
portant to develop a personalized management approach
for HNSCC. Reliable prognostic biomarkers can identify
patients with poor prognosis, and predictive biomarkers
can inform patients who may benefit from additional sys-
temic therapy, regardless of treatment, and therefore have
more direct clinical relevance. In this study, we developed
immune-related genes for signature prediction of HNSCC
prognosis. Their potential for molecular stratification of
HNSCC suggests different immune characteristics at differ-
ent stages of the tumor.
In the past decade, important studies based on prognos-

tic signals of immune gene expression have shown that
immune genes have a strong prognostic ability. Several
gene expression scores have been proposed for predicting
the risk of recurrence, and both Tadalafil and anti-tumor
vaccine-mediated immune rejection reversals also lead to
up-regulation of PDL1 in recurrent HNSCC, suggesting
that immune checkpoint therapy may be effective in pa-
tients with HNSCC [8]. Immune-related gene signature
reflecting immune infiltration can predict the prognosis of
colorectal cancer [26]. AP001056.1 is a key immune-
related ceRNA in SCCHN, and ICOSLG encodes immune
checkpoint protein as its regulatory target, which can be
used as a prognostic molecule of HNSCC [27]. The 14-
IRGPs we developed could be risk stratified in four data
sets, with AUC higher than 0.659. The KM curve of the
risk score in the four data sets indicates that high risk pre-
dicts poor prognosis, and those results indicated that the
immune-related gene can be used as a factor for stratifying
the prognosis risk of HNSCC.
In order to observe whether 14-IRGPs signature is

dependent on TP53 and EGFR mutation characteristics, we
first compared the relationship among 14-IRGPs signature,
TP53 and EGFR mutation using single-factor and multi-
factor analysis (Figure S1A-B). The results showed that 14-

IRGPs signature had significant difference in prognosis,
suggesting that 14-IRGPs signature is an independent fac-
tor. Furthermore, we compared the ROC analysis of 14-
IRGPs signature in mutant and non-mutant samples and,
considering the small number of EGFR mutations, only
TP53 mutations were analyzed here (Figure S1C-D). We
observed that the 14-IRGPs signature had higher AUC in
both TP53 mutant and non-mutant samples. We also ob-
served the lowest AUC at 1 year in TP53 mutant samples
and the lowest AUC at 5 years in non-mutated samples,
suggesting that the 14-IRGPs signature has better predictive
performance for long-term survival in TP53 mutant sam-
ples and for short-term survival in non-mutated samples.
We downloaded exon datasets of TCGA samples and ex-
tracted mutation data from HNSCC samples, in which a
total of 508 patients were tested. Nineteen genes in the 14-
IRGPs signature were analyzed for their mutation frequen-
cies in these patients (Figure S1E), which had the highest
frequency of CDKN2A mutations, especially in high-risk
patients, mainly Nonsense_Mutation.
Go and KEGG analysis were conducted to identify the

functions of the 19 genes involved in HNSCC. T cell re-
ceptor signaling pathway, stress-activated MAPK cascade,
B cell signaling pathway and primary immunodeficiency
were enriched in TCGA samples. These immune-related
pathways are involved in various biological processes, such
as differentiation, growth, and apoptosis, and promote cell
interaction and migration [28, 29]. Taken together, those
pathways may facilitate the metastasis of HNSCC.
Comprehensive analysis shows that risk score is a prog-

nostic biomarker for HNSCC and can be used to molecu-
larly stratify prognosis. Clinical features Age, Stage and
Grade are key prognostic factors in head and neck squa-
mous cell carcinoma. Factor [30], As expected, there is a
significant association between the risk score and Age,
Stage, and Grade, and found that the combination of risk
score and Age has a superior prognostic effect.
Although we identify potential candidate IRGPs in-

volved in tumorigenesis in large samples by bioinfor-
matics techniques, some limitations of this study
should be noted. First, the sample lacks some clinical
follow-up information, so we did not consider factors
such as the presence of other health status of the patient
to distinguish prognostic biomarkers. Second, the results
obtained only through bioinformatics analysis are inad-
equate and experimental validation is needed to confirm
these results. Therefore, further genetic and experimental
studies of larger sample sizes and experimental validation
are needed.

Conclusions
In conclusion, we studied the immunological characteristics
of HNSCC and systematically studied the expression profile
of immune genes. We found immune-related gene pair
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features in HNSCC, and have better AUC in both training
and validation sets. Compared with clinical features, im-
mune gene pair classifiers could improve survival risk pre-
diction. Therefore, we recommend using this classifier as a
molecular diagnostic test to assess the prognostic risk of pa-
tients with HNSCC.
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1186/s12885-020-07489-7.
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