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Abstract

Background: Lung adenocarcinoma (LUAD) remains a crucial factor endangering human health. Gene-based
clinical predictions could be of great help for cancer intervention strategies. Here, we tried to build a gene-based
survival score (SS) for LUAD via analyzing multiple transcriptional datasets.

Methods: We first acquired differentially expressed genes between tumors and normal tissues from intersections of four
LUAD datasets. Next, survival-related genes were preliminarily unscrambled by univariate Cox regression and further
filtrated by LASSO regression. Then, we applied PCA to establish a comprehensive SS based on survival-related genes.
Subsequently, we applied four independent LUAD datasets to evaluate prognostic prediction of SS. Moreover, we explored
associations between SS and clinicopathological features. Furthermore, we assessed independent predictive value of SS by
multivariate Cox analysis and then built prognostic models based on clinical stage and SS. Finally, we performed pathway
enrichments analysis and investigated immune checkpoints expression underlying SS in four datasets.

Results: We established a 13 gene-based SS, which could precisely predict OS and PFS of LUAD. Close relations were
elicited between SS and canonical malignant indictors. Furthermore, SS could serve as an independent risk factor for OS
and PFS. Besides, the predictive efficacies of prognostic models were also reasonable (C-indexes: OS, 0.7; PFS, 0.7). Finally,
we demonstrated enhanced cell proliferation and immune escape might account for high clinical risk of SS.

Conclusions: We built a 13 gene-based SS for prognostic prediction of LUAD, which exhibited wide applicability and could
contribute to LUAD management.

Keywords: Lung adenocarcinoma, Transcriptome, Survival, Prediction, Risk

Background
Lung cancer remains intractable but imperative to cope
with for the highest morbidity and mortality among can-
cers [1]. A principle subtype of lung cancers is lung
adenocarcinoma (LUAD), whose investigation means a
great deal to us [2–4]. Advance in cancer biology

demonstrated cancer could be regarded as a disorder
caused mainly by aberrant genes, while some core ones
even drive carcinogenesis [5, 6]. That is to say, genes are
undoubtedly valuable targets for cancer management.
In fact, remarkable achievements in clinical practice

have proved powerful effect of genes on clinical oncol-
ogy especially for LUAD [7, 8]. First take chemotherapy
for example. Many widely applied chemotherapeutic
agents are aimed at critical genes in biological processes
like cell proliferation and metabolism [9, 10]. Besides,
targeted therapy based on driver gene, such as epidermal
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growth factor receptor (EGFR), has significantly im-
proved the prognosis of patients with specific genetic
background [11, 12]. Moreover, immunotherapy targeted
at immune-checkpoint genes has achieved revolutionary
progress for LUAD patients, especially for who have no
targetable driver mutation till now [4, 7, 13].
Moreover, clinical predictions based on gene signatures

also contribute much to handling cancer [14–16]. For ex-
ample, some canonical biomarkers are references for distin-
guishing specific cancer from normal counterparts and
other histologic subtypes [17, 18]. Besides, other gene-based
clinical prediction like prognostic prediction has emerged as
a hot spot for the relative convenience to obtain and the
great significance for treatment [15]. Tremendous advance
in omics and mature application of statistical methods in
bioinformation contributed greatly to bridge genes signa-
tures and cancer characteristics. For example, The Cancer
Genome Atlas (TCGA) program and Gene Expression
Omnibus (GEO) database both offer abundant resources for
cancer investigation. The Least Absolute Shrinkage and
Selection Operator (LASSO) regression can both adjust the
complexity and execute variable selection, thereby improv-
ing the prediction precision and interpretability of the re-
gression model [19]. Moreover, compared with bio-
enrichment methods based only on differentially expressed
genes (DEGs), Gene Set Enrichment Analysis (GSEA) could
take into account those genes with subtle expression
changes but significant biological significance, therefore, it is
more comprehensive and precise [20]. Herein, we tried to
build a gene-based survival score (SS) for LUAD via system-
atic transcriptome analysis, and this SS exhibited favorable
predictive efficacy in multiple datasets.

Methods
Transcriptomic and clinical information
LUAD datasets containing gene expression profiling and
clinical information were obtained from TCGA program
(RNA-sequencing) and GEO database (gene microarray).
We applied different datasets to different analysis based
on the data characteristic and analytic demands, as fol-
lows. Four datasets consisting of transcriptome profiling
in tumors and normal tissues were applied for filtrating
DEGs (GSE32863, 58 tumors and 58 normal tissues;
GSE43458, 80 tumors and 30 normal tissues; GSE10072,
58 tumors and 49 normal tissues; TCGA-LUAD, 58
paired tumors and normal tissues) [21–24]. Four datasets
containing non-controversial and available records about
Overall Survival (OS) and Progression-free Survival (PFS)
were applied for survival analysis (TCGA-LUAD, 402
samples; GSE30219, 85 samples; GSE31210, 200 samples;
GSE50081, 124 samples) [24–27]. TCGA-LUAD was used
as training set while GSE30219, GSE31210 and GSE50081
were applied as validation sets.

Besides, 515 samples of TCGA-LUAD, GSE30219,
GSE31210 and GSE50081 were candidates for enrich-
ment analysis. And 253 samples of TCGA-LUAD con-
taining comprehensive clinicopathologic records (age,
gender, TNM parameters, clinical stage, OS and PFS)
were applied for multivariate analysis.

Statistical methods
DESeq2 package (RNA-sequencing) and limma package
(microarrays) were applied to DEGs (Adjusted P-value <
0.05, fold change > 2 or < 0.5) [28, 29]. Z score was used to
normalize data (Function: scale). Cox regression model,
LASSO regression model, Kaplan-Meier (K-M) curve and
log-rank test were used for survival analysis (Packages: sur-
vival, survminer and glmnet). Principal component ana-
lysis (PCA) was utilized for comprehensive assessment
(Function: princomp; Packages: FactoMineR and fac-
toextra). Receiver operating characteristic (ROC)
curve analysis was performed to determine optimal
cut-off (Packages: pROC). Logistic regression model
was applied to find associations between genes and
two-category data (TNM parameters and clinical stage
were transferred to two-category data) (Function:
glm). Pearson correlation analysis was applied for cor-
relation assessment (Packages: ggcorrplot). GSEA was
employed for biological investigation [20]. Wilcoxon
rank sum test was applied for differential analysis be-
tween two groups (Function: wilcox.test). P < 0.05 was
considered significant. Arithmetic functions were op-
erated in R language [30].

Results
Identifying 13 core genes to establish SS for LUAD
Genes closely related to tumor prognosis are likely to
play key roles in tumor progression. Valuable candidates
are DEGs between tumors and normal tissues. So we ob-
tained the intersection of DEGs from four LUAD tran-
scriptomic datasets (GSE10072, GSE32863, GSE43458
and TCGA-LUAD), and we acquired 52 upregulated
DEGs and 180 downregulated DEGs (fold change > 2 or
fold change < 0.5, Adjusted P-value < 0.05) (Fig. 1a) (De-
tailed information about acquiring DEGs could be seen
in our previous research [31]). Filtrating survival-related
genes from these DEGs was executed in TCGA-LUAD
dataset, for its largest sample size and most complete
clinical records. We conducted univariate Cox regression
analysis towards OS for preliminary identification, and
we obtained 16 hazardous genes from upregulated DEGs
and 35 protective genes from downregulated DEGs (for
hazardous genes, which may promote cancer, p < 0.05,
HR > 1; for protective genes, which may prevent cancer,
p < 0.05, HR < 1) (Fig. 1b, c). Since independence among
variables is a prerequisite for establishing multi-factor
models, we analyzed associations among the screened
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genes through a correlation matrix. The results showed
strong relationship among these genes, so further screen-
ing was needed (Fig. 1d). Thereupon, we implemented
LASSO analysis and we got 13 core genes: Abnormal
Spindle Microtubule Assembly (ASPM), Epithelial Cell
Transforming 2 (ECT2), Glucosaminyl (N-Acetyl) Trans-
ferase 3, Mucin Type (GCNT3), Golgi Membrane Protein
1 (GOLM1), Insulin Like Growth Factor 2 MRNA Binding
Protein 3 (IGF2BP3), Solute Carrier Family 2 Member 1
(SLC2A1), Solute Carrier Family 7 Member 5 (SLC7A5),
Tissue Inhibitor Of Metalloproteinases 1 (TIMP1), Thy-
midylate Synthetase (TYMS), Rac/Cdc42 Guanine Nu-
cleotide Exchange Factor 6 (ARHGEF6), Cytochrome
P450 Family 4 Subfamily B Member 1 (CYP4B1), Family
With Sequence Similarity 189 Member A2 (FAM189A2),
and Secretoglobin Family 1A Member 1 (SCGB1A1) (Fig.
1e, f) (Coefficients of genes in LASSO regression are listed
in Supplementary Table 1). Furthermore, we performed
PCA for the comprehensive evaluation based on core
genes (Fig. 1g). Finally, we chose the first 6 principal

components (comps) to establish a SS for LUAD (The cu-
mulative contribution rate is more than 70%):
Score = 0.409981*comp.1 + 0.170820*comp.2 +

0.129785*comp.3 + 0.106358*comp.4 + 0.09938*comp.5 +
0.083671*comp.6.
And coefficients for genes to make up each comp are

exhibited in Supplementary Table 2.

SS exhibits high-risk probability for OS in LUAD
Next, we estimated prognostic value of SS in LUAD. We
chose OS for prognostic indicator and examined in four
independent LUAD datasets (TCGA-LUAD, GSE30219,
GSE31210, GSE50081). We divided patients into two
groups (High and Low SS) based on optimal cut-off
value via ROC curve analysis according to the survival
status of OS in each dataset respectively (Fig. 2a-d). We
found SS showed obvious high-risk probability for OS
and patients with higher SS had shorter OS periods in
four datasets (Fig. 2e-h).

Fig. 1 A Survival-related SS for LUAD. a DEGs acquired from the intersection of four LUAD datasets (GSE10072, GSE32863, GSE43458 and TCGA-
LUAD); b, c Survival-related genes screened out preliminarily from upregulated DEGs and downregulated DEGs according to OS via univariate
Cox regression analysis; d The correlation matrix for survival-related genes screened preliminarily; e, f Core genes identified further considering OS
by LASSO regression analysis; g Comprehensive assessment of core genes by PCA
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Fig. 3 PFS probabilities between LUAD patients with high and low SS. a-d ROC curves for finding appropriate cut-off for SS upon PFS in TCGA-
LUAD (a), GSE30219 (b), GSE31210 (c) and GSE50081 (d); e-h K-M survival curves and HRs related to PFS between patients with high and low SS
in TCGA-LUAD (e), GSE30219 (f), GSE31210 (g) and GSE50081 (h)

Fig. 2 OS rates between LUAD patients with high and low SS. a-d ROC curves for determining optimal cut-off for SS upon OS in TCGA-LUAD (a),
GSE30219 (b), GSE31210 (c) and GSE50081 (d); e-h K-M survival curves and HRs considering OS between patients with high and low SS in TCGA-
LUAD (e), GSE30219 (f), GSE31210 (g) and GSE50081 (h)
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SS possesses high-risk probability for PFS in LUAD
Then, we estimated predictive value of SS upon PFS in four
independent LUAD datasets (TCGA-LUAD, GSE30219,
GSE31210, GSE50081). We implemented ROC curve to di-
vided patients into High and Low SS groups based on
outcome status of PFS in these datasets respectively
(Fig. 3a-d). Analogously, we found higher SS indicated
bigger risk probability for PFS in all testing datasets
(Fig. 3e-h).

SS correlates highly with clinicopathological features and
functions as a novel independent risk factor for LUAD
prognosis
Further, we investigated relationships between SS and clini-
copathological parameters of LUAD. Marker of prolifera-
tion Ki-67 (MKI67) and proliferating cell nuclear antigen
(PCNA) are both canonical biomarkers for clinical oncol-
ogy [32–35]. We found SS was intensively positively

correlated with MKI67 in four LUAD datasets
(TCGA-LUAD, GSE30219, GSE31210, GSE50081)
(Fig. 4a-d). Analogously, SS possessed strong positive
association with PCNA in these datasets (Fig. 4e-h).
TNM parameters and tumor clinical stage also play
important roles in tumor handling. And we chose
TCGA-LUAD dataset with relatively more complete
clinical information for following analysis. We found
that SS indicated high-risk probability for N (lymph
node metastasis), M (distant metastasis) and clinical
stage (Fig. 4i). Usually, univariate analysis might cover
up the real prognostic function due to confounding
factors. So we verified further SS could function as an
independent risk predictor for both OS and PFS via
multiple Cox regression analysis considering age, gen-
der, TNM parameters and clinical stage in TCGA-
LUAD (Table 1, 2). Moreover, we used clinical stage
and SS to build concise nomographs predicting OS

Fig. 4 Relationships between SS and clinicopathological features of LUAD. a-d Correlations between SS and MKI67 expression in TCGA-LUAD (a), GSE30219
(b), GSE31210 (c) and GSE50081 (d); e-h Correlations between SS and PCNA expression in TCGA-LUAD (e), GSE30219 (f), GSE31210 (g) and GSE50081 (h); i
ORs regarding TNM parameters and clinical stage between patients with high and low SS; j The nomograph for predicting one-year and five-year OS
probability; k The nomograph for predicting one-year and five-year PFS probability

Xiong et al. BMC Cancer         (2020) 20:1046 Page 5 of 10



and PFS probability of LUAD (Fig. 4j, k). And pre-
dictive potencies were acceptable (C-indexes: OS, 0.7;
PFS, 0.7).

Exploring molecular characteristics underlying SS in LUAD
We tried to uncover molecular mechanisms underlying
clinical role of SS in LUAD. We first ranked the patients
(515 samples in TCGA-LUAD) in order of SS. The top 50
patients were divided into High SS group, and last 50 pa-
tients were Low SS group (Fig. 5a). Then we performed
GSEA to investigate molecular features of SS based on
transcription profiling. We found high SS showed en-
hanced cell cycle in several gene sets (Fig. 5b). Further, we
validated it in other three datasets (GSE30219, top 40 vs
last 40; GSE31210, top 50 vs last 50; GSE50081, top 50 vs
last 50), and found similar results (Fig. 5c-h). Last, we

explored expression profile of immune checkpoints under
SS in above four LUAD datasets, and found most of im-
mune checkpoints possessed increased expression in high
SS group (Fig. 5i-l).

Discussion
LUAD possesses strong heterogeneities in both tumor
biology and clinical characteristics [36]. Therefore, it is
urgently needed to precisely assess LUAD prognosis for
applying appropriate intervention as well as avoiding
overtreatment. Deregulation of gene expression during
malignant transformation and progression offers theor-
etical basis to interpret carcinogenesis via gene signa-
tures, while the tremendous advance in onco-genomics
provides prominently practical convenience [6, 14, 16].
Here, we established a gene-based survival assessment

Table 1 Cox proportional hazard regression for OS in TCGA-LUAD patients

Parameters Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Age (years) 0.998 0.977–1.019 0.833 1.013 0.991–1.036 0.242

Gender 0.968 0.638–1.469 0.880 0.889 0.580–1.364 0.591

male vs female

Tumor size 2.379 1.360–4.162 0.002 2.017 1.073–3.790 0.029

T34 vs T12

Lymph node metastasis 2.187 1.445–3.310 < 0.001 1.813 1.091–3.014 0.022

Yes vs No

Distant metastasis 1.785 0.862–3.699 0.119 1.204 0.482–3.010 0.692

Yes vs No

Stage 2.387 1.544–3.691 < 0.001 1.185 0.622–2.259 0.605

III IV vs I II

Score 1.580 1.303–1.916 < 0.001 1.610 1.288–2.012 < 0.001

Table 2 Cox proportional hazard regression for PFS in TCGA-LUAD patients

Parameters Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Age (years) 1.002 0.985–1.020 0.794 1.011 0.993–1.029 0.227

Gender 0.940 0.662–1.335 0.731 0.906 0.632–1.301 0.594

male vs female

Tumor size 2.227 1.364–3.638 0.001 2.041 1.160–3.592 0.013

T34 vs T12

Lymph node metastasis 1.606 1.131–2.280 0.008 1.360 0.882–2.096 0.164

Yes vs No

Distant metastasis 1.707 0.864–3.374 0.124 1.283 0.544–3.027 0.569

Yes vs No

Stage 1.893 1.293–2.770 0.001 1.067 0.597–1.907 0.829

III IV vs I II

Score 1.459 1.208–1.761 < 0.001 1.449 1.175–1.788 < 0.001
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named SS, which exhibited good accuracy and stability
in multiple datasets.
Compared with former gene-based prognostic predic-

tions [37–40], SS owns three specialties or innovations: 1.
SS has favorable stability, or adaptability in clinical appli-
cation. Our initial candidates are common DEGs between
tumors and normal tissues in four independent LUAD
datasets. After screening by Cox model and LASSO re-
gression, we established a 13 gene-based SS in TCGA-
LUAD, and validated its efficiency in other three LUAD
datasets. 2. SS was multifunction for clinical usage. First,
SS could assess both OS and PFS. OS is a golden standard

of prognosis evaluation but takes a long time to collect,
while PFS is a relatively convenient indicator for clinical
intervention. Besides, SS was positively related to malig-
nant biomarkers and tumor stage, and could function as
an independent risk factor for prognosis. 3. Biological sig-
nificance of SS was verified in multiple datasets. In four
LUAD datasets, higher SS all indicated enhanced cell pro-
liferation, which confirmed the prime trait of abnormal
proliferation in carcinogenesis. Moreover, LUAD with
higher SS exhibited increased expression of immune
checkpoint genes, which underlined the prominent role of
immune escape in malignant progression of LUAD.

Fig. 5 Molecular characteristics underlying SS in LUAD. a, c, e, g Dividing LUAD patients into high and low group based on SS in TCGA-LUAD (a),
GSE30219 (c), GSE31210 (e) and GSE50081 (g); b, d, f, h Gene sets enriched in high SS group from several collections of the MSigDB (Only top
ten significant gene sets were presented) in TCGA-LUAD (b), GSE30219 (d), GSE31210 (f) and GSE50081 (h); i-l Immune-check genes expression
between patients with high and low SS in TCGA-LUAD (i), GSE30219 (j), GSE31210 (k) and GSE50081 (l)
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These 13 core genes building SS are involved in a
diversity of biological processes like cell proliferation,
nutrition transportation and material metabolism.
Most of these genes have been reported to play crit-
ical roles in lung carcinogenesis, however, some lack
detailed research. For example, ASPM and ECT2 both
are proliferation-related genes and participate in DNA
synthesis and cytokinesis [41–43]. Studies have shown
that LUAD had high expression of ASPM and ECT2,
which both indicated poor prognosis, and ECT2 could
facilitate lung tumorigenesis [43–49]. Lung cancer
also has high expression profile of GCNT3 (a gene
regulating mucin synthesis), GOLM1(a gene coding
for a Golgi transmembrane protein) and IGF2BP3 (a
gene coding for a RNA binding protein), which are
all positively correlated with malignant progression of
lung cancer [50–53]. Nutrient transporter SLC2A1
and SLC7A5 both exhibit cancer-promoting potential
in lung cancer [54–56]. TIMP1 was originally thought
to be a tumor suppressor gene, since it could in-
tensely inhibit matrix metalloproteinases (MMPs), ca-
nonical oncoproteins [57, 58]. However, recent studies
have shown that TIMP1 was highly expressed in
LUAD, functioned as an independent prognostic risk
factor and could facilitate malignant progression
through non-MMPs pathways [58–60]. TYMS, a nu-
cleotide synthetase, is commonly used as an indicator
of chemotherapy sensitivity, that is its high expression
in lung cancer often indicates insensitive for peme-
trexed [61]. Also, for patients under platinum-based
adjuvant treatment after surgical resection, high
TYMS expression often indicates poorer prognosis
[62]. SCGB1A1, coding for secretory globulins, has a
protective role against smoking-induced lung tumori-
genesis [63]. However, for CYP4B1, ARHGEF6 and
FAM189A2, their function in lung cancer are rarely
studied.
Of course, there are some flaws in our research. First,

the present transcriptomic data mainly covered protein-
coding genes, but increasing studies have uncovered that
non-coding RNAs like microRNAs (miRNAs), long non-
coding RNAs (lncRNAs) and circulating RNAs (cir-
RNAs) present powerful biological functions, especially
in cancer research [64]. Second, the transcriptomic data
for analysis came from tissues, while estimation based
on liquid detection would be less invasive and more exe-
cutable [65]. Improvement will be made in our future
work.

Conclusions
In brief, we built a gene-based survival SS for LUAD and
proved its wide applicability for clinical predictions,
which will assist in handling LUAD effectively.
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