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Abstract

Background: This study proposes a prediction model for the automatic assessment of lung cancer risk based on an
artificial neural network (ANN) with a data-driven approach to the low-dose computed tomography (LDCT)
standardized structure report.

Methods: This comparative validation study analysed a prospective cohort from Chiayi Chang Gung Memorial
Hospital, Taiwan. In total, 836 asymptomatic patients who had undergone LDCT scans between February 2017 and
August 2018 were included, comprising 27 lung cancer cases and 809 controls. A derivation cohort of 602
participants (19 lung cancer cases and 583 controls) was collected to construct the ANN prediction model. A
comparative validation of the ANN and Lung-RADS was conducted with a prospective cohort of 234 participants (8
lung cancer cases and 226 controls). The areas under the curves (AUCs) of the receiver operating characteristic
(ROQ) curves were used to compare the prediction models.

Results: At the cut-off of category 3, the Lung-RADS had a sensitivity of 12.5%, specificity of 96.0%, positive
predictive value of 10.0%, and negative predictive value of 96.9%. At its optimal cut-off value, the ANN had a
sensitivity of 75.0%, specificity of 85.0%, positive predictive value of 15.0%, and negative predictive value of 99.0%.
The area under the ROC curve was 0.764 for the Lung-RADS and 0.873 for the ANN (P=0.01). The two most
important predictors used by the ANN for predicting lung cancer were the documented sizes of partially solid
nodules and ground-glass nodules.

Conclusions: Compared to the Lung-RADS, the ANN provided better sensitivity for the detection of lung cancer in
an Asian population. In addition, the ANN provided a more refined discriminative ability than the Lung-RADS for
lung cancer risk stratification with population-specific demographic characteristics. When lung nodules are detected
and documented in a standardized structured report, ANNs may better provide important insights for lung cancer
prediction than conventional rule-based criteria.
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Background

Lung cancer is the leading cause of cancer mortality
worldwide [1]. The National Lung Screening Trial
(NLST) showed that low-dose computed tomography
(LDCT) screening could reduce lung cancer mortality by
20% compared to chest X-ray (CXR) [2]. With the in-
creasing use of LDCT for lung cancer screening, the
American College of Radiology (ACR) introduced the
Lung Imaging Screening Reporting and Data System
(Lung-RADS), which assigns groups for screening popu-
lations [3]. Aimed at high-risk smokers in the USA, the
validity of the Lung-RADS remains unclear in areas with
a high prevalence of non-smoking-related lung cancer,
such as China, Taiwan, and Japan [4]. In Taiwan, more
than 95% of lung cancer patients are non-smokers, most
of whom have adenocarcinoma [5, 6]. Given the wide
range of lung cancer demographics in Asia, the imple-
mentation of the Lung-RADS is not yet universal [7]. To
address ambiguity, medical institutions have developed
various structured reporting systems [8]. However, there
is no current evidence showing explicit superiority for
any reporting system in assessing lung cancer risks.

The artificial neural network (ANN) is a field of artifi-
cial intelligence technology characterized by simulating
biological neural systems based on mathematical theor-
ies [9]. ANNs modify their behaviour by adjusting the
weights between hidden units until the output correctly
converges to the ground truth, and they are particularly
adept at classification problems with different input data
[10]. With the ability to analyse complex nonlinear rela-
tionships between predictors and diseases, well-trained
ANNs make predictions with greater accuracy than con-
ventional rule-based criteria [11].

This study aims to propose a reporting system based
on an ANN with a data-driven approach to the LDCT
standardized structured report. We further explore de-
terminants for predicting lung cancer in this study
population.

Methods

Study design and participants

The Institutional Review Board of Chang Gung Medical
Foundation approved this case-control study. From Feb-
ruary 2017 through August 2018, a total of 836 consecu-
tive asymptomatic participants who underwent both
CXR and LDCT at Chiayi Chang Gung Memorial Hos-
pital, Taiwan, for lung cancer screening were prospect-
ively enrolled. The inclusion criteria were age between
40 and 80vyears old and willingness to participate in
follow-up imaging or diagnostic workup. Subjects were
excluded if a pulmonary nodule was detected on CXR,
or if they had a known medical history of any malignant
disease. Serial imaging reports, basic patient information,
and demographic data were obtained. Each participant

Page 2 of 9

had at least 1 year of follow-up after the LDCT baseline
scan. The diagnosis of lung cancer was confirmed based
on surgical resection or lung biopsy and was recorded in
a hospital-based cancer registry. Patients who had con-
firmed lung cancer prior to the index date of July 30,
2019 were classified as lung cancer patients (category 1);
all other patients were classified as controls (category 0).
Figure 1 shows the flowchart of the study.

LDCT image acquisition and interpretation

All LDCT scans were performed with a 64-slice multide-
tector computed tomography (CT) (Somatom Sensation
64; Siemens Healthcare, Erlangen, Germany) in a low-
dose setting without contrast enhancement (volumetric
CT dose index <2.0mGy for a standard patient). The
scan parameters were 120 kVp, 25 effective mAs, soft-
tissue kernel (B30f), and 3 mm slice thickness. All equip-
ment specifications and acquisition parameters followed
the recommendations of the ACR Society of Thoracic
Radiology Practice Parameters for the Performance and
Reporting of Lung Cancer Screening Thoracic CT [12].
Each LDCT baseline scan was reported by one thoracic
radiologist with 7 years of experience. The standardized
structured reports described the size, shape, location,
and texture of the lung nodules, as well as other inciden-
tal findings. The density of each lung nodule was re-
ported according to the definition from the Fleischner
Society guidelines [13, 14]. The size of each lung nodule
was measured on lung windows and recorded as recom-
mended by the Lung-RADS.

Development of the ANN

Each baseline LDCT report consists of a description of
the intra- and extra-pulmonary findings, and a Lung-
RADS risk category. The reports were designed to aid
lung cancer screening. Using data scraping techniques,
22 input features were automatically extracted from the
descriptive parts of the baseline LDCT reports and used
to develop the ANN. Four of the inputs constituted clin-
ical information or LDCT parameters. Another seven in-
puts pertained to nodule patterns and sizes based on the
Lung-RADS standardized lexicon. The remaining inputs
were extra-pulmonary interpretations, which consisted
of 11 descriptive features. These inputs were in binary
form (0 or 1). The Lung-RADS classification was not in-
cluded among the input features. Table 1 lists all 22 in-
put features, and shows the distribution of the baseline
Lung-RADS categories in the derivation and validation
cohorts.

Feed-forward neural networks based on the back-
propagation algorithm were constructed using Keras ver-
sion 2.2.4 [15], a high-level neural network application
programming interface that can simplify the ANN con-
struction process. The inputs for the ANN were
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Inclusion criteria

Exclusion criteria

(February 2017 - February 2018), N=608

Lost follow-up, N=6 «——

Subjects included
N=602

Derivation cohort
e Confirmed lung cancer cases, N=19
* Controls, N=583

Fig. 1 Flow diagram

¢ Age between 40 and 80 years old

¢ Positive CXR findings
¢ A known medical history of any malignant disease

Subjects underwent LDCT for lung cancer screening

Subjects underwent LDCT for lung cancer screening
(March - August 2018), N=236

Lost follow-up, N=2

Subjects included
N=234

Validation cohort
* Confirmed lung cancer cases, N=8
* Controls, N=226

normalized such that they fell between 0 and 1. The ANN
consisted of the first two hidden layers, followed by a
dropout layer to prevent over-fitting and a dense layer as
the output layer [16]. There were 10 hidden units in each
of the first two hidden layers and a rectified linear unit
was used as the activation function. We also tested net-
works including different numbers of hidden units in each
layer; none of these proved superior to the 10-unit net-
work. Figure 2 shows the structure of the ANN. An adap-
tive learning rate optimizer based on the adaptive
moment estimation method was used to facilitate conver-
gence [17]. The network weights were randomly initialized
between — 1 and 1. The learning rate was 0.001 and the
dropout rate of the dropout layer was set to 0.1. The out-
put layer eventually generated a number between 0 and 1
using the sigmoidal activation function. The predictive
performance of the models was monitored during training
to optimize the hyperparameters.

The dataset used in this study is unbalanced, but
ANN s are sensitive to such datasets. Due to the iterative
nature of the training, ANNs are prone to converge to
the majority class. Thus, to achieve a cost-sensitive
neural network, we used the class weighting approach;
this assigns error weights to samples based on their class
[18]. A 2:1 class weight ratio between lung cancer cases
(category 1) and controls (category 0) was used in the
ANN. We also explored networks with other class
weight ratios (5:1, 10:1, 20:1, 25:1, 29:1 and 35:1). How-
ever, in terms of sensitivity, specificity and AUC, none of
which performed significantly better than the setting
with a 2:1 class weight ratio.

Validation and risk group identification
In the training process, the ANN was internally validated
via “three-fold cross-validation” [19]. The dataset was

divided into three equal parts. At each cycle, one of the
three parts was selected as the test set and removed
from the dataset, while the remaining cases were used as
the training set of the ANN. This process was repeated
until the entire dataset had been used once as the test
set. Finally, the ANN was validated with the prospective
validation cohort.

To investigate the determining factors for predicting
lung cancer, we applied a permutation feature import-
ance method proposed by Leo Breiman [20]. The per-
mutation feature importance for each feature used in the
ANN was evaluated with the validation cohort, and the
performance metric was AUC. At each iteration, one of
the features was randomly shuffled, and the permutation
feature importance score was calculated to show how
much the performance metric decreased. Therefore, a
high score revealed a feature with a great contribution to
the discriminative ability of the model.

Statistical analyses

Statistical analyses were performed using MedCalc
18.9.1 (MedCalc Software, Ostend, Belgium). Observed
distributions were tested against the hypothesized nor-
mal distribution (Kolmogorov—Smirnov test). Data are
reported as the mean + standard deviation or number
(%) unless otherwise indicated. To determine and com-
pare the performance of the Lung-RADS and ANN, the
sensitivity and specificity of the lung cancer classification
at different thresholds were analysed based on the re-
sults of area under the receiver operating characteristic
(ROC) curve analyses. The optimal diagnostic thresholds
of the ROC curves were determined using maximized
Youden’s [21] index. ROC curves were compared using
the method described by DeLong et al. [22]. The sensi-
tivity, specificity, positive predictive value (PPV),
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Table 1 Clinical descriptors of the derivation and validation cohorts at the baseline
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Derivation cohort (N = 602) Validation cohort (N = 234) PP
Cancer (N =19) Control € (N =583) Cancer (N =8) Control € (N =226)
Sex ®
Male 7 (36.84%) 236 (40.48%) 2 (25.00%) 111 (49.12%) 0.038
Female 12 (63.16%) 347 (59.52%) 6 (75.00%) 115 (50.88%)
Age (y) ® 64.89+7.53 61.87 £642 5763 +873 61.05+7.88 0.053
LDCT parameters
Dose (mSv) ° 1.95+064 146024 178 £045 149+0.26 0.161
DLP (mGy.cm) ® 7553 £32.54 49.17£11.08 64.50 = 24.43 50.77£10.72 0.206
Pattern of nodules
Nodules of interest 242 (1-7) 1.11 (0-32) 1.88 (1-7) 1.29 (0-8) 0.330
Number of involved lobes ? 1.68 (1-3) 0.75 (0-5) 138 (1-4) 0.99 (0-5) 0.007
Size of nodules (mm)
Solid nodule ® 10.01 (0-136.00) 149 (0-19.80) 0.63 (0-5.00) 1.80 (0-36.75) 1.000
PS nodule * 3.89 (0-20.40) 038 (0-11.95) 1.77 (0-4.90) 0.54 (0-7.30) 0498
GGN *° 8.87 (0-31.00) 0.58 (0-23.30) 4.56 (0-10.30) 0.24 (0-9.05) 0.038
Calcified nodule © 0.00 (0) 039 (0-19.25) 0.86 (0-6.90) 0.55 (0-7.05) 0.100
Fat-containing nodule ° 0.00 (0) 0.05 (0-28.15) 0.00 (0) 0.00 (0) 0.506
Intra-pulmonary findings
Linear atelectasis 10 (52.63%) 431 (73.93%) 2 (25.00%) 108 (47.79%) <0.001
Plate-like atelectasis ° 5 (26.32%) 73 (12.52%) 0 (0.00%) 19 (8.41%) 0.050
Plate-like GGN * 2 (10.53%) 143 (24.53%) 1 (12.50%) 39 (17.26%) 0.029
Bronchiectasis ° 0 (0.00%) 39 (6.69%) 1 (12.50%) 8 (3.54%) 0.143
Emphysema ° 1 (5.26%) 51 (8.75%) 2 (25.00%) 28 (12.39%) 0.068
Fibrotic change ° 2 (10.53%) 154 (26.42%) 0 (0.00%) 42 (18.58%) 0.015
Extra-pulmonary findings
Mediastinal tumour © 4 (21.05%) 30 (5.15%) 1 (12.50%) 8 (3.54%) 0.290
Thyroid nodule * 1 (5.26%) 19 (3.26%) 0 (0.00%) 2 (0.88%) 0.045
Adrenal nodule ° 1 (5.26%) 5 (0.86%) 0 (0.00%) 0 (0.00%) 0.125
Hepatic nodule ? 1 (5.26%) 67 (11.49%) 0 (0.00%) 20 (8.85%) 0.245
Renal nodule * 0 (0.00%) 16 (2.74%) 0 (0.00%) 10 (4.42%) 0.229
Lung-RADS
Category 1 0 (0.00%) 323 (55.40%) 0 (0.00%) 115 (50.89%) 0.240
Category 2 6 (31.58%) 222 (38.08%) 7 (87.50%) 102 (45.13%) 0.021
Category 3 5 (26.32%) 31 (5.32%) 1 (12.50%) 6 (2.65%) 0.080
Category 4 8 (42.10%) 7 (1.20%) 0 (0.00%) 3(1.33%) 0279

@ The 22 input features for developing the ANN

P Comparison of the derivation cohort and validation cohort, P-values less than 0.05 indicated statistical significance

¢ Participant who did not have confirmed lung cancer prior to the index date were labelled as control
BMI body mass index; DLP dose length product; GGN ground-glass nodule; PS nodule, part-solid nodule
The values are given as the mean + SD, range or n (%)

Results

Demographic and clinical characteristics

The study cohort included a total of 836 consecutive
asymptomatic participants who had undergone LDCT
for lung cancer screening (27 lung cancer cases and 809

negative predictive value (NPV), positive likelihood ratio
(LR+), and negative likelihood ratio (LR-) of each model
for lung cancer diagnosis were calculated [23]. In all
analyses, P<0.05 was considered to indicate statistical
significance.
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controls) at our institution. Between February 2017 and
February 2018, 602 participants were included in the
derivation cohort. Among the participants in the deriv-
ation cohort, 29 subjects underwent surgical resection or
biopsy for tissue sampling. Nineteen of those subjects
were diagnosed with lung cancer (adenocarcinoma in
situ, # = 3; minimally invasive adenocarcinoma, # = 1; in-
vasive adenocarcinoma, 7 = 14; small cell carcinoma, n =
1), and the remaining ten had benign lesions (pneumo-
nia, n=5; pulmonary fibrosis, n=4; and pulmonary
hamartoma, n=1). Between March and August 2018,
234 participants were included in the validation cohort.
Nine of these subjects underwent tissue sampling, eight
of whom were diagnosed with lung cancer (adenocarcin-
oma in situ, # = 3; invasive adenocarcinoma, n = 4; small
cell carcinoma, # = 1); the remaining subjects had benign
lesions (pulmonary fibrosis, n = 1). Despite the adoption
of identical inclusion criteria, there were several signifi-
cant differences in demographic features between the
training and validation cohorts. The full demographic
and clinical descriptions of each cohort at the baseline
are presented in Table 1.

For the derivation cohort (n = 602), the distribution of
baseline Lung-RADS categories was as follows: category
1 (53.66%), category 2 (37.87%), category 3 (5.98%), and
category 4 (2.49%). Among the subjects in this cohort,

the 19 lung cancer participants (3.16%) included 6 with
category 2, 5 with category 3, and 8 with category 4;
none had category 1. For the validation cohort (n = 234),
the distribution of baseline Lung-RADS categories was
as follows: category 1 (49.14%), category 2 (46.58%), cat-
egory 3 (3.00%), and category 4 (1.28%). Among the sub-
jects in this cohort, the 8 lung cancer participants
(3.42%) included 7 with category 2 and 1 with category
3; none had category 1 or category 4.

Performance of prediction models
Using the training set, both the ANN and Lung-RADS
showed good discriminative ability with respect to lung
cancer risk stratification in the derivation cohort (AUC
0.90 vs. 0.91, respectively, no significant difference). For
the Lung-RADS, a sensitivity of 68.4% (95% confidence
interval [CI]: 43.4 to 87.4%) and specificity of 93.5%
(95% CI: 91.2 to 95.3%) were calculated at the cut-off
point of category 3, which adhered to the original defin-
ition of a positive LDCT scan. For the ANN, a sensitivity
of 73.7% (95% CI: 48.8 to 90.9%) and specificity of 94.7%
(95% CI: 92.5 to 96.4%) were calculated at the optimal
cut-off value.

Both models were prospectively validated using the
validation cohort. Table 2 presents the contingency re-
sults of both lung cancer assessment models. Most of
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Table 2 Contingency table for the Lung-RADS and ANN models
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Table 3 Performance analysis for the Lung-RADS and ANN

(n=234) models (n = 234)
Scale/ Lung-RADS ANN Scale/model Lung-RADS ANN
model No Yes Sum No Yes Sum Cut-off Category 3 >0.012
Control ® 217 9 226 192 34 226 AUC (95% Cl) 0.764 (0.705, 0.817) 0.873 (0.823, 0.913)
Lung cancer 7 1 8 2 6 8 Classification accuracy (%) 93.16 84.62
Sum 224 10 234 194 40 234 Sensitivity (95% Cl) 12.50 (0.3, 52.7) 75.00 (34.9, 96.8)
2 Participant who did not have confirmed lung cancer prior to the index date Specificity (95% Cl) 96.02 (92,6, 98.2) 84.96 (79.6, 89.4)
were labelled as control
PPV (95% Cl) 100 (1.6,43.7) 15.0 (96, 22.6)
NPV (95% Cl) 96.9 (96.0, 97.6) 99.0 (96.7, 99.7)
LR+ (95% Cl) 3.14 (05, 21.9) 499 (3.0, 83)
the non-cancer cases were correctly identified by both R (95% C) 091 07, 12) 029 0.1, 10)

the Lung-RADS and ANN (specificity: 96.0 and 85.0%,
respectively), but more lung cancer cases were correctly
identified by the ANN (sensitivity: 12.5 and 75.0%, re-
spectively). Figure 3 presents the ROC curves and AUCs
for assessing the overall validity of both tools. There was
a significant difference between the AUCs of the Lung-
RADS and ANN (AUC 0.764 vs. 0.873, respectively, P =
0.013). Table 3 presents the sensitivity, specificity, PPV,
NPV, LR+, and LR- of the two risk assessment tools.
For Lung-RADS, a positive predictive value of 10.0%
(95% CI: 1.6 to 43.7%) and negative predictive value of
96.9% (95% CI: 96.0 to 97.6%) were calculated at the
cut-off point of category 3. For the ANN, a positive pre-
dictive value of 15.0% (95% CI: 9.6 to 22.6%) and nega-
tive predictive value of 99.0% (95% CI: 96.7 to 99.7%)
were calculated at the optimal cut-off value. The likeli-
hood ratios confirm that the results according to both
lung cancer risk classification tools differ from those ac-
cording to chance.

Validation Cohort
1.0 ] 77
/’,
’/
’l
0.8 1 S
’/
) -~
1 4

g 0.6 ,,/
» 7’
17
o
Q
o 04
2
(=

0.2 ]

—— ANN (AUC =0.873)
0.0 ——  Lung-RADS (AUC = 0.764)
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Fig. 3 ROC curves for the Lung-RADS and ANN model

AUC area under the curve; C/ confidence interval; LR+ positive likelihood ratio;
LR- negative likelihood ratio; NPV negative predictive value; PPV positive
predictive value

Feature importance and risk group identification

Figure 4 shows a plot visualizing permutation feature
importance scores of the ANN. In this plot, the rows
correspond to the 22 input items of the ANN. The per-
mutation feature importance scores for each feature
used in the ANN are calculated and ranked. The items
towards the top are the most important features and
those towards the bottom matter least. Accordingly,
ground-glass nodules (GGNSs) and partially solid nodules
were important predictors of lung cancer.

Discussion

In lung cancer screening, LDCT is used to detect pul-
monary nodules and evaluate their size and morphology.
Most pulmonary nodules are small (<5 mm in diameter)
and benign, and their morphology is variable [24].
Across the lung cancer screening literature, the major
challenge faced by this diagnostic imaging modality is
the difficulty of defining a “positive scan [25, 26].” The
false-positive rate of the Lung-RADS has increased due
to the large degree of variation in lung cancer demo-
graphics between populations, thus limiting the reliabil-
ity of this tool [27]. In addition, application of the
unitary criteria without appropriate validation may result
in false-positive results, overdiagnosis, and unnecessary
costs [28]. In this study, the Lung-RADS predicted lung
cancer risks for the validation cohort with an AUC of
0.76, which indicated suboptimal decisive power to as-
sess lung cancer risks in the population. The principles
of the Lung-RADS are uniformity of radiology interpret-
ation, risk assessment, and nodule management in
LDCT lung cancer screening programmes, and although
the clinical presentations of lung cancer are likely to vary
greatly between populations, some of these imaging find-
ings are not assessed. One possible remedy for this obs-
tacle is the development of a validated prediction model
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Weight Feature

0.1525 + 0.0100 GGN
0.1508 &+ 0.0911 PS Nodule
0.0653 + 0.1239 Calcified Nodule
0.0472 + 0.0264 Mediastinal Tumor
0.0460 + 0.0383 Number of Involved Lobes
0.0388 + 0.0569 Fibrotic Change
0.0272 £+ 0.0082 DLP
0.0175 + 0.0404 Renal Nodule
0.0144 £+ 0.0197 Sex
0.0092 + 0.0157 Dose
0.0086 + 0.0152 Linear Atelectasis
0.0069 + 0.0658 Plate-like GGN
0.0067 + 0.0138 Emphysema

0 £+ 0.0000 Thyroid Nodule

0 + 0.0000 Adrenal Nodule

0 + 0.0000 Fat-containing Nodule
-0.0004 + 0.0042 Hepatic Nodule
-0.0007 + 0.0013 Nodules of Interest
-0.0021 £ 0.0238 Age
-0.0054 + 0.0115 Solid Nodule
-0.0093 + 0.0036 Bronchiectasis
-0.0100 £ 0.0215 Plate-like Atelectasis

Fig. 4 The plot visualizing permutation feature importance scores of
the ANN model

for lung cancer risk using artificial intelligence algo-
rithms, such as ANNG.

Andoni et al. demonstrated the ability of a two-layer
neural network to use low-order polynomials [29]. Sev-
eral studies have used various models to assess the risk
of various types of cancer. The results showed that ANN
generally achieved better performance than other algo-
rithms [30, 31]. As a preliminary step, we tried to fit the
training dataset to several types of models, including
ANN, support vector machines, decision trees, naive
Bayes classifiers, and linear discriminant classifiers. The
ANN showed the best performance, which was compar-
able to that of Lung-RADS. Therefore, an ANN was
used in this study.

In this study, the ANN took many risk factors into ac-
count, and it predicted lung cancer risks for the valid-
ation cohort with an AUC of 0.87. Compared to the
Lung-RADS, ANNs may be more robust in the predic-
tion of lung cancer. Additionally, the standardized struc-
tured reports in this study involved the use of lung
nodule descriptions from the Lung-RADS lexicon sug-
gested by the ACR. As these input features can be easily
identified and are generally assessed by radiologists, the
ANN-based LDCT reporting system is both cost-
effective and user-friendly.

We also determined predictors of lung cancer; these
factors could be useful for identifying patients at high
risk of lung cancer. Although previous studies have
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shown that well-trained ANNSs are capable of making ac-
curate predictions for various types of cancer, they have
been considered as “black boxes” due to their complexity
[30-32]. In this study, efforts were made to determine
what the ANN had learnt using the permutation import-
ance estimation method. According to the ranking of
permutation feature importance, GGNs and partially
solid nodules were important predictors of lung cancer.
This study also sought to address the heterogeneity of
lung cancer risk assessments in populations containing a
high percentage of non-smoking-related lung cancers.
Among the subjects in this study, more than one-third
of the confirmed lung cancer lesions presented with
GGNs <20mm (5 of 19 lung cancer cases in the deriv-
ation cohort and 5 of 8 lung cancer cases in the valid-
ation cohort). When the Lung-RADS was applied, these
patients were classified as category 2 and may have been
falsely reassured by the “negative” screening results and
thus did not return for follow-up scans. Among the 5 of
8 lung cancer cases in the validation cohort, the ANN
could identify all (100%) of these patients who had pul-
monary lesions and initially presented with GGNs < 20
mm, which were finally confirmed as adenocarcinoma.
In several studies performed in Asian cohorts, the ma-
jority of lung cancer patients were non-smokers with
pulmonary adenocarcinoma spectrum lesions, which
typically presented as pure GGNs or partially solid nod-
ules [33, 34]. The current literature shows that larger
GGNs (variable cut-off, range 10.5 ~ 15.0 mm) tend to
be more aggressive or appear as invasive pulmonary
adenocarcinoma [35, 36]. This is a particular concern in
Asian populations, where it would be important to re-
port these GGNs and develop corresponding algorithms
with follow-up strategies. Therefore, the ANN poten-
tially assimilates population-specific demographic char-
acteristics and provides important insights that improve
the efficacy of lung cancer screening programmes.

There were several limitations to this study. First, clas-
sification models based on machine learning tend to be
unstable in small datasets. However, both models in this
study were externally validated using a prospective co-
hort. Second, the PPVs and NPVs were influenced by
the prevalence of disease within the study population.
The prevalence of lung cancer was estimated to be ap-
proximately 3%, as mentioned above, and is therefore ar-
bitrary to some extent. Finally, the follow-up period was
relatively short. A large-scale prospective study with
long-term follow-up is required to confirm the benefits
of using an ANNs as an element of LDCT lung cancer
screening programme.

Conclusions
Compared to the Lung-RADS, the ANN may have sub-
stantially improved the sensitivity for the detection of
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lung cancer in an Asian population. Furthermore, ANNs
have a more refined discriminative ability than the
Lung-RADS for lung cancer risk stratification with
population-specific demographic characteristics. When
lung nodules are detected and documented in a stan-
dardized structured report, ANNs may better provide
important insights for lung cancer prediction than con-
ventional rule-based criteria. The effects of using an
ANN in clinical practice must be examined carefully in
further prospective large cohort studies.
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