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Abstract

Background: Metabolic reprogramming is being recognized as a fundamental hallmark of cancer, and efforts to
identify drugs that can target cancer metabolism are underway. In this study, we used human breast cancer (BC)
cell lines and established their invading phenotype (INV) collected from transwell inserts to compare metabolome
differences and evaluate prognostic significance of the metabolome in aggressive BC invasiveness.

Methods: The invasiveness of seven human BC cell lines were compared using the transwell invasion assay.
Among these, INV was collected from SUM149, which exhibited the highest invasiveness. Levels of metabolites in
INV were compared with those of whole cultured SUM149 cells (WCC) using CE-TOFMS. The impact of glycolysis in
INV was determined by glucose uptake assay using fluorescent derivative of glucose (2-NBDG), and significance of
glycolysis, or tricarboxylic acid cycle (TCA) and electron transport chain (ETC) in the invasive process were further
determined in aggressive BC cell lines, SUM149, MDA-MB-231, HCC1937, using invasion assays in the presence or
absence of inhibitors of glycolysis, TCA cycle or ETC.

Results: SUM149 INV sub-population exhibited a persistent hyperinvasive phenotype. INV were hyper-glycolytic
with increased glucose (2-NBDG) uptake; diminished glucose-6-phosphate (G6P) levels but elevated pyruvate and
lactate, along with higher expression of phosphorylated-pyruvate dehydrogenase (pPDH) compared to WCC.
Notably, inhibiting of glycolysis with lower doses of 2-DG (1 mM), non-cytotoxic to MDA-MB-231 and HCC1937, was
effective in diminishing invasiveness of aggressive BC cell lines. In contrast, 3-Nitropropionic acid (3-NA), an inhibitor
of succinate dehydrogenase, the enzyme that oxidizes succinate to fumarate in TCA cycle, and functions as
complex II of ETC, had no significant effect on their invasiveness, although levels of TCA metabolites or detection of
mitochondrial membrane potential with JC-1 staining, indicated that INV cells originally had functional TCA cycles
and membrane potential.
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Conclusions: Hyper-glycolytic phenotype of invading cells caters to rapid energy production required for invasion
while TCA cycle/ETC cater to cellular energy needs for sustenance in aggressive BC. Lower, non-cytotoxic doses of
2-DG can hamper invasion and can potentially be used as an adjuvant with other anti-cancer therapies without the
usual side-effects associated with cytotoxic doses.
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Background
Breast cancer (BC) is a common cancer in women
worldwide [1]. Although earlier diagnosis and improve-
ments in treatment have reduced the mortality rate of
BC, the incidence of BC is estimated to be increasing
globally [1]. Thus, prevention and treatment of BC re-
main a major public health concern. BC subtypes, such
as inflammatory breast cancer (IBC) and triple negative
breast cancer (TNBC), are aggressive types of BC, which
are extremely lethal and have higher potential for distant
metastasis [2, 3]. Majority of BC patients succumb to
metastasis. Thus, understanding the characteristics of
the sub-population of cancer cells that exhibit the inva-
sive phenotype is fundamental for discovering novel tar-
gets to block the invasion-metastasis cascade and ensure
improved BC treatment.
Cancer cells adopt various strategies that allow them

to be more aggressive such as changing their cellular
metabolism [4]. Metabolic reprogramming is increas-
ingly being recognized as a fundamental hallmark of
cancer, and efforts to identify drugs that can target can-
cer metabolism are underway [5]. Several studies have
revealed that oncogenes make cells more glycolytic [6,
7], and in fact, many tumor cells consume glucose and
produce lactate at significantly higher rates than the sur-
rounding tissue, even when enough oxygen exists [8, 9].
2-deoxy-D-glucose (2-DG), a D-glucose mimetic, in-
hibits glycolysis due to formation and intracellular accu-
mulation of 2-deoxy-D-glucose-6-phosphate, inhibiting
the function of hexokinase and glucose-6-phosphate
isomerase [10, 11]. 2-DG has a potential application as
an adjuvant for improving cancer therapy, as it was to be
able to reduce cancer cell viability [12–15] and has also
been assessed in several clinical studies as an anticancer
agent [16–18]. However, clinical use of 2-DG still has
been carefully studied because of its side effects [11, 14].
Thus, combination of lower dose of 2-DG with other an-
ticancer drugs, or with radiotherapy, is promising for
clinical use [11]. A recent report showed that 2-DG is
also effective in inhibiting migration and invasion ability
of an invasive subclone of the TNBC cell line, Hs578T
[19]. Due to limited therapeutic options for targeting
metastasis, use of 2-DG for blocking cancer invasiveness
is attractive. However, the study only showed the result
of one BC cell line, Hs578T, and thus, further studies

are required to clarify the role of glycolysis in BC
invasion.
It was originally hypothesized that cancer cells utilize

aerobic glycolysis because of mitochondrial respiratory
dysfunction [20]. However, later evidence suggested that
most tumor cells have functional tricarboxylic acid
(TCA) cycle and electron transport chain (ETC), despite
which, cancer cells favor the use of glucose to produce
lactate rather than acetyl-CoA for TCA cycle [4, 20, 21].
Glutamine can be a primary source of citrate via reduc-
tive metabolism and is known to be used as a source of
TCA metabolites in aggressive cancers [22, 23]. In
addition, several reports have revealed that mitochon-
dria, the site of TCA cycle and ETC, is an important or-
ganelle that destines a cell to a metastatic phenotype
[24, 25]. Thus, it is still controversial which metabolic
arm i.e., glycolysis or, TCA and ETC is significant for
maintaining the invasive potential in BC.
Herein, we establish that BC invasive cells (INV) col-

lected from transwell inserts is a discernible population
with a persistent phenotype that are hyperinvasive.
These cells showed upregulation of glucose uptake and
were effectively targeted using 2-DG. This effectiveness
of 2-DG on blocking invasion was observed in several
aggressive BC cell lines, SUM149 (IBC), MDA-MB-231
(TNBC), and HCC1937 (BRCA1mut/TNBC), and of
note, low dose of 2-DG (1 mM), non-toxic to MDA-MB-
231 and HCC1937 viability, was effective in reducing
their invasion. In contrast, blocking function of TCA
cycle and ETC had no significant effect on their inva-
siveness, although levels of TCA metabolites or detec-
tion of mitochondrial membrane potential with JC-1
staining indicated that INV cells originally had func-
tional TCA cycles and membrane potentials. Overall,
our results convincingly establish that inhibition of gly-
colysis, such as with low dose of 2-DG, is a viable thera-
peutic option to blocking aggressive BC invasiveness.

Methods
Cell culture and reagents
Human BC cell lines, MCF-7 (ATCC® HTB-22), BT-474
(ATCC® HTB-20), SK-BR-3 (ATCC® HTB-30), MDA-
MB-468 (ATCC® HTB-132), MDA-MB-231 (ATCC®
HTB-26), HCC1937 (ATCC® CRL-2336) derived from
different breast cancer subtypes were purchased from
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substrate for the TCA cycle, rather than converting
pyruvate into lactate [35]. De-phosphorylation of specific
serine residues of the E1-alpha subunit of PDH, Ser300
(pPDH S300), Ser232 (pPDH S232), or Ser239 (pPDH
S239), activates the conversion of pyruvate to acetyl
CoA, whereas phosphorylation inactivates the enzyme,
resulting in increased conversion into lactate. We found
that the expression of pPDH S300, pPDH S232, and
pPDH S239 were all significantly increased in INV com-
pared to WCC (Fig. 3a-b, Supplemental Figure 1A-C),
suggesting that PDH enzyme activity was reduced in
INV, consistent with increased production of lactate
(Fig. 2b). In addition, uptake of 2-NBDG, a fluorescent
tracer used for monitoring glucose uptake into live cells,
was higher in INV compared to WCC, and this was re-
duced by the addition of phloretin, a natural phenol which
inhibits a variety of transporters including sodium/D-glu-
cose cotransporter, SGLT1, which is known as the

sodium-dependent glucose transporter [36] (Fig. 3c-e).
Overall, these data indicated that INV had impaired PDH
activity and consumed higher amount of glucose and me-
tabolized it into lactate than WCC did.

SUM149 invaded cells showed functional TCA cycle and
ETC system but these pathways do not contribute to BC
invasion
Despite the higher rate of glycolysis and reduced conver-
sion of glucose into acetyl-CoA in INV, the level of TCA
cycle metabolites, such as citrate, succinate, and malate,
were still higher in INV than WCC (Fig. 4), indicating
that TCA cycle was functional in INV and was poten-
tially being fueled by other sources. Additionally, to
examine ETC in INV, we stained 2-day old SUM149
spheroids with JC-1, a mitochondrial membrane poten-
tial (�� m) indicator. Red-stained cells (high �� m) ap-
pear to be moving outward from the spheroid and

Fig. 1 SUM149 was selected for collecting invaded cells from transwell inserts. a Invasion assay was performed with using seven human breast
cancer cell lines, MCF-7, BT-474, SK-BR-3, MDA-MB-468, MDA-MB-231, HCC1937, and SUM149. Representative images of invaded cells reached
underneath of the transwell membrane are shown. Scale bar: 200 μm. b Percent of invaded cells of seven human breast cancer cell lines is
shown in graph. Data are presented as mean ± SDs of triplicate samples. c Whole cultured SUM149 cells (WCC) and INV collected from
underneath of transwell membranes were used for invasion assay. Number of invaded cells were counted, and ratio of invaded cells of INV group
to WCC group was summarized in graph. Data are presented as mean ± SDs of triplicate samples. *p < 0.05, **p < 0.01
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invading the collagen gel, and green-stained cells (low
�� m) tend to stay within/ near the spheroid (Supple-
mental Figure 2), suggesting that SUM149 invading cells
possess active mitochondria with high membrane poten-
tial. High mitochondrial membrane potential is gener-
ated by the reductive transfer of electrons through ETC
protein complexes I–IV, which provides the energy to
drive protons against their concentration gradient across
the inner mitochondrial membrane [37]. Thus, SUM149
INV cells, which exhibited the active mitochondria,
would also have a functional ETC system.
To investigate the role of TCA cycle and ETC in BC

invasiveness, we next performed invasion assay with 3-

NA, an inhibitor of succinate dehydrogenase, the en-
zyme that oxidizes succinate to fumarate in the TCA
cycle, and functions as complex II of the ETC [38].
Hence, 3-NA simultaneously inhibits TCA cycle and
ETC. Interestingly, use of 3-NA had no significant ef-
fects on invasiveness of SUM149, MDA-MB-231, or
HCC1937 (Fig. 5a-c), although their mitochondrial
membrane potential was reduced with 3-NA treatment
(Supplemental Figure 3A-C), suggesting that TCA cycle
and ETC are less important for their invasive capability.
In addition, since INV seemed to produce lactate rather
than acetyl-CoA, glutamine from media or produced by
anaplerotic reactions may be the source of fuel for TCA

Fig. 2 SUM149 INV cells showed hyper-glycolytic phenotype compared to WCC. a Principal component analysis of metabolites detected in WCC
versus INV was performed and is shown in the graph (n = 3). b Metabolomics profile of WCC and INV were analyzed by CE-TOFMS. The
concentrations of glycolytic intermediates measured in WCC or INV are shown in graph. Y axis represents the metabolite concentration in pmol /
10^6 cells. Data are presented as mean ± SD of samples (n = 3). ***p < 0.001 vs. WCC., N.D.: Not detected
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cycle via reductive metabolism to � -ketoglutarate [22,
23], as glutamine and glutamic acid levels were also
higher in INV compared to WCC (Fig. 4, Supplemental
Figure 4A-B). Thus, we next performed SUM149 inva-
sion assay using glutamine-free medium, or Glutaminase
1 (GLS1) inhibitor, CB-839. However, use of Glutamine
free medium or CB-839 had no significant effects on

reducing their invasion (Supplemental Figure 5A-B).
Overall, these data suggested that TCA cycle and ETC
system are less significant for BC invasion.

Glycolysis inhibitor diminished BC invasion
In order to examine the role of glycolysis in BC invasion,
we next used glycolysis inhibitor, 2-DG, for the invasion

Fig. 3 Phosphorylation of PDH was increased in SUM149 INV compared to WCC Expression of pPDH S300, pPDH S232, pPDH S239, PDH, and
GAPDH proteins of INV and WCC were examined with western blot analysis and bands were shown in (a), and the graphs of phosphorylated-
PDH vs. pan-PDH were shown in (b). Data are presented as mean ± SD of samples (n = 3). *P < 0.05, **P < 0.01 vs. WCC. Uncropped full-length
blots images were shown in Supplemental Figure 1. c Glucose uptake into WCC or INV was examined with 2-NBDG, and analyzed with flow
cytometer. Live cells were gated as P1 (c), and levels of FITC and mean fluorescent intensity (MFI) was shown in graph (d), and (e), respectively. 2-
NBDG represents a fluorescent tracer used for monitoring glucose uptake, and Phlo represents phloretin, inhibitor for the glucose transporter,
respectively. Data are presented as mean ± SD of samples (n = 3). **p < 0.01, ***p < 0.001
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that the SUM149 INV sub-population exhibited a per-
sistent phenotype that was hyperinvasive, and of note,
we have clearly demonstrated that inhibiting glycolysis
with lower, non-cytotoxic doses of 2-DG was effective in
diminishing invasiveness of aggressive BC cell lines. Ap-
propriate combinations of tumoricidal agents such as
ionizing radiation and chemotherapeutic drugs with low
dose of 2-DG can potentially provide unique opportun-
ities to selectively destroy tumors and block invasion-
metastasis cascade, and are expected to reduce toxicity
to normal tissues and significantly enhance the thera-
peutic efficacy in aggressive BC such as IBC and TNBC.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-07414-y.

Additional file 1: Supplemental Figure 1. Full-length blot images
used for Figure 3.

Additional file 2: Supplemental Figure 2. Mitochondrial membrane
potential of SUM149 invading cells.

Additional file 3: Supplemental Figure 3. Effects of 3-NP on mito-
chondrial membrane potential.

Additional file 4: Supplemental Figure 4. Levels of amino acids in
WCC and INV.

Additional file 5: Supplemental Figure 5. Glutamine had no
significant effects on SUM149 invasiveness.

Additional file 6: Supplemental Figure 6. Lactate measurement.

Additional file 7: Table 1. List of metabolites measured in WCC or INV
of SUM149.
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