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Abstract

Background: Triple-Negative Breast Cancer (TNBC) is an aggressive and complex subtype of breast cancer. The
current biomarkers used in the context of breast cancer treatment are highly dependent on the targeting of
oestrogen receptor, progesterone receptor, or HER2, resulting in treatment failure and disease recurrence and
creating clinical challenges. Thus, there is still a crucial need for the improvement of TNBC treatment; the discovery
of effective biomarkers that can be easily translated to the clinics is essential.

Methods: We report an approach for the discovery of biomarkers that can predict tumour relapse and pathologic
complete response (pCR) in TNBC on the basis of mRNA expression quantified using the NanoString nCounter
Immunology Panel. To overcome the limited sample size, prediction models based on random Forest were
constructed using the differentially expressed genes (DEGs) as selected features. We also evaluated the differences
between pre- and post-treatment groups aiming for the combinatorial assessment of pCR and relapse using
additive models in edgeR.

Results: We identify nine and 13 DEGs strongly associated with pCR and relapse, respectively, from 579 immune
genes in a small number of samples (n = 55) using edgeR. An additive model for the comparison of pre- and post-
treatment groups via the adjustment of the independent subject in the relapse group revealed associations for 41
genes. Comprehensive analysis indicated that our prediction models outperformed those constructed using
features extracted from the existing feature selection model Elastic Net in terms of accuracy. The prediction models
were assessed using a randomization test to validate the robustness (empirical P for the model of pCR = 0.015 and
empirical P for the model of relapse = 0.018). Furthermore, three DEGs (FCER1A, EDNRB, and TGFBI) in the model of
relapse showed prognostic significance for predicting the survival of patients with cancer through Cox proportional
hazards regression model-based survival analysis.
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Conclusion: Gene expression quantified via the NanoString nCounter Immunology Panel can be seamlessly
analysed using edgeR, even considering small sample sizes. Our approach provides a scalable framework that can
easily be applied for the discovery of biomarkers based on the NanoString nCounter Immunology Panel.

Data availability: The source code will be available from github at https://github.com/sungheep/nanostring.

Keywords: Triple negative breast cancer, Prognostic marker, NanoString nCounter immune panel, Differential
expression, Pathological complete response, Relapse, Prediction model, Random Forest

Background
The subtypes of breast cancer have distinct pathological
features and clinical implications and primarily include
hormone receptor-positive breast cancer, HER2-positive
breast cancer, and triple-negative breast cancer (TNBC).
Of note, breast cancer classification depends on protein
or gene expression profiling; importantly, it provides
helpful information for prognosis establishment and
adoption of treatment strategies. Breast cancer therapy
involves drugs that target oestrogen, progesterone, and
HER2 receptors expressed on hormone receptor-positive
and HER2-positive breast cancer cells, respectively [1].
However, TNBC does not respond to these therapies, in-
cluding tamoxifen or trastuzumab, as no specific recep-
tors are expressed in TNBC. TNBC is characterized by
its invasiveness, widespread metastasis, and high post-
treatment relapse rates, although many studies have
attempted to predict the aetiology, response to treat-
ment, and prognosis of TNBC [2]. In this study, we
aimed to identify prognostic biomarkers for TNBC to fa-
cilitate improvements in the current treatment
approaches.
The NanoString nCounter Analysis System is com-

posed of a prep station and a digital analyser and is used
to quantify gene expression levels and chromosome vari-
ations. This system identifies target genes using specific
100-mer probes and simultaneously analyses 800 genes.
A key advantage of the NanoString technology with re-
spect to next-generation sequencing (NGS) is the ab-
sence of an amplification step and the ability to directly
quantify target molecules, thus preventing artificial amp-
lification bias.
Since 2014, numerous studies have attempted to ana-

lyse TNBC using a NanoString nCounter Immunology
Panel [3–6]. Most expression analyses studies using
NanoString nCounter data [7] focused on statistical ana-
lyses and clustering analyses with gene heat maps similar
to those used in microarray data analysis. Such statistical
analyses included the Mann-Whitney U test [5, 6, 8, 9],
the t-test, or the analysis of variance [3, 6], as well as the
Fisher’s exact test [5, 9], Spearman’s correlation [5, 10],
and negative binomial distribution [8]. Using the Nano-
String nCounter Immunology Panel, gene expression
can be quantified as the counts measured in a manner

similar to that used to quantify expression on the NGS
platform; the statistical methods generally used are also
used in microarray data analysis.
We developed an approach for biomarker discovery

which predicts relapse and pathological complete re-
sponses (pCR) after neoadjuvant chemotherapy in TNBC
as per learning prediction models using random Forest
with features selected via the analysing of differential
gene expression using edgeR. The data was obtained
using the NanoString nCounter Immunology Panel. This
study takes advantage of the prognostic model for pre-
dicting tumour relapse and pCR with a small sample size
via the application of edgeR to assess differential gene
expression, which is suitable for nCounter Immunology
Panel analysis in feature selection.

Methods
Paraffin-embedded tissue biopsy samples from 55 TNBC
patients treated with anthracycline and taxane-based
neoadjuvant chemotherapy (or surgery) from 2010 to
2012 at the Asan Medical Centre. The study was ap-
proved by the Institutional Review Board of the Asan
Medical Center (IRB No. 2013–0866). We used whole
sections of biopsy tissues with usually 4–5 cores. Im-
portantly, when we cut the FFPE blocks, we used differ-
ent blades for each sample after cleaning the microtome
with 70% ethanol to prevent cross-contamination. So,
our experiment is free from cross-contamination. The
samples were processed using the GX Human Immun-
ology V2kit (NanoString Technologies, Seattle, WA,
USA) for NanoString nCounter Gene expression analysis
of a total of 579 immunology-related human genes [5].
Among the 55 cases, a NanoString nCounter assay was
performed using specimens from 14 patients, including
6 cases of pCR, after treatment. The clinical data of the
patients (Additional file 5: Table S1), including the sur-
vival time, survival parameters, and chemotherapeutic
responsiveness (pCR, residual cancer burden, Miller
Payne grade), were collected. Thereafter, a two-row
count matrix was constructed; one row showed the 55
samples and the other showed the 14 samples collected
after treatment.
We have subjected the same samples from 56 patients

in our data set to anti-CD3, −CD8, and -CD20
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immunohistochemistry (IHC) staining. Correlations be-
tween IHC staining intensity and gene expression levels
were then assessed using the NanoString nCounter plat-
form and are summarized (Additional file 5: Table S2).
Spearman correlation ranged from 0.623–0.761. We ana-
lysed the spearman correlation between the expression
of five genes (CD3D, CD3E, CD8A, CD8B, and CD20)
quantified using the NanoString nCounter platform and
the immunohistochemistry staining results for CD3+,
CD8+, and CD20+ cells. Of note, in the CD3+, CD8+,
and CD20+ cells, the intensity of immunohistochemistry
stainings was highly correlated with the expression of T
and B cell markers. With respect to this observation,
gene expression quantified via the NanoString nCounter
platform overall highly correlated with IHC stainings.

Feature selection
Our cohort contained a small number of samples (n =
55). Feature selection methods including the Elastic Net
(EN) may not guarantee high accuracy in the context of
small data sets. The NanoString nCounter platform al-
lows a count format, unlike microarray analysis, for
quantifying gene expression on an NGS platform with-
out amplification. We used edgeR, which identifies dif-
ferentially expressed genes (DEGs) under different
conditions, using a negative binomial statistical model
fitted to these observed counts [11]. EdgeR can identify
DEGs in a relatively small number of samples (n ≥ 2).
DEGs identified by edgeR were considered as features

to develop prediction models and for survival analysis

(Fig. 1). Functional annotations were performed using
DAVID to evaluate the significant signature genes iden-
tified via the edgeR analysis.

Feature selection using edgeR
We converted raw count data to log counts per million,
normalized the counts using the trimmed mean of M-
values in edgeR, and estimated the dispersions. DEGs
were analysed to select features useful in prediction
models of pCR and relapse. After setting the design
matrix (e.g., pCR = 1 vs non-pCR = 0, conditions for the
pCR model, and relapse = 1 and non-relapse = 0 for the
relapse model), significant DEGs were identified at a
false discovery rate (FDR) < 0.05.
To identify DEGs using edgeR for comparisons pre-

and post-treatment (PRE and POST, respectively), we
first divided samples from biopsies performed prior to
neoadjuvant chemotherapy (or operation specimens) and
those collected after neoadjuvant chemotherapy. Four-
teen paired samples (pre- and post-treatment) were
stratified based on relapse and pCR (Additional file 1:
Figure S1). We conducted three DEG tests to evaluate
combinations of disease status (relapse and pCR) and
treatments (e.g., PRE and POST). The three combina-
tions were POST and pCR, POST and relapse, and PRE/
POST and relapse. For a DEG test, an additive model
was designed and applied to detect genes differentially
expressed in samples obtained at POST and PRE, adjust-
ing for the baseline difference between patients. In the
combination POST and relapse, two samples, NS010 in

Fig. 1 A Work flow diagram
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the non-relapse group and NS032 in the relapse group,
were omitted because of heterogeneity in their multidi-
mensional scaling plot (Additional file 1: Figure S2).
After the design matrix was constructed, normalization
was performed and dispersions were estimated. Signifi-
cant DEGs were identified at an FDR < 0.05.

Feature selection using lasso and elastic net
We compared the performance of our approach to that
of EN to determine whether DEG selection using edgeR
in our method was more appropriate for the selection of
features for prediction models. We used “glmnet” from
the R package to implement EN.

Prediction model
Data pre-processing
Global normalization was performed by dividing the raw
count data into sequencing depths, and normalization
was carried out considering relatively different gene
lengths. We subsequently stratified the dataset into a ra-
tio of 7: 3 for the training and test sets, with pCR and re-
lapse groups as class labels. Datasets for each pCR and
relapse set are shown in Table 1.

Prediction using the random Forest models
Considering the DEGs in pCR and relapse sets, we
trained random Forest models to predict pCR and re-
lapse. One limitation of this classification is that greater
sample imbalance leads to more biased results in larger
sample groups [12]. To compensate for this problem, we
performed oversampling using SMOTE. After oversam-
pling, the small group was matched at a ratio of 1:1 to
the large group, and the random Forest model was
trained. We used sklearn’s GridSearchCV in the hyper-
parameter optimization process to optimise model per-
formance. Five hyperparameters (n_estimator, max_
feature, max_depth, min_samples_split, and min_sam-
ples_leaf) were used among several hyperparameters to
maximize model performance, and a 5-fold cross-
validation was performed to avoid overfitting caused by
the small number of samples.

Evaluation
To evaluate the performance of the predictive models,
we used AUC metrics determined via receiver operating
characteristic analysis. In addition, the positive
prediction value (PPV: TP/TP + FP) was used, which is
widely employed to assess the performance of a diagnos-
tic test.

Randomization test
Hypothesis tests were conducted to determine whether
the accuracy of the pCR and relapse prediction models
resulted from chance events. Empirical P values were
calculated as per 1000 permutations using the same
number of features and same hyperparameter
optimization used in our prediction models and rerun-
ning a prediction model within each permuted dataset.
The AUC and PPV of a prediction model for a permuted
dataset were assessed with respect to their accuracy.

Survival analysis using cox proportional hazard model
We used the Cox proportional hazard model (Cox pro-
portional hazards regression model), which is a survival
analysis model for multiple variables, using all genes in
the prediction models [13]. For prognostic prediction,
significant genes (P < 0.05) were identified as per survival
analysis of the Cox proportional hazards regression
models.

Functional enrichment analysis
Functional analysis was performed for DEGs extracted
via edgeR using DAVID (Database for Annotation, Visu-
alisation and Integrated Discovery, http://david.abcc.
ncifcrf.gov).

Protein interactions using STRING
To analyse the pathological significance of breast cancers
of feature-derived DEGs, network analysis was per-
formed with STRING (biological database and
visualization for network analysis); https://string-db.org/
cgi/input.pl?sessionId=Sdm7S6Tqzlf4&input_page_
show_search=on

Results
The overall workflow of our study is shown in Fig. 1.
The analysis of differentially expressed genes (DEGs)
using edgeR for feature selection, the construction of
prediction models, and the survival analysis are depicted.
Functional analysis was performed using DAVID for sig-
nature genes, while the biological interpretation was car-
ried out through a literature survey.

Feature selection
Differential gene expression analysis was performed
using edgeR for pCR and relapse conditions. Nine and

Table 1 Dataset

Training Test
anon-pCR 26 11
bpCR 12 6
cnon-relapase 22 13
drelapse 16 4
a, b: The number of patients in non-pCR and pCR corresponding to training
and test groups
c, d: The number of patents in non-relapse and relapse corresponding to
training and test groups
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13 DEGs associated with pCR and relapse, respectively,
were identified (Table 2). We also analysed the differ-
ences between pre- and post-treatment paired samples
upon combinatorial assessment of pCR and relapse. PRE
refers to biopsies performed prior to neoadjuvant
chemotherapy (n = 55), whereas POST indicates opera-
tions performed after neoadjuvant chemotherapy (n = 14,
including 6 pCR cases in Additional file 1: Figure S1).
We evaluated multiple experimental factors. Three tests
were performed to evaluate the combinations of disease
status (relapse and pCR) and treatments (e.g., PRE or
POST); i.e., comparison of a POST and pCR group with
a POST and relapse group, comparison of a POST and
relapse group with a POST and non-relapse group, and
comparison of POST and PRE relapse groups, which re-
vealed significant DEGs. One (e.g., KLRG2) and three
(HLA-DQA1, HLA-DQB1, and CEACAM6) genes were
significantly associated with the combination of POST
treatment and pCR and relapse groups, respectively
(Table 3). An additive model for the comparison of PRE
to POSTgroups by adjusting the independent subject in

the relapse group revealed associations for 41 genes
(Additional file 1: Table S1). KLRG2 and CEACAM6
were included as DEGs in the PRE and POST compari-
son in the relapse group. Differences in these DEGs be-
tween PRE and POST groups were much greater than
those between the relapse and non-relapse groups
(Additional file 2: Figure S1).

Prediction of pCR and relapse
The performance of our predictive models for pCR and
relapse, based on the random Forest method, showed an
area under the curve (AUC) of 0.84 and a positive predict-
ive value (PPV) of 0.7 for the pCR predictive model
(Table 4). For the relapse predictive model, the AUC was
0.88 and PPV was 0.69 (Table 4). We compared the per-
formance of these models to those of the classic feature
selection method, Elastic Net (EN) (Fig. 2 and Table 4).
The predictive models based on EN for pCR showed an
AUC and PPV of 0.64 and 0, respectively, whereas our
pCR analysis predicted these values to be 0.84 and 0.7, re-
spectively. The PPV of our pCR model was not compar-
able to that of EN; the performance was low for our
immune panel data and did not control the false-positive
rate. The relapse model based on EN predicted an AUC

Table 4 Performance comparison with our model and Elastic
Net model

Model aAUC bPPV
cpCR model 0.84 0.7
d RELAPSE model 0.88 0.69
EEN pCR model 0.64 0
fEN RELAPSE model 0.68 0.23
aAUC: Receiver Operating Characteristic Area Under Curve
bPPV: Predictive Positive Value (TP / TP + FP)
cOur model pCR: Random Forest analysis using pCR DEG.
dOur model RELAPSE: Random Forest analysis using RELAPSE DEG.
eEN model pCR: Random Forest analysis using EN pCR genes (alpha
value < 0.95)
fEN model RELAPSE: Random Forest analysis using EN RELAPSE genes (alpha
value < 0.2)

Table 3 DEGs in combinations of pCR and relapse with POST
treatment

Gene aP value

DEGs for abpCR and POST group

KLRG2 0.000048

DEGs for a crelapse and POST group

HLA-DQA1 1.45E-25

HLA-DQB1 6.26E-19

CEACAM6 2.36E-04
a: Original P value calculated in edgeR
b: Combination of a POST and pCR group compared with a POST and
relapse group
c: Combination of a POST and relapse group with a POST and
non-relapse group

Table 2 DEGs in pCR and relapse groups

Gene aP-value
bpCR DEG

IL2RA 2.34E-07

CCL5 1.17E-06

SELE 1.71E-04

CCL20 1.67E-05

FCER1A 7.49E-04

CD1A 8.26E-05

HAMP 3.35E-04

CD7 5.12E-04

C4A.B 1.34E-04
cRELAPSE DEG

CCL5 9.49E-06

vCCL7 9.85E-06

TNFSF13B 5.80E-05

CSF2RB 1.60E-04

CLEC4E 2.73E-04

CCL8 3.58E-04

SELE 3.97E-04

EDNRB 4.34E-04

IL17B 5.75E-04

IL2RA 7.44E-04

FCER1A 8.09E-04

TGFBI 1.07E-03

GZMB 1.12E-03

Only genes at FDR < 0.05 after multiple hypothesis testing are presented
a: Original P value calculated in edgeR
b, c: DEGs in pCR and relapse conditions respectively
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and PPV of 0.68 and 0.23, respectively. Comprehensive
analysis indicated that our model outperformed the EN
with respect to the type I error rate (Table 4). Prediction
models involving combinatorial assessment of PRE and
POST groups for pCR and relapse models (Table 3) were
not constructed, as the sample size of POST is limited.
We performed a randomization analysis to investigate

whether the significant DEGs in the prediction models

were identified by chance. For pCR analysis based on
random feature selection, 15 cases met our cut-off for
accuracy (empirical P = 0.015) to reject the null hypoth-
esis. The models were superior to our prediction model
of pCR with respect to the AUC (> 0.84) and PPV (> 0.7)
(Fig. 3). For relapse, 18 cases (P = 0.018) displayed a su-
perior AUC (> 0.88) and PPV (> 0.69) than that of our
prediction model of relapse (Fig. 4).

Fig. 3 A randomization test for pCR. Plots present the distributions of the AUC and PPV values for all 1000 permutations. Histograms represent (a)
AUCs and (b) PPV of permutations. Red represents AUC or PPV of permutations below (Table 4) whilst green represents permutations superior to
our thresholds

Fig. 2 Comparison of our prediction models with EN-based prediction models. a AUCs between ours and the EN-based prediction model of pCR.
Blue represents our RF model of pCR constructed on the features selected using edgeR, which is more robust than that the model represented in
green, based on features selected using EN. b AUCs between ours and EN-based prediction model of relapse. Blue represents our RF model of
relapse constructed on the features selected using edgeR
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Survival analysis
We used the Cox proportional hazards regression model
to evaluate if the nine and 13 genes in the prediction
models of pCR and relapse affected patient survival to
determine their value as prognostic markers. In the pCR
survival plot (Fig. 5a), a significant difference was ob-
served between pCR and non-pCR patients during the
first 4 years. In contrast to pCR survival analysis,

recurrence-free survival was observed among patients
showing expression changes in 13 DEGs, with very poor
survival during the first 4 years (Fig. 5b). TNBC relapse
was predicted to be 80% in earlier years, decreasing to
less than 10% at 4 years, indicating that the DEGs are as-
sociated with a high risk of TNBC relapse during the
first 4 years. The prognostic impact of these DEGs was
constant after exceeding this point.

Fig. 4 A randomization test for relapse. Plots present the distribution of the AUC and PPV values for all 1000 permutations. Histograms represent
(a) AUC and (b) PPV of permutations. Red represents AUC or PPV below (Table 4) whilst green represents permutations superior to our thresholds

Fig. 5 Survival analysis using the Cox proportional hazards regression model. a Stands for the cox model built on pCR genes. Red indicates pCR
and blue non-pCR. b Stands for the cox model built on relapse genes. Red represents relapse and blue non-relapse
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Two significant genes (FCER1A and CD1A) in the Cox
proportional hazard regression model (Table 5) were
downregulated in the pCR group (Fig. 6). The violin
plots for the remaining genes in the pCR model are
shown in Additional file 3. In the relapse group, three
genes (i.e. FCER1A, EDNRB, and TGFBI) were signifi-
cantly up-regulated (P < 0.05; Table 6 and Fig. 7). The
violin plots for the remaining 10 genes in the relapse
model are shown in Additional file 4.

Interpretation of functional annotations and network
analysis
Significant DEGs were evaluated via functional enrich-
ment analysis using the DAVID functional annotation
tool. The results of functional annotation are sum-
marised in Table 7 (e.g., nine genes for pCR and 13
genes for relapse) and showed that DEGs for pCR and
relapse had similar functions. Both were enriched in
cytokine-cytokine interactions. As indicated by KEGG

pathway annotation, cytokine-cytokine receptor interac-
tions play an important role in cell proliferation and dif-
ferentiation, survival, and pathogen resistance; the
release of cytokines in response to infection, inflamma-
tion, and immunity can inhibit tumorigenesis and cancer
progression [9].
Network analysis was performed using the STRING

database. Gene interactions were determined using the
STRING database through experiments, text mining,
and gene fusions. Among the DEGs in the pCR group,
CCL5, CCL20, CD1A, and IL2RA interact with CCR5
and CCR6, alias CMKBR6 (Fig. 8). Gene-gene interac-
tions were detected in the relapse group (Fig. 9); CCL5,
GZMB, IL2RA, SELE, and CCL8 interacted with CCR5
in both the pCR and relapse groups and were associated
with tumour progression [14], and metastasis [10]. In
patients with breast cancer, CCR5 and its ligand CCL5
were found to be upregulated among DEGs in the pCR
group [10]. Furthermore, CCR5 is a novel therapeutic

Table 5 Significant genes in overall survival analysis for the pCR
model

Gene aHazard Ratio(95%CI) bP-value

CD1A 0.103439 0.00755

FCER1A 0.47464 0.00128
a: The Hazard Ratio calculated in the Cox proportional hazards regression
model. A Hazard ratio lower than 1 indicates non-risk factor; a ratio higher
than 1 indicates risk factor
b: Original P value (< 0.05) calculated in the Cox proportional hazards
regression model

Fig. 6 Violin plots for significant genes in the Cox model of pCR. a and b represent CD1A and FCER1A, respectively. CD1A, and FCER1A have high
expression in non-pCR

Table 6 Significant genes in disease free survival analysis for
the relapse model

Gene aHazard Ratio(95%CI) bP value

FCER1A 0.14087 0.0458

EDNRB 0.35933 0.0337

TGFBI 0.52611 0.0262
a: The Hazard Ratio calculated in the Cox proportional hazards regression
model. A Hazard ratio lower than 1 indicates non-risk factor; a ratio higher
than 1 indicates risk factor
b: Original P value (< 0.05) calculated in the Cox proportional hazards
regression model
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Fig. 7 Violin plots for significant genes in the Cox model of relapse. Violin plots for three significant genes in the Cox proportional hazards
regression model. a Corresponds to EDNRB with high expression at relapse, b corresponds to FCER1A with high expression at relapse, and c
corresponds to TGFBI with high expression at relapse

Table 7 Functional enrichment analysis for pCR and RELAPSE models

Category Term Genes aP Value
bpCR

GOTERM_BP_DIRECT GO:0006955 ~ immune response IL2RA, CCL20, HAMP, CD1A, CCL5, CD7 1.95E-07

UP_SEQ_FEATURE disulfide bond FCER1A, IL2RA, CCL20, HAMP, CD1A, CCL5, SELE, CD7 1.36E-06

UP_SEQ_FEATURE signal peptide FCER1A, IL2RA, CCL20, HAMP, CD1A, CCL5, SELE, CD7 3.57E-06

UP_KEYWORDS Disulfide bond FCER1A, IL2RA, CCL20, HAMP, CD1A, CCL5, SELE, CD7 3.58E-06

UP_KEYWORDS Signal FCER1A, IL2RA, CCL20, HAMP, CD1A, CCL5, SELE, CD7 1.37E-05

KEGG_PATHWAY hsa04640:Hematopoietic cell lineage IL2RA, CD1A, CD7 0.002295

KEGG_PATHWAY hsa04668:TNF signaling pathway CCL20, CCL5, SELE 0.003452

KEGG_PATHWAY hsa04060:Cytokine-cytokine receptor interaction IL2RA, CCL20, CCL5 0.016968

KEGG_PATHWAY hsa05323:Rheumatoid arthritis CCL20, CCL5 0.074368
cRELAPSE

UP_SEQ_FEATURE disulfide bond FCER1A, IL2RA, CCL8, GZMB, CCL5, CCL7, EDNRB, IL17B,
TNFSF13B, CLEC4E, TGFBI, CSF2RB, SELE

8.75E-11

UP_KEYWORDS Disulfide bond FCER1A, IL2RA, CCL8, GZMB, CCL5, CCL7, EDNRB, IL17B,
TNFSF13B, CLEC4E, TGFBI, CSF2RB, SELE

4.58E-10

UP_SEQ_FEATURE signal peptide FCER1A, EDNRB, IL17B, IL2RA, TGFBI, CCL8, CSF2RB,
GZMB, CCL5, SELE, CCL7

7.83E-07

UP_KEYWORDS Cytokine IL17B, TNFSF13B, CCL8, CCL5, CCL7 3.29E-06

GOTERM_BP_DIRECT GO:0006954 ~ inflammatory response IL17B, IL2RA, CCL8, CCL5, SELE, CCL7 3.97E-06

UP_KEYWORDS Signal FCER1A, EDNRB, IL17B, IL2RA, TGFBI, CCL8, CSF2RB, GZMB,
CCL5, SELE, CCL7

4.97E-06

UP_KEYWORDS Glycoprotein FCER1A, EDNRB, IL17B, IL2RA, CLEC4E, TNFSF13B, CSF2RB,
GZMB, CCL5, SELE, CCL7

1.17E-05

KEGG_PATHWAY hsa04060:Cytokine-cytokine receptor interaction IL17B, IL2RA, TNFSF13B, CCL8, CSF2RB, CCL5, CCL7 7.28E-07

KEGG_PATHWAY hsa04062:Chemokine signaling pathway CCL8, CCL5, CCL7 0.034067

Only annotations with a FDR < 0.05 after multiple hypothesis testing are presented from DAVID outputs
a: Original P value (FDR < 0.05) calculated in DAVID

Lim et al. BMC Cancer         (2020) 20:1052 Page 9 of 13



target for metastatic cancer, and recent clinical trials
have targeted this gene in breast and colon cancer.
CCR6 interacted with CCL20 in the pCR group and is

a receptor of CCL20; overexpression of CCL20 augments
mitogen-activated protein kinase and protein kinase C
signalling, resulting in tumour progression [15–17]. Sig-
nificant enrichment in molecular functions determined
by Gene Ontology analysis of genes and their interaction

partners in the STRING database are summarised in
Table 8.

Discussion
In this study, we developed a novel biomarker discovery
approach in the context of pCR and relapse in TNBC.
We used edgeR for feature selection from the Nano-
String nCounter Immunology Panel and constructed

Fig. 8 An interaction network for genes in the pCR model. The interaction network is derived from STRING for the nine significant genes in the
pCR model. FCER1A did not form any interaction as per the STRING Database. Red represents interactions derived from gene fusion, purple from
experiments, and yellow from text mining

Fig. 9 An interaction network for genes in the relapse model. Of 13 genes in the relapse model, eight genes formed interactions. Five genes on
the top left corner did not form any interaction as per the STRING database. The interaction network is derived from STRING for the nine
significant genes. Red represents interactions derived from gene fusion, purple from experiments, and yellow from text mining
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prediction models for pCR and relapse for TNBC based
on selected features using the random Forest method.
Moreover, we verified the gene signatures of pCR and
relapse prediction models for TNBC treatment through
a literature survey.
Two significant genes (CD1a and FCER1A) related

with the survival outcome in the pCR prediction model
have been reported as conventional dendritic cell
markers and are highly expressed in innate antigen-
presenting cells infiltrating breast cancer tissues [18],
which is consistent with our findings (Fig. 6). We found
that low expression of conventional dendritic cell
markers (CD1a and FCER1A) was associated with pCR,
potentially affecting the overall patient survival in
TNBC; however, a previous study [19] reported no sig-
nificant association between the levels of CD1a +
tumour-infiltrating dendritic cells and pCR in either the

primary tumours or axillary lymph node metastasis.
There has been no previous study evaluating the effects
of CD1a + in dendritic cells in the context of breast can-
cer survival (in patients receiving neoadjuvant
chemotherapy).
Of the three significant genes (FCER1A, EDNRB, and

TGFBI) in the relapse prediction model, EDNRB is located
on chromosome 13 and encodes a G protein-coupled re-
ceptor. EDNRB downregulation can prevent TNBC pro-
gression and may be a biomarker candidate for TNBC
treatment efficacy prediction [20]. It has been reported
that TGFBI is associated with both breast cancer inhib-
ition [21] and progression [22]. A recent study revealed
that TGFBI was upregulated in treatment-resistant TNBC
MDA-MB-231/IR cells and is involved in drug and radi-
ation resistance [23]. No previous study has reported that
TGFBI is associated with recurrence-free survival of

Table 8 Molecular function enrichment of genes in interaction networks

pCR RELAPSE

GO-term term description GO-term term description

GO:0019955 cytokine binding GO:0005125 cytokine activity

GO:0004896 cytokine receptor activity GO:0001664 G protein-coupled receptor binding

GO:0004911 interleukin-2 receptor activity GO:0005102 signaling receptor binding

GO:0019976 interleukin-2 binding GO:0005126 cytokine receptor binding

GO:0098772 molecular function regulator GO:0048020 CCR chemokine receptor binding

GO:0005515 protein binding GO:0098772 molecular function regulator

GO:0016493 C-C chemokine receptor activity GO:0008009 chemokine activity

GO:0019957 C-C chemokine binding GO:0031726 CCR1 chemokine receptor binding

GO:0038023 signaling receptor activity GO:0016004 phospholipase activator activity

GO:0001848 complement binding GO:0004896 cytokine receptor activity

GO:0004435 phosphatidylinositol phospholipase C activity GO:0038023 signaling receptor activity

GO:0048018 receptor ligand activity GO:0004435 phosphatidylinositol phospholipase C activity

GO:0015026 coreceptor activity GO:0005515 protein binding

GO:0048020 CCR chemokine receptor binding GO:0005088 Ras guanyl-nucleotide exchange factor activity

GO:0005125 cytokine activity GO:0030246 carbohydrate binding

GO:0008009 chemokine activity GO:0019209 kinase activator activity

GO:0005088 Ras guanyl-nucleotide exchange factor activity GO:0019955 cytokine binding

GO:0001664 G protein-coupled receptor binding GO:0004888 transmembrane signaling receptor activity

GO:0005126 cytokine receptor binding GO:0008528 G protein-coupled peptide receptor activity

GO:0030246 carbohydrate binding GO:0008201 heparin binding

GO:0004888 transmembrane signaling receptor activity GO:0008047 enzyme activator activity

GO:0019209 kinase activator activity

GO:0005102 signaling receptor binding

GO:0005488 binding

GO:0030234 enzyme regulator activity

GO:0004866 endopeptidase inhibitor activity

GO:0004252 serine-type endopeptidase activity

Molecular Function analysis presents. GO Gene Ontology. GO terms at FDR < 0.05 present
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patients with TNBC. In total, three genes were considered
as targeted diagnostic and treatment biomarkers for
TNBC. Nevertheless, additional experimental validation of
these genes as new drug targets is required.
The cost of NGS-based approaches for immune profil-

ing remains high, despite the high demand for this
method. This may result in the analysis of limited sam-
ple sizes. Most machine learning methods for feature se-
lection are suitable for large datasets or show poor
performance for small sample sizes.

Conclusions
We described a practical approach for analysing tran-
scriptome data generated using the NanoString nCoun-
ter Immunology platform with a matrix similar to that
of an NGS platform, which currently involves statistical
methods based on microarray analysis. This study pro-
vides a framework for transcriptome analysis in NGS,
which can be applied to data obtained using the Nano-
String nCounter Immunology Panel.
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