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were incubated separately with specific primary anti-
bodies overnight at 4 °C, followed by incubation with
goat anti-rabbit IgG or goat anti-mouse IgG antibodies
(ZSGB-Bio, China) for 1 h at room temperature. Finally,
immunoreactive proteins were visualized using a chemi-
luminescence detection system (FluorChem HD2, USA).

Statistical analysis
Data were analyzed by one way ANOVA or t-test, and
statistical analyses were performed using SPSS 21.0 and
GraphPad Prism 5.0 software. The comparisons with a
P< 0.05 were considered statistically significant.

Results
Key miRNAs screened by miRNA networks
From the bioinformatics analysis on the miRNA profiles
of BCSCs and counterpart of control breast cancer cells,
we obtained two networks. In the miRNA-gene network
(Fig. 1a), the crosstalk degrees of miR-106a-5p, miR-
20b-5p, miR-106b-3p, let-7b-5p, miR-7e-5p, miR-29b-
3p, and miR-98-5p ranked at the top, with an average
degree of 42.86. Among them, the degrees of miR-106a-
5p and miR-20b-5p reached 48 (Fig.1b). In the miRNA-
GO network (Fig. 1c), the crosstalk degrees of miR-
106a-5p, miR-20b-5p, miR-106b-3p, let-7b-5p, miR-7e-
5p, miR-29b-3p and miR-98-5p ranked at the top, with

an average degree of 34.14. Among them, the degrees of
miR-106a-5p and miR-20b-5p reached 36 (Fig.1d).
Based on the two networks above, it was amazing that
both miR-106a-5p and miR-20b-5p had the same highest
regulatory degrees, which was recorded and described in
our previous work [20, 23]. Coincidentally, they are both
located on the X chromosome (Xq26.2, GRCh37) and
less than 1 kb apart. Moreover, miR-106a-5p and miR-
20b-5p together with other molecules, such as miR-92a-
2 and miR-363, constitute a cluster of miRNAs [24]. Our
previous publication demonstrated that miR-106a-5p
acted as a tumor suppressor gene and significantly inhib-
ited the invasion and migration of breast cancer cells
[23]. In the current study, we focused on miR-20b-5p
instead.

Bioinformatics analysis of target genes
By bioinformatics analysis, we explored the target genes
of miR-20b-5p related to cell proliferation and cell cycle
and found 10 potential targets of miR-20b-5p, namely,
CyclinD1 (CCND1), E2F1, MAPK1, STAT3, R2b23b,
RAB5BR, RABEP1, TAOK3, PPARDR and XIAP. To
roughly screen the potential target genes of miR-20b-5p,
agomir-20b-5p was transfected into MCF-7 cells and the
gene expression was detected by qRT-PCR. We found
that miR-20b-5p increased the expression of some of the

Fig. 1 Screening of breast cancer stem cells (BCSCs)-associated miRNAs via miRNA networks. a In the miRNA-gene network, the rectangle in the
figure represents upregulated miRNAs, the circle represents genes, and the line represents the regulatory relationship between miRNAs and
genes; b The regulatory degrees of miRNAs in the miRNA-gene network; c In the miRNA-GO network, the rectangle in the figure represents
miRNAs, the circle represents GO terms, and the straight line represents the regulatory relationship between miRNAs and GO terms. The more
miRNAs regulating a GO term, the larger its area; d The regulatory degrees of miRNAs in the miRNAs-GO network
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screening by qRT-PCR. CCND1, as an oncogene, is
overexpressed in tumors and plays an important regula-
tory role in normal breast development, damage repair,
maintenance of breast epithelial stem cell proliferation
and self-renewal [35–37]. E2F1, a member of the E2F
transcription factor family, regulates gene expression re-
lated to cell proliferation, differentiation and apoptosis
and controls the cell cycle via a two-way regulatory
mechanism. As a tumor suppressor gene or oncogene,
E2F1 is closely related to tumor progression and drug
resistance [38–41]. The literature shows that CCND1
and E2F1 are regulated by the miR-17-92 cluster, which
is a miRNA cluster located on chromosome 13 that is
composed of miR-17, miR-20a and miR-92a-1 [8, 9].
This suggests that E2F1 is targeted by certain miRNAs
and is involved in the regulation of tumor cells [42]. To
confirm that miR-20b-5p regulated CCND1 and E2F1
expression, we performed three experiments, namely, a
comparison between BCSCs and the control breast can-
cer cells, a dual-luciferase assay and western blot analysis
after overexpression or knockdown of miR-20b-5p. The
dual-luciferase reporting system showed that CCND1
and E2F1 were the real targets of miR-20b-5p. Our west-
ern blot analysis showed that antagomir-20b-5p signifi-
cantly decreased the protein levels of both CCND1 and
E2F1. The luciferase activity was inhibited by miRNA
mimics, indicating that miR-20b-5p downregulated the
targets. On the contrary, if the luciferase activity was en-
hanced by miRNA mimics, it may suggest that miR-20b-
5p upregulated the targets. Additionally, western blot
assay may not demonstrate a direct regulation, as it is a
comprehensive reflection of direct and indirect regula-
tion by the miRNA.

This seems to be a contradictory but interesting
phenomenon. One speculation is that the observed up-
regulation of CCND1 and E2F1 might well be the side
effect of the upregulation of miR-20b-5p. Theoretically a
high level of miR-20b-5p may cause the occupation of
the RNA-induced silencing complex (RISC) by this
miRNA and thus RISCs are less available for other miR-
NAs. Namely, the mature miRNA (the guide strand) is
incorporated into RISCs, whereas the passage miRNA*
strand can be loaded in the RISC as well or degraded
[43]. The mature miRNA guides the Argonaute protein
of the RISC to the complementary mRNA sequence on
the target to repress its expression [44]. In this case,
some genes targeted by other miRNAs might get re-
leased from their negative regulation and might get up-
regulated [45]. Another speculation is that the
antagomirs or mimic will produce off-target effects [46].
Off-target phenomenon usually occurs when miR is
overexpressed more than hundreds of folds. In our ex-
periment, we used agomir to make miR overexpression
less than 80 folds, which is a proper range and effectively

avoids off-target effects. Therefore, the second specula-
tion is out of our consideration.

Our results revealed an indirect upregulation of
CCND1 and E2F1 by miR-20b-5p. There are likely to be
unknown targets (X and Y) negatively regulated by miR-
20b-5p. The unknown targets (X and Y) could inhibit
CCND1 and E2F1 protein expression. Overall, miR-20b-
5p regulated both CCND1 and E2F1 via bidirectional
regulation, namely, direct downregulation and indirect
upregulation. As a tug-of-war mechanism, the indirect
promoting effect of miR-20b-5p on CCND1 and E2F1
may outweigh its direct downregulation of CCND1 and
E2F1. However, it is still necessary to reveal the under-
lying mechanism, which will be explored in further stud-
ies. The hypothesis involving the effect of miR-20b-5p
on CCND1 and E2F1 is shown in a regulatory network
(Supplementary Fig.4).

Conclusion
In summary, this study shows that miR-20b-5p can pro-
mote tumorigenesis in both breast cancer cells and stem
cells. We speculate that the underlying mechanism of
miR-20b-5p contributing to the malignant progression
of breast cancer is that miR-20b-5p overall upregulates
both CCND1 and E2F1 via bidirectional regulation.
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