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Abstract

Background and objectives: The diagnostic performance of intravoxel incoherent motion diffusion-weighted
imaging (IVIM-DWI) in the differential diagnosis of pulmonary tumors remained debatable among published studies.
This study aimed to pool and summary the relevant results to provide more robust evidence in this issue using a
meta-analysis method.

Materials and methods: The researches regarding the differential diagnosis of lung lesions using IVIM-DWI were
systemically searched in Pubmed, Embase, Web of science and Wangfang database without time limitation. Review
Manager 5.3 was used to calculate the standardized mean difference (SMD) and 95% confidence intervals of
apparent diffusion coefficient (ADC), tissue diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f). Stata 12.0
was used to pool the sensitivity, specificity, and area under the curve (AUC), as well as publication bias and
heterogeneity. Fagan’s nomogram was used to predict the post-test probabilities.

Results: Eleven studies with 481 malignant and 258 benign lung lesions were included. Most include studies showed a
low to unclear risk of bias and low concerns regarding applicability. Lung cancer demonstrated a significant lower ADC
(SMD= -1.17, P < 0.001), D (SMD = -1.02, P < 0.001) and f values (SMD = -0.43, P = 0.005) than benign lesions, except D*
value (SMD = 0.01, P = 0.96). D value demonstrated the best diagnostic performance (sensitivity = 89%, specificity = 71%,
AUC = 0.90) and highest post-test probability (57, 57, 43 and 43% for D, ADC, f and D* values) in the differential diagnosis
of lung tumors, followed by ADC (sensitivity = 85%, specificity = 72%, AUC = 0.86), f (sensitivity = 71%, specificity = 61%,
AUC = 0.71) and D* values (sensitivity = 70%, specificity = 60%, AUC = 0.66).
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Conclusion: IVIM-DWI parameters show potentially strong diagnostic capabilities in the differential diagnosis of lung
tumors based on the tumor cellularity and perfusion characteristics, and D value demonstrated better diagnostic
performance compared to mono-exponential ADC.

Keywords: IVIM-DWI, Post-test probability, Diagnostic performance, Lung neoplasm, Magnetic resonance imaging, Meta-
analysis

Introduction
Lung cancer is the most commonly diagnosed cancer
(11.6% of the total cases) and the leading cause of cancer
death (18.4% of the total cancer deaths) in 2018 around
the world [1]. The incidence and mortality of lung can-
cer still increased in recent 30 years. Accurate and early
diagnosis is help to select optimal treatment strategy and
improve the outcome of patients with lung cancer.
Computed tomography (CT) is the main imaging mo-

dality for lung lesions largely based on morphological
and enhanced characteristics. However, the relatively
low specificity and administration of contrast agent limit
its wide use in clinical practice. Magnetic resonance im-
aging (MRI) was rarely used in detecting lung lesions
previously due to the obvious cardiac and respiratory
motion, low signal-to-noise ratio from the inherently
low lung-proton density, and magnetic susceptibility
artifact of air-filled pulmonary tissue subjected to high
field strength [2]. With the development of MRI hard-
wares and various rapid imaging technologies such as
improved gradient performance, parallel imaging tech-
niques and free-breathing acquisition, MRI has been in-
creasingly used for identification of benign and
malignant lung tumors and efficacy evaluation.
Diffusion-weighted imaging (DWI) is a radiation-free
and contrast-free functional imaging sequence, which al-
lows measurement of water molecular movement using
apparent diffusion coefficient (ADC) and demonstrates
potential to differentiate malignant from benign lung le-
sions. A previous meta-analysis even reported a higher
diagnostic performance with a pooled sensitivity, specifi-
city and areas under the curve (AUC) of 83, 91% and
0.93 in DWI, compared to PET/CT whose sensitivity,
specificity and AUC were 78, 81% and 0.86, respectively.
The mono-exponential model is expressed as SI / SI0 =
exp(−b·ADC), where SI0 refers to the mean signal inten-
sity (SI) of the region of interest for b = 0 s/mm2 while SI
refers to the signal intensity for higher b values. How-
ever, the mono-exponential model cannot separate the
pseudo-diffusion from pure molecular diffusion, and
ADC calculated from the mono-exponential model
mixes the two effects. Therefore, the conventional
mono-exponential model cannot accurately reflect the
true diffusivity owing to the influence of microcircula-
tion perfusion [3].

Intravoxel incoherent motion (IVIM) is an advanced
imaging technique, which was first proposed by Le Bihan
et al. [4]. It can separate the incoherent motion of water
molecules within the capillaries from molecular diffusion
in the extravascular space [5]. The true diffusion coeffi-
cient (D value), pseudo-diffusion coefficient (D* value)
and perfusion fraction (f value) were generated using a
biexponential model with multiple b-values expressed as
SI / SI0 = (1- f) · exp(−bD) + f · exp(−bD*). The IVIM
model can separate the pseudo-diffusion from pure mo-
lecular diffusion and independently reflect the microcir-
culation perfusion (D*) and tumor cellularity (D) based
on that equation [6]. This model provides more detailed
and accurate information, and can make a better inter-
pretation for the microenvironment changes and
characterization of tumor grades. As such, these parame-
ters are important to be analyzed. Several studies had
applied IVIM-DWI to discriminate lung cancer from be-
nign lesions and demonstrated better or comparable
diagnostic performance compared with traditional ADC
value [7–9]. However, the diagnostic performances of
IVIM-DWI derived parameters in the differentiation of
lung tumors were not consistent and the application still
remained debatable in the lung. For example, several
studies indicated that lung cancer had a higher D* value
than benign lesion [10–12] while some studies reported
adverse [7, 8, 13] or insignificant results [9, 14, 15]. The-
oretically, the true diffusitivity should have better diag-
nostic performance than ADC in distinguishing lung
lesions, but some studies indicated a much lower area
under the curve (AUC) or accuracy in D value compared
to ADC [7, 14]. Cancerous tissue generally has active
angiogenesis and rich blood supply compared to benign
lesions, but most studies indicated a lower f value in
lung cancer, the results of which should be further con-
firmed. The sample sizes in most studies were still not
enough to draw a robust conclusion for its performance;
the application of IVIM-DWI in the lung has not yet
formed a clinical guideline or become a routine se-
quence in the MRI protocol. Therefore, we attempted to
pool all the published results about the diagnostic per-
formance of IVIM-DWI in the differentiation of malig-
nant and benign lung lesions using a meta-analysis
method. Besides, the diagnostic performance of IVIM-
DWI was compared to conventional DWI-derived ADC
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value to determine the suitability for clinical application.
The controversial issues between different researches
will also be addressed with more reliable evidence. Fur-
thermore, this study provides additional information
about technical feasibility on lung MRI, and the func-
tional changes of lung lesions with IVIM-DWI. This
study may further attract the researchers to perform the
lung studies using noninvasive MR imaging by solving
the technical issues on Lung MRI.

Materials and methods
Data sources
The studies regarding the differential diagnosis of lung
tumors using IVIM-DWI parameters were systemically
retrieved by two senior librarians in PubMed, Embase,
Web of science and Wangfang database without time
limitation. A searching formula was formed with differ-
ent combinations of the medical subject headings or key
words from IVIM, intravoxel incoherent motion, mul-
tiple b-value DWI, biexponential, and lung or pulmonary
lesion / cancer / carcinoma / neoplasm. The primary
searches were limited in the titles and abstracts. We also
performed a manual retrieval of the reference lists from
included studies.

Studies selection
Studies met the following criteria were included: (a) the
research purpose was to differentiate lung cancer from
benign lesions using IVIM-DWI parameters; (b) the
mean and standard deviation (SD) of each parameter
was provided; (c) their diagnostic performance about
sensitivity and specificity, or true-positive (TP), false-
negative (FN), false-positive (FP) and true-negative (TN)
were reported; (d) the lung cancer should be confirmed
by pathology after initial MRI examination. Exclusion
criteria mainly included: (a) duplication from the same
authors or institutions; (b) meta-analysis, conference ab-
stract, review or any unpublished results; and (c) animal
experiments or non-lung researches.

Data extraction
A spreadsheet was used to extract the mean values and
SD as well as the diagnostic performance of ADC, D, D*
and f values with threshold value, AUC, sensitivity
and specificity in respective study by one author, and
reviewed by another one. Other information included
the first author, publication years, field strength and ven-
dors, b values, patient ages, tumor sizes, and numbers of
malignant and benign lesions. TP, FN, FP and TN can
be calculated when only the amount of malignant and
benign lesions as well as sensitivity and specificity or re-
ceiver operating curve was provided.

Quality assessment
The quality of studies and likelihood of bias were evalu-
ated using Review Manager 5.3 software (Cochrane Col-
laboration, Oxford, UK), referring to the Quality
Assessment of Diagnostic Accuracy Studies- 2 [16]. We
assessed the risk of bias and applicability in four do-
mains, including patient selection, index tests, reference
standard, flow and timing [17].

Publication bias and heterogeneity evaluation
As two parts of data were pooled in our study including
quantitative values and diagnostic performance of each
parameter, funnel plots and Begg’s test were used to
visually and quantitatively assess the publication bias for
the continuous variables and Deek’s plot assessed the
publication bias of sensitivity and specificity using Stata
version 12.0 (StataCorp LP, College Station, TX). An
asymmetric or skewed funnel plot, P < 0.05 of Begg’s test
or Deek’s test indicated the potential of publication bias
[18]. Inconsistency index (I2) and Cochran’s Q tests were
used to explore the heterogeneity of included studies,
with I2 > 50% or P < 0.05 for Cochran Q test suggested
statistically significant heterogeneity, and a random-
effect model was applied in subsequent pooling, or a
fixed-effect model when I2 < 50% [19].

Evidence synthesis
We constructed the forest plots for continuous variables
and calculated the standardized mean difference (SMD)
between lung cancer and benign lesions using Review
Manager software. We used the bivariate regression
model to pool the diagnostic performance with sensitiv-
ity, specificity, positive likelihood ratio (PLR), negative
likelihood ratio (NLR), diagnostic odds ratio (DOR) and
AUC using Stata version 12.0. The summary receiver
operating characteristic curves and Fagan’s nomograms
were also plotted to determine the diagnostic values and
predict the post-test probabilities of ADC, D, D* and f
values in the differential diagnosis of lung tumors.

Results
Literature search and selection
By searching the key words in the titles and abstracts, a
total of 128 potential studies were obtained from mul-
tiple databases. A total of 11 studies regarding meta-
analysis, conference abstract, case report and review
were excluded after screening the titles and abstracts.
Animal studies, non-lung researches and duplication
from the same authors or institutions led to further ex-
clude 14 studies. We scrutinized the full-texts of the
remaining 58 studies in detail and excluded an add-
itional 47 studies for the following reasons: (a) lack of
sufficient data to be pooled; (b) low quality assessment;
(c) IVIM-DWI was interfered by treatment and (d)
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cancer was not confirmed by pathology. Eventually, 11
eligible studies with 481 malignant and 258 benign lung
lesions were included for analysis. The flowchart detail-
ing the process of study selection was provided in Fig. 1.
Basic information and diagnostic performance for each
included study was detailed in Table 1 and Table 2. In
other to include every potential article, we did not set a
criterion on the field strength (1.5 T or 3.0 T). From
Table 1, there are three studies using 1.5 T and eight
studies using 3.0 T for imaging. Although field strength
of 3.0 T is better for image quality, the results from 1.5 T
scanner are also acceptable. Therefore, studies with ei-
ther of field strengths are included for analysis.

Quality assessment
The distribution of Quality Assessment of Diagnostic
Accuracy Studies–2 scores for risk of bias and applic-
ability concerns were shown in Fig. 2. The overall quality
of included studies was acceptable. Regarding patient se-
lection, four studies were marked unclear risk of bias due
to ambiguity for consecutive enrollment and prospective
design or not. The applicability concerns remained

unclear concern as the tumor types were inconsistent
between malignant and benign tumors from two studies.
Two studies were marked unclear and high risk of bias
with unclear concern of applicability for index test as
the threshold values for D* and f values were not pro-
vided. Three studies showed unclear risks of bias for ref-
erence standard because some of the benign lesions
were diagnosed through a long time follow-up. Three
studies were marked unclear and high risk of bias in pa-
tient flow and timing domain because the time interval
between MR examination and pathological confirmation
was not reported.

Quantitative analysis
ADC used for diagnosis of lung tumor.
Nine studies regarding ADC used in differentiating lung
tumors were included for analysis. The χ2 = 25.40 and
P = 0.001 of heterogeneity test with I2 = 68% suggested
moderate heterogeneity among included studies. The
forest plot in Fig. 3 showed the distribution of ADC be-
tween lung cancer and benign lesions. A random-effects
model generated a SMD of − 1.17 (− 1.51, − 0.82) (P <

Fig. 1 Flowchart detailing the study selection process. Eleven studies that met the inclusion criteria were included. FN, false negative; FP, false
positive; TN, true negative; TP, true positive
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Table 1 Basic information for each included study

Author Year Machine type b values (s/mm2) Age (years) Tumor size (cm) Malignant Benign

Deng et al. [7] 2015 3 T Philips 0,25,50,75,100,200,400,600,800,1000 58.80 ± 10.93 3.21 ± 1.62 30 8

Huang et al. [13] 2016 3 T GE 0,10,25,50,100,200,400,600,800,1000 57.4 ± 13.2 NA 30 15

Jiang et al. [8] 2020 3 T Siemens 0,50,100,150,200,250,300,500,800,1000 60.2 (21–80) 3.72 ± 1.71 88 33

Jiao et al. [10] 2019 3 T GE 0,20,50,100,200,400,600,800,1000 38–79 NA 59 37

Wan et al. [9] 2018 3 T Philips 0,5,10,15,20,25,50,80,150,300,500,600,800,1000 58.25 (23–77) 4.2 (1.0–14.8) 69 20

Wang LL et al. [14] 2014 1.5 T Siemens 0,5,10,15,20,25,50,80,150,300,500,600,800 57.17 ± 8.82 2.89 ± 1.19 31 31

Wang Y et al. [11] 2019 3 T Philips 0,5,10,15,20,25,50,80,150,300,500,800,1000 33–79 NA 30 20

Yuan et al. [15] 2015 3 T Siemens 0,50,100,150,200,400,600,800 NA 2.9 (1.8–9.0) 52 48

Zhou et al. [12] 2018 1.5 T GE 0,20,50,100,150,200,400,600,1000 52.8 ± 10.5 42 22

Wang XH et al. [20] 2014 3 T GE 0,50,100,150,200,400,600,1000,1500 57.7 ± 12.7 5.2 ± 2.7 23 15

Koyama et al. [2] 2015 1.5 T Philips 0,50,100,150,300,500,1000 68.3 ± 10.2 0.4–7.33 27 9

NA Not available

Table 2 The diagnostic performance for each included study

Indicator Author Year Threshold AUC Sensitivity Specificity TP FP FN TN

ADC Deng et al. [7] 2015 1.0224 0.833 0.733 0.875 22 1 8 7

Huang et al. [13] 2016 1.547 0.805 0.889 0.667 27 5 3 10

Jiang et al. [8] 2020 1.46 0.805 0.9245 0.6316 81 12 7 21

Wan et al. [9] 2018 1.734 0.773 0.793 0.749 55 5 14 15

Wang Y et al. [11] 2019 1.265 0.847 0.847 0.715 25 6 5 14

Yuan et al. [15] 2015 1.31 NA 0.812 0.812 42 9 10 39

Zhou et al. [12] 2018 1.57 0.708 0.905 0.591 38 9 4 13

D Huang et al. [13] 2016 1.04 0.93 0.944 0.75 28 4 2 11

Jiang et al. [8] 2020 1.23 0.882 0.9057 0.8947 80 3 8 30

Jiao et al. [10] 2019 0.958 0.812 0.763 0.78 45 8 14 29

Wan et al. [9] 2018 1.138 0.834 0.8551 0.75 59 5 10 15

Wang LL et al. [14] 2014 0.98 0.763 0.871 0.665 27 10 4 21

Wang Y et al. [11] 2019 1.185 0.888 0.888 0.752 27 5 3 15

Yuan et al. [15] 2015 1.44 NA 0.913 0.385 47 30 5 18

Zhou et al. [12] 2018 1.25 0.729 0.952 0.545 40 10 2 12

Wang XH et al. [20] 2014 0.9 0.839 0.957 0.8 22 3 1 12

D* Deng et al. [7] 2015 NA 0.679 0.622 0.8 19 2 11 6

Huang et al. [13] 2016 17.935 0.605 0.765 0.462 23 8 7 7

Jiang et al. [8] 2020 15.9 0.696 0.7925 0.6316 70 12 18 21

Wan et al. [9] 2018 NA NA 0.693 0.45 48 11 21 9

Yuan et al. [15] 2015 12.71 NA 0.478 0.692 25 15 27 33

Zhou et al. [12] 2018 8.82 0.68 0.714 0.591 30 9 12 13

Wang XH et al. [20] 2014 3.7 0.683 0.826 0.6 19 6 4 9

f Deng et al. [7] 2015 37.43% 0.829 0.8 0.75 24 2 6 6

Huang et al. [13] 2016 28.35% 0.615 0.75 0.429 23 9 7 6

Wan et al. [9] 2018 NA NA 0.719 0.5 50 10 19 10

Wang LL et al. [14] 2014 24.93% 0.762 0.806 0.548 25 14 6 17

Yuan et al. [15] 2015 18.36% NA 0.609 0.692 32 15 20 33

Wang XH et al. [20] 2014 39.30% 0.639 0.521 0.8 12 3 11 12

NA Not available, ADC Apparent diffusion coefficient, D Tissue diffusivity, D* pseudo-diffusivity, f Perfusion fraction, AUC Area under the curve, FN
False negative, FP False positive, TN True negative, TP True positive. Threshold values of ADC, D and D* are factors of 10− 3mm2/s
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0.001) between lung cancer and benign lesions for
ADC. A basically symmetric funnel plot in Fig. 4 and
P = 0.754 of Begg’s Test suggested no publication bias
in ADC.

D value used for diagnosis of lung tumor
Eleven studies regarding D value used in differentiating
lung tumors were included for analysis. The χ2 = 29.32

and P = 0.001 of heterogeneity test with I2 = 66% sug-
gested moderate heterogeneity among included studies. The
forest plot in Fig. 5 showed the distribution of D value be-
tween lung cancer and benign lesions. A random-effects
model generated a SMD of − 1.02 (− 1.32, − 0.73) (P < 0.001)
between lung cancer and benign lesions for D value. A basic-
ally symmetric funnel plot in Fig. 4 and P= 0.436 of Begg’s
Test suggested no publication bias in D value.

Fig. 2 The distribution of risk of bias and applicability concerns for each included study using QUADAS-2 (a) and a summary methodological
quality (b)

Liang et al. BMC Cancer          (2020) 20:799 Page 6 of 14



Fig. 3 Forest plot of the mean value of apparent diffusion coefficient (ADC) between lung cancer and benign lesions. The standardized mean
differences indicated that lung cancers had a significantly lower ADC than benign lesions

Fig. 4 Funnel plot of a apparent diffusion coefficient (ADC), b tissue diffusivity (D), c pseudo-diffusivity (D*), and d perfusion fraction (f). The
basically symmetric funnel plots indicated no publication bias in these parameters
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D* value used for diagnosis of lung tumor
Ten studies regarding D* value used in differentiating
lung tumors were included for analysis. The χ2 = 55.48
and P < 0.001 of heterogeneity test with I2 = 84% sug-
gested obvious heterogeneity among included studies.
The forest plot in Fig. 6 showed the distribution of D*
between lung cancer and benign lesions. A random-
effects model generated a SMD of 0.01 (− 0.40, 0.42)
(P = 0.96) between lung cancer and benign lesions for
D*. A basically symmetric funnel plot in Fig. 4 and P =
1.00 of Begg’s Test suggested no publication bias in D*.

f value used for diagnosis of lung tumor
Eleven studies regarding f value used in differentiating
lung tumors were included for analysis. The χ2 = 32.76
and P < 0.001 of heterogeneity test with I2 = 69% sug-
gested moderate heterogeneity among included studies.
The forest plot in Fig. 7 showed the distribution of
f value between lung cancer and benign lesions. A

random-effects model generated a SMD of − 0.43
(− 0.72, − 0.13) (P = 0.005) between lung cancer and
benign lesions for f value. A basically symmetric
funnel plot in Fig. 4 and P = 0.640 of Begg’s Test
suggested no publication bias in f value.

Diagnostic performance
The Diagnostic performance with pooled sensitivity, spe-
cificity, PLR, NLR, DOR and AUC of ADC, D, D* and f
values were listed in Table 3. Deek’s funnel plots in Fig. 8
and asymmetry tests indicated no obvious publication
bias in ADC, D, D* and f values (P = 0.53, 0.36, 0.66 and
0.39 for ADC, D, D* and f values, respectively). Fig. 9
plotted the summary receiver operating characteristic
curves of ADC, D, D* and f values. D value demon-
strated the best diagnostic performance (sensitivity =
89%, specificity = 71%, AUC = 0.90) in the differential
diagnosis of lung tumors, followed by ADC (sensitivity =
85%, specificity = 72%, AUC = 0.86), f (sensitivity = 71%,

Fig. 5 Forest plot of the mean value of tissue diffusivity (D) between lung cancer and benign lesions. The standardized mean differences
indicated that lung cancer had a significantly lower D value than benign lesions

Fig. 6 Forest plot of the mean value of pseudo-diffusivity (D*) between lung cancer and benign lesions. The standardized mean differences
indicated that the difference of D* value between lung cancers and benign lesions were insignificant
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specificity = 61%, AUC = 0.71) and D* values (sensitiv-
ity = 70%, specificity = 60%, AUC = 0.66).

Post-test probabilities
Likelihood ratio and post-test probability were also im-
portant for diagnosing a disease [21], which provided a
likelihood that a patient was diagnosed with a certain
disease or not using the MRI parameters. Fig. 10 plotted
the Fagan’s nomograms of ADC, D, D* and f values for
predicting post-test probabilities. All the pre-test prob-
abilities were set at 30% by default. We regarded the
diagnosis of lung cancer as a positive event, correspond-
ing to a lower ADC, D and f values. Similarly, the non-
cancerous tissues with a higher ADC, D and f values
were regarded as a negative event. The post-test prob-
ability increased to 57% from a pre-test probability of
30% with a PLR of 3.1 and decreased to 8% with a NLR
of 0.20, with the prompt of ADC. This indicated that the
diagnostic preference to lung cancer will be obviously
enhanced with the help of ADC (a lower ADC) com-
pared with the condition without the prompt of ADC
whose diagnostic probability was set at 30% beforehand.
In contrast, the probability of diagnosing lung cancer
will significantly drop from 30 to 8% when a negative
event occurs (a higher ADC). Similarly, the post-test

probability of diagnosing lung cancer will reach to 57%
with a PLR of 3.1 and drop to 6% with a NLR of 0.15
using D for guiding. The post-test probability of diag-
nosing lung cancer will reach to 43% with a PLR of 1.8
and drop to 17% with a NLR of 0.48 in the help of f
value. These data indicated that both ADC and IVIM
parameters helped to enhance the accuracy for diagnos-
ing lung cancer.

Discussion
IVIM-DWI is a noninvasive technique that shows super-
iority in reflecting tumor cellularity and perfusion with-
out the need of contrast agent. It had already been
applied in the differentiation of thyroid nodules [22],
breast [23], liver [24] and brain tumors [25] with good
diagnostic performance. To our best knowledge, there is
still no pulmonary study with large sample size to settle
down the value of IVIM for quantitatively distinguishing
lung cancer from benign tissues, in the background of
IVIM becoming a research hotspot in the whole-body
tumors. Our study provided a timely summary in this
issue through pooling all published evidence with strict
inclusion criteria and quality assessment. The results
demonstrated IVIM model had a good diagnostic per-
formance in distinguishing lung lesions.

Fig. 7 Forest plot of the mean value of perfusion fraction (f) between lung cancer and benign lesions. The standardized mean differences
indicated that lung cancer had a significantly lower f value than benign lesions

Table 3 Pooled estimates and heterogeneity measures for ADC, D, D* and f values

Index Sensitivity Specificity PLR NLR DOR AUC I2 (%)

Sensitivity Specificity

ADC 0.85 (0.79,0.90) 0.72 (0.63,0.80) 3.1 (2.3,4.1) 0.20 (0.15,0.28) 15 (9,24) 0.86 (0.83,0.89) 43.07 3.91

D 0.89 (0.85,0.93) 0.71 (0.59,0.81) 3.1 (2.1,4.5) 0.15 (0.10,0.22) 20 (11,38) 0.90 (0.88,0.93) 44.52 77.62

D* 0.70 (0.62,0.78) 0.60 (0.52,0.68) 1.8 (1.4,2.2) 0.49 (0.37,0.65) 4 (2,6) 0.66 (0.62,0.70) 68.04 0

f 0.71 (0.62,0.78) 0.61 (0.49,0.71) 1.8 (1.4,2.3) 0.48 (0.37,0.62) 4 (2,6) 0.71 (0.67,0.75) 45.99 40.89

ADC Apparent diffusion coefficient, D Tissue diffusivity, D* Pseudo-diffusivity, f Perfusion fraction, PLR Positive likelihood ratio, NLR Negative likelihood ratio, DOR
Diagnostic odds ratio, AUC Area under the curve; I2, inconsistency index
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In this meta-analysis, the SMDs suggested that lung
cancer demonstrated a lower ADC and D values than
benign lesions. The lung cancer usually has dense cellu-
larity and nucleoplasm ratio with active proliferative
capacity, which may reduce the extracellular space and
restrict the movement of water molecules, causing a re-
duction in diffusion coefficient. The pooled results also
suggested an excellent diagnostic performance with a
high sensitivity, specificity, AUC and increased post-test
probability in both ADC and D values, followed by f
value. Monoexponential model cannot provide an

independent perfusion-related parameter and may mis-
calculate the water molecule movement due to a mix
with microcirculation perfusion, and therefore resulted
in an overestimated ADC value in a certain extent [23].
Therefore, the best diagnostic performance was observed
in D value instead of ADC value.
Interestingly, lung cancer demonstrated a significant

lower f value but insignificant D* value compared with
benign lesions. F value refers to vascular volume ratio
and reflects the microcirculation perfusion in the capil-
laries. F value increases with increased tissue perfusion.

Fig. 8 Deeks’ funnel plots regarding diagnostic performance for a apparent diffusion coefficient (ADC), b tissue diffusivity (D), c pseudo-diffusivity
(D*), and d perfusion fraction (f). No publication bias was indicated in the four parameters (P > 0.05)
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Higher f value is supposed to be observed in malignant
tumors due to neovascularization, compared to benign
lesions. However, these results are not unreasonable be-
cause the benign lesions occurring in the lung are gener-
ally inflammatory infections which consist of
tuberculosis, organic pneumonia, fungal infection,
granuloma or blood-rich tumor such as inflammatory
pseudotumor. They are usually featured by marked vas-
cular changes, including vasodilation, increased blood
flow and enhanced vessel permeability, which generally

occur at the capillary network [7]. A perfusion study
using CT with exogenous contrast indicated active infec-
tious nodules had comparable or even higher perfusion,
peak enhancement increment, and blood volume with
steeper time to peak than malignant nodules [26]. The
results were in good agreement with our study in an-
other aspect. However, the diagnostic performance of f
value was relatively low with the sensitivity, specificity
and AUC of 0.71, 0.67 and 0.71 only. F value is also as-
sociated with echo time, relaxation effects and T2

Fig. 9 Summary receiver operating characteristic (SROC) curve of a apparent diffusion coefficient (ADC), b tissue diffusivity (D), c pseudo-
diffusivity (D*), and d perfusion fraction (f) in the diagnosis of lung lesions. D value demonstrated the highest area under the curve, followed by
ADC, f and D* values
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contribution [27], which may reduce its diagnostic ac-
curacy/performance to a certain extent.
D* value is proportional to the average blood velocity

and mean capillary segment length [28]. D * value was
not statistically significant in differentiating benign and
malignant lung lesions in this meta-analysis. A poor
measurement reproducibility of D* was indicated by the
huge standard deviations in the included studies. Theor-
etically, the more b-values are selected, the higher the
accuracy of model fitting will be. Besides, measurement
at lower b-value had been reported to be less reprodu-
cible and stable compared with measurement at higher
b-value, and previous studies suggested measurements at
a larger number of lower b-value should be obtained for
reducing measurement errors and signal-to noise vari-
ation [29, 30]. However, a larger number of b-value ap-
plied in IVIM model will significantly prolong the
scanning times and introduce obvious motion and sus-
ceptibility artifacts, especially in the pulmonary MRI.
Therefore, D* value is still not adequate to differentiate
lung lesions due to the low reliability, stability and ac-
curacy, as indicated in our meta-analysis.
ADC, D, D* and f values all demonstrated moderate to

obvious heterogeneity, which should be explored. First,
both 1.5 T and 3.0 T MR scanners with various combina-
tions of b-value were used to perform IVIM-DWI in
these studies, which may influence the accurate calcula-
tions of diffusion and perfusion coefficients, and de-
crease the diagnostic performance compared to mono-
exponential ADC. Second, the lesion sizes and density of
lung cancer (such as ground glass opacity) on initial CT
varied from studies to studies, which may perform dif-
ferent biological characteristics and also lead to the
measurement variability in ADC and IVIM parameters
indicated by Weller et al. [31] and Jiang et al. [32].

Third, the benign lesions consisted of a variety of in-
flammatory infections and benign tumors, which may
introduce significant heterogeneity in these parameters
when compared with lung cancer. Last, most studies de-
lineated the regions of interest on the largest slice in-
stead of the entire tumors, which may lead to some
selection bias owing to tumor heterogeneity. Histogram
analyses for the whole lesions, which can reduce the
measurement variability, may be a more promising
method for assessing lung nodules in the future study.
There were several limitations. First, as the sensitivity

of detecting pure ground glass opacity or small lesions
are quite low on conventional DWI or IVIM-DWI, these
lesions were inevitably excluded from the original stud-
ies, which may decrease the availability of IVIM in the
clinical application to a certain extent. Second, we had
not performed a direct comparison with dynamic con-
trast enhanced-CT/MRI or Fluorine 18-FDG PET-CT,
which was also commonly used in the diagnosis of lung
cancer. The issue about whether IVIM-DWI added
values to multi-parametric MRI or CT in a large sample
size was still not clear.

Conclusions
IVIM-DWI parameters show potentially strong diagnos-
tic capabilities in the differential diagnosis of lung tu-
mors, and D value demonstrated better diagnostic
performance compared to mono-exponential ADC. F
value can differentiate the perfusion difference between
lung cancer and benign lesions. The application of
IVIM-DWI will further help the clinicians make a better
management for cancer treatment and prognosis evalu-
ation based on the tumor cellularity and perfusion char-
acteristics detected by IVIM technique.

Fig. 10 Fagan’s nomogram of a apparent diffusion coefficient (ADC), b tissue diffusivity (D), c pseudo-diffusivity (D*), and d perfusion fraction (f).
D and ADC demonstrated similar and highest post-test probability among the four parameters
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