
RESEARCH ARTICLE Open Access

WDHD1 facilitates G1 checkpoint
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Abstract

Background: Genomic instability is a hallmark of cancer. The G1 checkpoint allows cells to repair damaged DNA that
may lead to genomic instability. The high-risk human papillomavirus (HPV) E7 gene can abrogate the G1 checkpoint,
yet the mechanism is still not fully understood. Our recent study showed that WDHD1 (WD repeat and high mobility
group [HMG]-box DNA-binding protein 1) plays a role in regulating G1 checkpoint of E7 expressing cells. In this study,
we explored the mechanism by which WDHD1 regulates G1 checkpoint in HPV E7 expressing cells.

Methods: NIKS and RPE1 derived cell lines were used. Real-time PCR, Rescue experiment, FACS and BrdU labeling
experiments were performed to examine role of GCN5 in G1 checkpoint abrogation in HPV-16 E7 expressing cells.

Results: In this study, we observed that WDHD1 facilitates G1 checkpoint abrogation by modulating GCN5 in HPV E7
expressing cells. Notably, depletion of WDHD1 caused G1 arrest while overexpression of GCN5 rescued the inhibitory
effects of WDHD1 knockdown on G1/S progression. Furthermore, siWDHD1 significantly decreased cell cycle
proliferation and DNA synthesis that was correlated with Akt phosphorylation (p-Akt), which was reversed by GCN5
overexpression in HPV E7 expressing cells.

Conclusions: In summary, our data identified a WDHD1/GCN5/Akt pathway leading to the abrogation of G1
checkpoint in the presence of damaged DNA, which may cause genomic instability and eventually HPV induced
tumorigenesis.
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Background
The human papillomaviruses (HPVs) are spherical small
DNA viruses that induce lesions in the skin and mucosa.
The high-risk (HR) HPVs infection may lead to cervical
cancer and other cancers. Up to 75% of cervical cancers
are caused by HPV genotypes 16 and 18 [1]. The trans-
forming properties of HR HPVs mainly depend on E6

and E7 oncogenes [2], which inactivate p53 and Rb fam-
ily members respectively, thus abrogating cell cycle
checkpoints [3]. HR HPV E7 can promote pRB degrad-
ation, which result in release of transcription factor E2F,
transcription of genes required for DNA replication, and
cell proliferation disorder [4–8].
The cell cycle progression is modulated at cell-cycle

checkpoints by multiple factors such as cyclins, cyclin-
dependent kinases (Cdks) [9]. Once the checkpoint be-
comes abnormal, genomic instability may occur [10].
Genomic instability is a hallmark of cancer progression
[10], and G1 checkpoint determines whether cells can
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enter S phase for DNA replication. In the early G1
phase, pRb is partially phosphorylated of by Cdk4-Cdk6.
pRb is completely phosphorylated by Cdk2 in the late
G1 phase.
Genomic DNA of the normal cells duplicates only

once per cell cycle. Replication starts in two steps: as-
sembling and activating of pre-replication (pre-RC). The
assembly of the pre-RC complex is regulated by cell
cycle, which mainly occurs in the late mitosis and G1
phase. Prior to S phase, origins are licensed by the bind-
ing of components of the replicative DNA helicase in eu-
karyotes. Recognition complex (ORC), Cdc6, Cdt1 and
MCM2–7 was recruited successively to the DNA repli-
cation starting point to participate in the assembly of the
pre-RC complex and then initiate DNA replication [11].
It is generally believed that the DNA replication initi-
ation factor affects the G1 checkpoint by regulating the
initiation of DNA replication, which in turn causes G1
arrest. WDHD1 (WD repeat and HMG - box DNA -
binding protein 1) was also shown to be involved in the
assembly process [12]. In addition, WDHD1 act as a G1
checkpoint control protein [13–15]. How WDHD1 pre-
cisely regulates G1 checkpoint remains to be illucidated.
We have demonstrated a role for WDHD1 in G1

checkpoint control in HPV E7 expressing cells [16]. Our
result suggests that WDHD1 may regulates G1 check-
point through a mechanism independent of DNA repli-
cation initiation. This study aims to understand how
WDHD1 regulates G1 checkpoint in E7 expression cells.
It was reported that GCN5(histone acetyltransferase
complex) plays a role in the G1 checkpoint control while
WDHD1 inhibits degradation by disrupting its inter-
action with ubiquitination ligase CRL4 complex [17, 18].
Our recent study revealed that GCN5 promotes HPV
expressing cell proliferation by regulating E2F1 [19]. In
the present study, we determined the role of GCN5 and
the mechanism by which WDHD1 abrogates G1 check-
point in E7 expressing cells.

Methods
Cell culture
pBabe retroviral system was used to establish the HPV-
16 E7 expressing NIKS and RPE1 cells as described pre-
viously [20]. Puromycin was used to maintain the above
two cell lines, which are limited to be used within 15
generations [16].

RNA-seq
NIKS cells were used to extract total for construct
cDNA libraries construction. The detailed operation
processes please refer to the RNA-seq section of our
published article [16].

Real-time PCR
According to the kit’s instructions, the entire RNA was
separated with Qiagen RNeasy kit from the E7 express-
ing RPE1 or NIKS cells and their correspondent vector-
control cells. Invitrogen cDNA synthesis kit and Bio-Rad
SYBR Green Supermix were used for synthesis cDNA
and Real-Time PCR. Details need to refer to the pub-
lished articles [6, 16].

Flow cytometry
BrdU (bromodeoxyuridine) labeling and cell cycle exper-
iments were performed on BD FACSAria™ III sorter
equipment and analyzed by Cytomics™ FC500 Flow Cy-
tometry CXP 2.0. The concentration of the Alexis Bio-
chemicals bleomycin used in the experiment was 4 μg/
ml. The specific experimental steps need to follow the
published articles [16, 19, 20].

siRNAs and transfection
The Invitrogen Lipofectamine 2000 transfection reagent
was used for gene knockdown and cell cycle analysis in
E7 and vector-control expressing cells. The sequence of
siRNA duplexes were in Table 1. Detailed experimental
steps need to follow our published article [16].

Immunoblotting
Protein extracted from cells were measured by Pierce
BCA (bicinchoninic acid), and then proceeded to SDS
PAGE (polyacrylamide gel) electrophoresis, finally to be
detected with antibodies against WDHD1 (abcam,
ab72436), GCN5 (Santa Cruz, Sc-365,321), and tubulin
(Sigma, T-4026), AKT (CST, 4685), p-AKT (CST, 4060).
Detailed experimental steps need to follow our published
article [16]. The Half Life Calculator was used to calcu-
late the half-life of GCN5 which was treated with 25 μg/
ml CHX (cycloheximide) (www.calculator.net).

Statistical analysis
Means and standard deviations (SDs) were used to
present the data and the differences between means
were compared by the student’s t-test. P < 0.05 was con-
sidered significant.

Results
Expression of GCN5 correlates with WDHD1 in HPV-16 E7
expressing cells
Our previous study demonstrated a role for WDHD1 in
G1 checkpoint abrogation E7 expressing cells [16]. It
was reported that GCN5 plays a role in the G1 check-
point control while WDHD1 inhibits its degradation
[17–19]. Moreover, our recent study revealed that
GCN5 also promotes cell cycle progression in HPV E7
expressing cells [19]. We therefor hypothesize that
WDHD1 performs its cell cycle promting function by
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up-regulating GCN5 in E7 expressing cells. We noticed
that both WDHD1 and GCN5 expression were elevated in
our RNA-seq data in HPV E7 expressing NIKs cells
(Fig. 1a) [18]. This was confirmed by an RT-PCR analysis
in both NIKS cells (Fig. 1b) and RPE1 cells (Fig. 1c).
Furthermore, the steady-state levels of WDHD1 and

GCN5 were also increased in E7 expressing RPE1
cells (Fig. 2a). The increased steady-state level of
GCN5 was regulated by WDHD1, as siRNA knock-
down of WDHD1 reduced GCN5 while this reduction
was reveres after transfection of cells with WDHD1
(Fig. 2b). We also determined the stability of GCN5
protein in E7 expressing cells. Accordingly, after
treatment with cycloheximide, the steady-state levels
of GCN5 in E7 expressing and vector control cells
were measured (Fig. 2c). The results indicated that
the half-life of GCN5 protein in E7 expression cells
was significantly higher than that in the control cells
(3.8 h versus 1.4 h).

Overexpression of GCN5 overrides G1 checkpoint
activation and S-phase entry delay induced by WDHD1
knock-down
We have demonstrated that both WDHD1 and GCN5
play key roles in S-phase entry and G1 checkpoint
control in E7 expressing cells [16, 19], and our data
suggest that WDHD1 regulates GCN5 expression
(Figs. 1 and 2). To establish the functional interaction
of the two molecules, we performed a rescue experi-
ment. For this goal, we demonstrated that transfection
of GCN5 can restore the steady-state levels of GCN5
protein caused by WDHD1 siRNA interference
(Fig. 3a). Significantly, the percentage of cells arrested
at the G1 phase as a result of WDHD1 knockdown
was reduced after GCN5 expression (from 43.4 to
31.1%) (Fig. 3b). Similarly, percentage of BrdU incorp-
oration due to WDHD1 knockdown was increased
(from 24.3 to 31.6%) after GCN5 expression (Fig. 3c).
These results demonstrated that the G1 abrogation

Fig. 1 GCN5 mRNA expression correlates with WDHD1. a GCN5 and WDHD1 mRNA levels in NIKs cells determined by RNA-seq. b and c GCN5
and WDHD1 mRNA levels in NIKS and RPE1 cells determined by real-time PCR. Error bars reflect the standard deviations of the mean. *, p < 0.05
**, p < 0.01

Table 1 The sequence of siRNA duplexes
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and S-phase entry caused by WDHD1 knocking down
could be rescued by up-regulating GCN5 in HPV E7
expressing cells.

WDHD1 activates Akt via GCN5 in E7 expressing cells
It was reported that GCN5 regulates the G1 check-
point by activating Akt [21]. As shown in Fig. 4a, ac-
tivation of Akt, as indicated by its phosphorylation at
473, decreased after GCN5 knockdown, indicating
that GCN5 regulates AKT activity in E7 expressing
cells. We then examined whether WDHD1 could acti-
vate Akt by modulating GCN5, and found that GCN5
and p-Akt levels were greatly decreased in E7 ex-
pressing cells when WDHD1 were knocked down
(Fig. 4b).
We have already showed that expression of GCN5 can

rescue G1 arrest caused by WDHD1 knockdown, we
then asked whether expression of GCN5 can compen-
sate for the inactivation of Akt caused by WDHD1
knockdown. As shown in Fig. 4c, expression of GCN5
can indeed compensate for Akt inactivation caused by
WDHD1 knockdown. Therefore, taking all the results
into consideration, cell cycle progression could be mod-
ulated by WDHD1 activating of Akt via GCN5 up-
regulation in HPV E7 expressing cells.

Discussion
Licensing checkpoints including the DNA replication
initiation factors regulate the S-phase entry [11, 21]. Pre-
viously, WDHD1 was thought to have a role in pre-RC
assembly [13, 16]. However, the biochemical mechanism
has not been verified at the cellular level in cervical can-
cer. Notably, we have demonstrated that even WDHD1
partially knocked down to control cells level can still in-
duces G1 arrest [16], suggesting that besides the replica-
tion initiation mechanism, WDHD1 may regulate the
G1 checkpoint through other mechanism or other target
gene. In addition, WDHD1 is considered to be required
for the stability of histone acetyltransferase GCN5 [18],
the latter was reported to promote G1/S phase transition
and cell cycle progression [22–24] by affecting its down-
stream target genes such as HBXIP [23], EGR2 [25],
AIB1 [26], c-Myc [27, 28], E2F1 [22]. In addition to our
recent results showing that GCN5 upregulates E2F1 and
thus promotes HPV E7 induced cell proliferation [19],
the other roles of GCN5 in cervical cancer are still un-
clear. This current study elucidates a model that HPV
E7 up-regulates the expression of WDHD1 and then
GCN5, which activates Akt and thereby promotes cell
proliferation.
Due to the key regulatory role in multiple cell pro-

cesses including cell proliferation, differentiation and

Fig. 2 GCN5 protein expression correlates with WDHD1. a GCN5 and WDHD1 protein levels in RPE1 cells. b GCN5 protein levels in RPE1 E7 cells
examined by Western blotting after retransfected with Flag-WDHD1. Data were summarized (Right panel). c RPE1 cells were incubated with
cycloheximide (CHX) and harvested at the indicated times. The stability of GCN5 was monitored by immunoblotting analyses (left panel). Data are
summarized in the right panel. Data from a representative experiment of 3 are shown, *P < 0.05; **P < 0.01. The WB samples for quantitative
comparisons on different gels/blots derive from the same experiment and that gels/blots were processed in parallel. Cropping is used for the
gels and blots in the main paper and the ‘full-length blots/gels are presented in Supplementary Figure 2
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apoptosis, AKT (also known as PKB) has received much
attention in the field of life sciences. AKT signaling is
typically activated in invasive squamous cell carcinomas
[29, 30], including nearly 80% of cervical cancers [31–
33]. However, the function of GCN5 activates AKT in
cervical cancer has not been reported. Previous studies

have shown that HPV E6 and E7 oncogenes augment
the activation of AKT [32, 34]. Nonetheless, a recent
study showed that HPV-16 E7 can attenuate pAKT sig-
nalling [35]. In addition, hypoxic AKT activation is ob-
served under conditions of E6/E7 repression [36], which
indicates that the hypoxic AKT activation is regulated by

Fig. 3 Over expression of GCN5 rescues DNA replication reduction induced by WDHD1 depletion. a RPE1 cells expressing E7 were transfected
with Flag-GCN5 or flag after WDHD1 siRNA transfection, and then cells treated with bleomycin for 36 h. Western blotting was used to determine
the steady-state level of GCN5. Tubulin was used as a loading control. Right panel, quantification of relative GCN5 levels from 3 independent
experiments. The WB samples for quantitative comparisons on different gels/blots derive from the same experiment and that gels/blots were
processed in parallel. Cropping is used for the gels and blots in the main paper and the ‘full-length blots/gels are presented in Supplementary
Figure 3A. b Cells were stained with PI after bleomycin treatment. G1, S and G2 phases are indicated and quantified. c Cells were stained with
BrdU after bleomycin treatment, and analyzed by flow cytometry. Data from a representative experiment of 3 were shown. Error bars reflect the
standard deviations of the mean. NC, negative control. *P < 0.05; **P < 0.01
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an E6/E7-independent mechanism, but the mechanism
is unclear. These suggest that several pathways exist in
activation of AKT signaling in HPV-positive cervical
cancers. In this study, GCN5 was further discovered to
modulate the cell cycle progression by activating p-Akt,
and it’s over expression rescued the inhibition of G1/S
transition due to WDHD1 reduction.
G1/S transition is regulated by cyclins, cyclin-

dependent kinases (Cdks) and the regulatory proteins

[9]. The G1 arrest observed in cells is associated with
low levels of G1 Cdks activity and pRb hypophosphory-
lation. E6 and E7 oncoproteins abrogates cell cycle
checkpoints and induces genomic instability by promot-
ing the degradation of the tumour suppressors p53 and
pRb, respectively. pRb binds to E2F and inhibits its tran-
scriptional activation of genes, including cyclin A and
cyclin E, which are important for the G1-S phase transi-
tion. p53 activates its target gene Cdk inhibitor p21 [37],

Fig. 4 WDHD1 activates p-Akt expression to modulate cell cycle progression by up-regulating GCN5 in HPV E7 expressing cells. a The steady
state levels of p-Akt by Western blot after GCN5 interference in RPE1 cells. b The steady state levels of p-Akt and GCN5 by Western blot after
WDHD1 interference in RPE1 cells. c RPE1-E7 expressing cells were transfected with Flag-GCN5 or flag after WDHD1 siRNA transfection. The
steady-state levels of p-Akt and GCN5 were measured by Western blotting. Tubulin was used as a loading control. Right panel, quantification of
relative p-Akt levels from 3 independent experiments. Error bars reflect the standard deviations of the mean. NC, negative control. *P < 0.05; **P <
0.01. The WB samples for quantitative comparisons on different gels/blots derive from the same experiment and that gels/blots were processed
in parallel. Cropping is used for the gels and blots in the main paper and the ‘full-length blots/gels are presented in Supplementary Figure 4
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which inactivates the cyclin E1/Cdk2 and cyclin A2/
Cdk2 complexes, resulting in pRb hypophosphorylation
and cell cycle arrest. Theoretically, p53 expression
should be decreased due to E6 and has a low activity
during carcinogenesis [38–40]. However, some studies
have shown that p53 still functional in E7 expressing
cells [41] and can be detected under hypoxia condition
or after cytotoxic therapies that cause DNA damage in
cervical tumors [42, 43]. These results suggest that p53
is still functioning in cervical cancer cells. Moreover, in-
creased p21 expression was also observed in E7 express-
ing cells as well as cervical cancer [44, 45] and the
expression of both p53 and p21 was increased in low-
grade cervical squamous intraepithelial lesions infected
with a wide variety of HPV types [46–48]. Furthermore,
studies showed that oncogene E6 and E7 expression are
different in lower grades of SIL (LSIL), with E7 expres-
sion predominating over E6 prior to the development of
invasive cervical carcinoma [49]. The above-mentioned
illustrated that p53 was still functional in E7 expressing
cells as well as cervical cancer.
Polyploid, as one of the manifestations of genomic

instability, has been recognized as an important cause
of tumor genesis [50]]. The presence of polyploid
cells could be examined in the early stages of cervical
cancer [51],and our previous study showed that HPV-
16 E7 can induce polyploid formation [52]. Generally
known, one of the causes of polyploid formation is
DNA re-replication, and there are few genes known
to induce DNA re-replication currently. Our recent
research results showed that the high-risk HPV-16 E7
can induce primary keratinized epithelial cells (PHK)
to replicate in the G2 phase by increasing the DNA
replication factor Cdt1, resulting in the formation of
polyploid cells [20]. We also found that interference
with WDHD1 significantly reduced the E7 induced
DNA re-replication [16]. Then, whether WDHD1 can
induce DNA replication by increasing GCN 5 remains
to be further studied.

Conclusions
In summary, our data elucidate a model that HPV E7
up-regulates the expression of WDHD1 and then GCN5,
which activates Akt and thereby promotes cell prolifera-
tion. These results will help understand the mechanism
by which HPV regulates cell cycle and may contribute to
develop drugs against the virus.
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